Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Geological Position of Dated Samples
3.2. Analytical Techniques
4. Results
4.1. Detrital Rutile Geochemistry
4.1.1. Sample 7-v15-9
4.1.2. Sample 15AP30
4.1.3. Sample 11-V15-11
4.2. U-Pb Dating of Rutile
4.2.1. Sample 7-v15-9
4.2.2. Sample 15AP30
4.2.3. Sample 11-V15-1
5. Provenance Interpretation
5.1. Previous Provenance Study
5.2. Detrital Rutile
5.3. Comparison between U-Pb Dating of Rutiles and Zircons, (U-Th)/He Dating of Zircons and Their Application to Provenance Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, W.E.; Hobday, D.K. Terrigenous Clastic Depositional Systems; Springer: New York, NY, USA, 1983; ISBN 978-1-4684-0172-1. [Google Scholar]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: New York, NY, USA, 1987; ISBN 978-0-387-96350-. [Google Scholar]
- Jamil, M.; Siddiqui, N.A.; Ahmed, N.; Usman, M.; Umar, M.; Rahim, H.U.; Imran, Q.S. Facies Analysis and Sedimentary Architecture of Hybrid Event Beds in Submarine Lobes: Insights from the Crocker Fan, NW Borneo, Malaysia. JMSE 2021, 9, 1133. [Google Scholar] [CrossRef]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital Zircon Record and Tectonic Setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef]
- Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital Zircon Analysis of the Sedimentary Record. In Zircon; Hanchar, J.M., Hoskin, P.W.O., Eds.; De Gruyter: Berlin, Germany, 2003; pp. 277–304. ISBN 978-1-5015-0932-2. [Google Scholar]
- Gehrels, G. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. In Tectonics of Sedimentary Basins; Busby, C., Azor, A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 45–62. [Google Scholar] [CrossRef]
- Hadlari, T.; Swindles, G.T.; Galloway, J.M.; Bell, K.M.; Sulphur, K.C.; Heaman, L.M.; Beranek, L.P.; Fallas, K.M. 1.8 Billion Years of Detrital Zircon Recycling Calibrates a Refractory Part of Earth’s Sedimentary Cycle. PLoS ONE 2015, 10, e0144727. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, J.; Von Eynatten, H.; Dunkl, I.; Weltje, G.J. Detrital Zircon Geochronology and Heavy Mineral Analysis as Complementary Provenance Tools in the Presence of Extensive Weathering, Reworking and Recycling: The Neogene of the Southern North Sea Basin. Geol. Mag. 2021, 158, 1572–1584. [Google Scholar] [CrossRef]
- Schwartz, T.M.; Schwartz, R.K.; Weislogel, A.L. Orogenic Recycling of Detrital Zircons Characterizes Age Distributions of North American Cordilleran Strata. Tectonics 2019, 38, 4320–4334. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Lawton, T.F.; Gehrels, G.E. Recycling Detrital Zircons: A Case Study from the Cretaceous Bisbee Group of Southern Arizona. Geology 2009, 37, 503–506. [Google Scholar] [CrossRef]
- Andersen, T.; Van Niekerk, H.; Elburg, M.A. Detrital Zircon in an Active Sedimentary Recycling System: Challenging the ‘Source-to-sink’ Approach to Zircon-based Provenance Analysis. Sedimentology 2022, 69, 2436–2462. [Google Scholar] [CrossRef]
- Burnham, A.D. Zircon. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; p. B978012409548910911X. ISBN 978-0-12-409548-9. [Google Scholar]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U–Pb and Th–Pb Dating of Apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Gaschnig, R.M. Benefits of a Multiproxy Approach to Detrital Mineral Provenance Analysis: An Example from the Merrimack River, New England, USA. Geochem. Geophys. Geosyst. 2019, 20, 1557–1573. [Google Scholar] [CrossRef]
- Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol. 2011, 162, 515–530. [Google Scholar] [CrossRef]
- Zack, T.; Kronz, A.; Foley, S.F.; Rivers, T. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol. 2002, 184, 97–122. [Google Scholar] [CrossRef]
- Triebold, S.; von Eynatten, H.; Zack, T. A recipe for the use of rutile in sedimentary provenance analysis. Sediment. Geol. 2012, 282, 268–275. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and Its Applications in Earth Sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Okay, N.; Zack, T.; Okay, A.I.; Barth, M. Sinistral Transport along the Trans-European Suture Zone: Detrital Zircon–Rutile Geochronology and Sandstone Petrography from the Carboniferous Flysch of the Pontides. Geol. Mag. 2011, 148, 380–403. [Google Scholar] [CrossRef]
- Cherniak, D.J. Pb Diffusion in Rutile. Contrib. Miner. Petrol. 2000, 139, 198–207. [Google Scholar] [CrossRef]
- Vry, J.K.; Baker, J.A. LA-MC-ICPMS Pb–Pb Dating of Rutile from Slowly Cooled Granulites: Confirmation of the High Closure Temperature for Pb Diffusion in Rutile. Geochim. Cosmochim. Acta 2006, 70, 1807–1820. [Google Scholar] [CrossRef]
- Pereira, I.; Storey, C.D. Detrital rutile: Records of the deep crust, ores and fluids. Lithos 2023, 438–439, 107010. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Knudsen, C.; Hinchey, A.M. Investigations of Detrital Zircon, Rutile and Titanite from Present-Day Labrador Drainage Basins: Fingerprinting the Grenvillean Front. GEUS Bull. 2015, 33, 77–80. [Google Scholar] [CrossRef]
- Pereira, I.; Storey, C.D.; Strachan, R.A.; Bento Dos Santos, T.; Darling, J.R. Detrital rutile ages can deduce the tectonic setting of sedimentary basins. Earth Planet. Sci. Lett. 2020, 537, 116193. [Google Scholar] [CrossRef]
- Rösel, D.; Zack, T.; Möller, A. Interpretation and Significance of Combined Trace Element and U–Pb Isotopic Data of Detrital Rutile: A Case Study from Late Ordovician Sedimentary Rocks of Saxo-Thuringia, Germany. Int. J. Earth Sci. 2019, 108, 1–25. [Google Scholar] [CrossRef]
- Kotowski, J.; Nejbert, K.; Olszewska-Nejbert, D. Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland. Minerals 2021, 11, 553. [Google Scholar] [CrossRef]
- Bracciali, L.; Najman, Y.; Parrish, R.R.; Akhter, S.H.; Millar, I. The Brahmaputra Tale of Tectonics and Erosion: Early Miocene River Capture in the Eastern Himalaya. Earth Planet. Sci. Lett. 2015, 415, 25–37. [Google Scholar] [CrossRef]
- Bracciali, L.; Parrish, R.R.; Najman, Y.; Smye, A.; Carter, A.; Wijbrans, J.R. Plio-Pleistocene Exhumation of the Eastern Himalayan Syntaxis and Its Domal ‘Pop-Up’. Earth-Sci. Rev. 2016, 160, 350–385. [Google Scholar] [CrossRef]
- Drachev, S.S. Fold Belts and Sedimentary Basins of the Eurasian Arctic. Arktos 2016, 2, 21. [Google Scholar] [CrossRef]
- Drachev, S.S.; Malyshev, N.A.; Nikishin, A.M. Tectonic History and Petroleum Geology of the Russian Arctic Shelves: An Overview. In Geological Society, London, Petroleum Geology Conference Series; The Geological Society of London: London, UK, 2010; Volume 7, pp. 591–619. [Google Scholar] [CrossRef]
- Henriksen, E.; Ryseth, A.E.; Larssen, G.B.; Heide, T.; Rønning, K.; Sollid, K.; Stoupakova, A.V. Chapter 10. Tectonostratigraphy of the Greater Barents Sea: Implications for Petroleum Systems. Geol. Soc. Lond. Mem. 2011, 35, 163–195. [Google Scholar] [CrossRef]
- Pease, V.; Drachev, S.; Stephenson, R.; Zhang, X. Arctic Lithosphere—A Review. Tectonophysics 2014, 628, 1–25. [Google Scholar] [CrossRef]
- Dibner, V.D. (Ed.) Geology of Franz Josef Land; Nor. Polarinst. Meddelelser: Tromsø, Norway, 1998; Volume 146, 199p. [Google Scholar]
- Gramberg, I.S.; Shkola, I.V.; Bro, E.G.; Shekhodanov, V.A.; Armishev, A.M. Parametric Wells on the Islands of the Barents and Kara Seas. Sov. Geol. 1985, 1, 95–98. (In Russian) [Google Scholar]
- Makariev, A.A. (Ed.) State Geological Map of the Russian Federation. Scale 1: 1,000,000 (New Series). Sheet U-37-40—Franz Josef Land (Northern Islands). Explanatory Letter; Publishing House of VSEGEI: Saint Petersburg, Russia, 2006; 272p. (In Russian) [Google Scholar]
- Ershova, V.; Prokopiev, A.; Stockli, D.; Kurapov, M.; Kosteva, N.; Rogov, M.; Khudoley, A.; Petrov, E.O. Provenance of the Mesozoic succession of Franz Josef Land (north-eastern Barents Sea): Paleogeographic and tectonic implications for the High Arctic. Tectonics 2022, 41, e2022TC007348. [Google Scholar] [CrossRef]
- Corfu, F.; Polteau, S.; Planke, S.; Faleide, J.I.; Svensen, H.; Zayoncheck, A.; Stolbov, N. U–Pb Geochronology of Cretaceous Magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geol. Mag. 2013, 150, 1127–1135. [Google Scholar] [CrossRef]
- Senger, K.; Tveranger, J.; Ogata, K.; Braathen, A.; Planke, S. Late Mesozoic Magmatism in Svalbard: A Review. Earth-Sci. Rev. 2014, 139, 123–144. [Google Scholar] [CrossRef]
- Levskii, L.K.; Stolbov, N.M.; Bogomolov, E.S.; Vasil’eva, I.M.; Makar’eva, E.M. Sr-Nd-Pb Isotopic Systems in Basalts of the Franz Josef Land Archipelago. Geochem. Int. 2006, 44, 327–337. [Google Scholar] [CrossRef]
- Makariev, A.A. (Ed.) State Geological Map of the Russian Federation. Scale 1: 1000 000 (Third Generation). Series North-Karsko-Barents Sea. Sheet U-41-44-Franz Josef Land (Eastern Islands). Explanatory Note; Publishing House of VSEGEI: Saint Petersburg, Russia, 2011; 220p. (In Russian) [Google Scholar]
- Kosteva, N.N. Stratigraphy of Jurassic-Cretaceous deposits of Franz Joseph Land. Arctica Antarct. 2005, 4, 16–32. [Google Scholar]
- Repin, Y.S.; Fedorova, A.A.; Bystrova, V.V.; Kulikova, N.K.; Polubotko, I.V. Mesozoic strata of Barents Sea sedimentary basin. In Stratigraphy and Its Role in Develop of Oil and Gas Complex of Russia; VNIGRII: Saint Petersburg, Russia, 2007; pp. 112–137. (In Russian) [Google Scholar]
- Abashev, V.V.; Metelkin, D.V.; Vernikovsky, V.A.; Vasyukova, E.A.; Mikhaltsov, N.E. Early Cretaceous Basalts of the Franz Josef Land Archipelago: Correspondence of New 40Ar/39Ar and Paleomagnetic Data. Dokl. Earth Sci. 2020, 493, 495–498. [Google Scholar] [CrossRef]
- Grachev, A.F. A new view on the origin of magmatism of the Franz Joseph Land. Izvestiya Phys. Solid Earth 2001, 9, 49–61. [Google Scholar]
- Karyakin, Y.V.; Sklyarov, E.V.; Travin, A.V. Plume Magmatism at Franz Josef Land. Petrology 2021, 29, 528–560. [Google Scholar] [CrossRef]
- Koryakin, Y.V.; Shipilov, E.V. Geochemical Specifics and 40Ar/39Ar Age of the Basaltoid Magmatism of the Alexander Land, Northbrook, Hooker, and Hayes Islands (Franz Josef Land Archipelago). Dokl. Earth Sci. 2009, 425, 260–263. [Google Scholar] [CrossRef]
- Shipilov, E.V.; Karyakin, Y.V. Dikes of Hayes Island (Frantz Josef Land Archipelago): Tectonic Position and Geodynamic Interpretation. Dokl. Earth Sci. 2014, 457, 814–818. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T.; Meyer, H.P.; Ludwig, T.; Triebold, S.; Kronz, A.; Münker, C.; Stockli, D.F.; Prowatke, S.; Klemme, S.; et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol. 2009, 261, 346–369. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 70. [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Bucher, K.; Grapes, R. Petrogenesis of Metamorphic Rocks; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-540-74168-8. [Google Scholar]
- Andersson, U.B.; Sjöström, H.; Högdahl, K.H.O.; Eklund, O. The Transscandinavian Igneous Belt, evolutionary models. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution; Special Paper; Geological Survey of Finland: Espoo, Finland, 2004; Volume 37, pp. 104–112. [Google Scholar]
- Bogdanova, S.V.; Bingen, B.; Gorbatschev, R.; Kheraskova, T.N.; Kozlov, V.I.; Puchkov, V.N.; Volozh, Y.A. The East European Craton (Baltica) before and during the Assembly of Rodinia. Precambr. Res. 2008, 160, 23–45. [Google Scholar] [CrossRef]
- Gorbatschev, R. The Transscandinavian Igneous Belt—Introduction and background. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution; Special Paper; Geological Survey of Finland: Espoo, Finland, 2004; Volume 37, pp. 9–15. [Google Scholar]
- Korja, A.; Lahtinen, R.; Nironen, M. The Svecofennian Orogen: A Collage of Microcontinents and Island Arcs. Geol. Soc. Lond. Mem. 2006, 32, 561–578. [Google Scholar] [CrossRef]
- Gee, D.G.; Pease, V. The Neoproterozoic Timanide Orogen of Eastern Baltica: Introduction. Geol. Soc. Lond. Mem. 2004, 30, 1–3. [Google Scholar] [CrossRef]
- Kuznetsov, N.; Soboleva, A.; Udoratina, O.; Hertseva, M.; Andreichev, V. Pre-Ordovician Tectonic Evolution and Volcano–Plutonic Associations of the Timanides and Northern Pre-Uralides, Northeast Part of the East European Craton. Gondwana Res. 2007, 12, 305–323. [Google Scholar] [CrossRef]
- Lorenz, H.; Gee, D.G.; Whitehouse, M.J. New Geochronological Data on Palaeozoic Igneous Activity and Deformation in the Severnaya Zemlya Archipelago, Russia, and Implications for the Development of the Eurasian Arctic Margin. Geol. Mag. 2007, 144, 105–125. [Google Scholar] [CrossRef]
- Prokopiev, A.V.; Ershova, V.B.; Sobolev, N.N.; Korago, E.; Petrov, E.; Khudoley, A.K. New Data on Geochemistry, Age and Geodynamic Settings of Felsic and Mafic Magmatism of the Northeastern Part of October Revolution Island (Severnaya Zemlya Archipelago). AGU Chapman Conference on «Large-Scale Volcanism in the Arctic: The Role of the Mantle and Tectonics». Selfoss, Iceland. 2019. Available online: https://higherlogicdownload.s3.amazonaws.com/AGU/181026d4-2440-440a-a114-8fcd2fc3ada8/UploadedImages/Chapmans/Arctic_Volcanism/ChapmanPresentedAbstracts_ArcticVolcanism.pdf (accessed on 1 October 2023).
- Kurapov, M.; Ershova, V.; Khudoley, A.; Makariev, A.; Makarieva, E. The First Evidence of Late Ordovician Magmatism of the October Revolution Island (Severnaya Zemlya Archipelago, Russian High Arctic): Geochronology, Geochemistry and Geodynamic Settings. NJG 2020, 100, 1–15. [Google Scholar] [CrossRef]
- Pogrebitskii, Y.E. (Ed.) Novaya Zemlya and Vaygach Island. In Geological Structure and Minerageny; VNIIOkeangeologiya: St. Petersburg, Russia, 2004; 174p. [Google Scholar]
- Ershova, V.; Anfinson, O.; Prokopiev, A.; Khudoley, A.; Stockli, D.; Faleide, J.I.; Gaina, C.; Malyshev, N. Detrital Zircon (U-Th)/He Ages from Paleozoic Strata of the Severnaya Zemlya Archipelago: Deciphering Multiple Episodes of Paleozoic Tectonic Evolution within the Russian High Arctic. J. Geodyn. 2018, 119, 210–220. [Google Scholar] [CrossRef]
- Brown, D.; Spadea, P.; Puchkov, V.; Alvarez-Marron, J.; Herrington, R.; Willner, A.P.; Hetzel, R.; Gorozhanina, Y.; Juhlin, C. Arc–Continent Collision in the Southern Urals. Earth-Sci. Rev. 2006, 79, 261–287. [Google Scholar] [CrossRef]
- Puchkov, V.N. The Evolution of the Uralian Orogen. Geol. Soc. Lond. Spec. Publ. 2009, 327, 161–195. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Kuz’min, M.I.; Natapov, L.M. Plate Tectonics of the USSR Territory: A Plate Tectonic Synthesis; Geodynamics Series; American Geophysical Union: Washington, DC, USA, 1990. [Google Scholar]
- Scott, R.A.; Howard, J.P.; Guo, L.; Schekoldin, R.; Pease, V. Offset and Curvature of the Novaya Zemlya Fold-and-Thrust Belt, Arctic Russia. In Geological Society, London, Petroleum Geology Conference Series; The Geological Society of London: London, UK, 2010; Volume 7, pp. 645–657. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’In, B.A.; Burtman, V.S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Kurapov, M.; Ershova, V.; Khudoley, A.; Luchitskaya, M.; Makariev, A.; Makarieva, E.; Vishnevskaya, I. Late Palaeozoic Magmatism of Northern Taimyr: New Insights into the Tectonic Evolution of the Russian High Arctic. Int. Geol. Rev. 2021, 63, 1990–2012. [Google Scholar] [CrossRef]
- Vernikovsky, V.; Vernikovskaya, A.; Proskurnin, V.; Matushkin, N.; Proskurnina, M.; Kadilnikov, P.; Larionov, A.; Travin, A. Late Paleozoic–Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events. Minerals 2020, 10, 571. [Google Scholar] [CrossRef]
- Bracciali, L. Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region. Geosciences 2019, 9, 467. [Google Scholar] [CrossRef]
- Mueller, M.A.; Licht, A.; Möller, A.; Condit, C.B.; Fosdick, J.C.; Ocakoğlu, F.; Campbell, C. An Expanded Workflow for Detrital Rutile Provenance Studies: An Application from the Neotethys Orogen in Anatolia; Geochronological data analysis/statistics/modelling. EGUsphere 2023. preprint. [Google Scholar] [CrossRef]
- Rösel, D.; Boger, S.D.; Möller, A.; Gaitzsch, B.; Barth, M.; Oalmann, J.; Zack, T. Indo-Antarctic derived detritus on the northern margin of Gondwana. Evidence for continental-scale sediment transport. Terra Nova 2014, 26, 64–71. [Google Scholar] [CrossRef]
- Rösel, D.; Zack, T.; Boger, S.D. LA–ICP–MS U–Pb dating of detrital rutile and zircon from the Reynolds Range. A window into the Palaeoproterozoic tectonosedimentary evolution of the North Australian Craton. Precambrian Res. 2014, 255, 381–400. [Google Scholar] [CrossRef]
- Avigad, D.; Morag, N.; Abbo, A.; Gerdes, A. Detrital Rutile U-Pb Perspective on the Origin of the Great Cambro-Ordovician Sandstone of North Gondwana and Its Linkage to Orogeny. Gondwana Res. 2017, 51, 17–29. [Google Scholar] [CrossRef]
- Allen, C.M.; Campbell, I.H. Spot dating of detrital rutile by LA–Q–ICP–MS: A powerful provenance tool. In GSA Denver Annual Meeting, Abstract Paper; The Geological Society of America (GSA): Boulder, CO, USA, 2007; pp. 196–212. [Google Scholar]
- Small, D.; Parrish, R.R.; Austin, W.E.N.; Cawood, P.A.; Rinterknecht, V. Provenance of North Atlantic Ice-Rafted Debris during the Last Deglaciation—A New Application of U-Pb Rutile and Zircon Geochronology. Geology 2013, 41, 155–158. [Google Scholar] [CrossRef]
- Zack, T.; Von Eynatten, H.; Kronz, A. Rutile Geochemistry and Its Potential Use in Quantitative Provenance Studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Khudoley, A.K.; Verzhbitsky, V.E.; Zastrozhnov, D.A.; O’Sullivan, P.; Ershova, V.B.; Proskurnin, V.F.; Tuchkova, M.I.; Rogov, M.A.; Kyser, T.K.; Malyshev, S.V.; et al. Late Paleozoic—Mesozoic Tectonic Evolution of the Eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and Adjoining Yenisey-Khatanga Depression. J. Geodyn. 2018, 119, 221–241. [Google Scholar] [CrossRef]
- Raimondo, T.; Hand, M.; Collins, W.J. Compressional Intracontinental Orogens: Ancient and Modern Perspectives. Earth-Sci. Rev. 2014, 130, 128–153. [Google Scholar] [CrossRef]
Sample Number | Latitude | Longitude | Rock Composition |
---|---|---|---|
7-v15-9 | N 80°25.563′ | E 059°39.570′ | Medium-grained polymictic sandstone |
11-v15-1 | N 80°24.695′ | E 059°42.964′ | Fine-grained arkosic arenite sandstone |
15AP30 | N 80°06′13.9″ | E 057°53′02.1″ | Medium-grained polymictic sandstone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershova, V.; Prokopiev, A.; Stockli, D. Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry. Geosciences 2024, 14, 41. https://doi.org/10.3390/geosciences14020041
Ershova V, Prokopiev A, Stockli D. Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry. Geosciences. 2024; 14(2):41. https://doi.org/10.3390/geosciences14020041
Chicago/Turabian StyleErshova, Victoria, Andrei Prokopiev, and Daniel Stockli. 2024. "Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry" Geosciences 14, no. 2: 41. https://doi.org/10.3390/geosciences14020041
APA StyleErshova, V., Prokopiev, A., & Stockli, D. (2024). Provenance of Detrital Rutiles from the Triassic–Jurassic Sandstones in Franz Josef Land (Barents Sea Region, Russian High Arctic): U-Pb Ages and Trace Element Geochemistry. Geosciences, 14(2), 41. https://doi.org/10.3390/geosciences14020041