Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context
Abstract
:1. Introduction
- Describe the variations of the available water-soluble compounds, including the carbon-bearing gases (CH4 and CO2) within the dataset in terms of carbon cycling.
- Compose and validate a PARAFAC model for the fluorescent DOM components in the database on ground ice from various locations in the Arctic.
- Trace the relationship between the dissolved organic carbon and the molecular fractions of DOM (PARAFAC components) and establish possible sources of the fluorescent DOM molecular fractions using available geochemical indicators.
- Estimate the water-soluble geochemical parameters’ interrelation, sample variability, and intrinsic diversity using multivariate statistics (PCA).
2. Study Area and Dataset Design
3. Materials and Methods
3.1. Solid Fraction Content
3.2. Ion Composition
3.3. Bulk Biogeochemical Parameters
3.4. Gas Analysis
3.5. Fluorescence Measurements of Dissolved Organic Matter Molecular Composition
3.6. Statistics
4. Results
4.1. Solid Fraction Content and Ion Composition of the Ground Ice
4.2. Bulk Dissolved Biogeochemical Parameter (DOC, DIC, DIN) Concentrations and Distribution
4.3. Carbon-Bearing Gas (CH4 and CO2) Concentrations and Distribution
4.4. Fluorescent Dissolved Organic Matter Composition and Distribution
4.5. Results of Principal Component Analysis: The Variables’ Interrelation and Data Classification
5. Discussion
5.1. Variation of Basic Bulk Parameters of the Ground Ice as Indication of Their Biogeochemical Heterogeneity
5.2. Carbon-Bearing Gas (CH4 and CO2) Concentrations Characterizing the Greenhouse Gas Storage and Various Conditions of the Ground Ice Formation
5.3. Fluorescent DOM Composition and Biolabile DOM Fraction
5.4. Variations in the Ground Ice Samples’ Geochemical Composition and Their Possible Drivers Explained by Exploratory Statistical Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- McGuire, A.D.; Lawrence, D.M.; Koven, C.; Clein, J.S.; Burke, E.; Chen, G.; Jafarov, E.; MacDougall, A.H.; Marchenko, S.; Nicolsky, D.; et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 3882–3887. [Google Scholar] [CrossRef] [PubMed]
- Natali, S.M.; Watts, J.D.; Rogers, B.M.; Potter, S.; Ludwig, S.M.; Selbmann, A.K.; Sullivan, P.F.; Abbott, B.W.; Arndt, K.A.; Birch, L.; et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 2019, 9, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Natali, S.M.; Schuur, E.A.G.; Mauritz, M.; Schade, J.D.; Celis, G.; Crummer, K.G.; Johnston, C.; Krapek, J.; Pegoraro, E.; Salmon, V.G.; et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 2015, 120, 525–537. [Google Scholar] [CrossRef]
- Opel, T.; Meyer, H.; Wetterich, S.; Laepple, T.; Dereviagin, A.; Murton, J. Ice wedges as archives of winter paleoclimate: A review. Permafr. Periglac. Process. 2018, 29, 199–209. [Google Scholar] [CrossRef]
- Streletskaya, I.D.; Leibman, M.O. Cryogeochemical interrelation of massive ground ice, cryopegs, and enclosing deposits of Central Yamal. Kriosf. Zemli 2002, 4, 15–24. (In Russian) [Google Scholar]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Schirrmeister, L.; Kunitsky, V.; Grosse, G.; Wetterich, S.; Meyer, H.; Schwamborn, G.; Babiy, O.; Derevyagin, A.; Siegert, C. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands—A review. Quat. Int. 2011, 241, 3–25. [Google Scholar] [CrossRef]
- Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H. Dissolved organic carbon (DOC) in Arctic ground ice. Cryosphere 2015, 9, 737–752. [Google Scholar] [CrossRef]
- Streletskaya, I.D.; Gusev, E.A.; Vasiliev, A.A.; Oblogov, G.E.; Molodkov, A.N. Pleistocene—Holocene paleoenvironmental records from permafrost sequences at the Kara Sea coasts (NW Siberia, Russia). Geogr. Environ. Sustain. 2013, 6, 60–76. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Melnikov, V.P.; Semenov, P.B.; Oblogov, G.E.; Streletskaya, I.D. Methane Concentration and Emission in Dominant Landscapes of Typical Tundra of Western Yamal. Dokl. Earth Sci. 2019, 485, 284–287. [Google Scholar] [CrossRef]
- Oblogov, G.E.; Vasiliev, A.A.; Streletskaya, I.D.; Zadorozhnaya, N.A.; Kuznetsova, A.O.; Kanevskiy, M.Z.; Semenov, P.B. Methane Content and Emission in the Permafrost Landscapes of Western Yamal, Russian Arctic. Geosciences 2020, 10, 412. [Google Scholar] [CrossRef]
- Yokohata, T.; Saito, K.; Ito, A.; Ohno, H.; Tanaka, K.; Hajima, T.; Iwahana, G. Future projection of greenhouse gas emissions due to permafrost degradation using a simple numerical scheme with a global land surface model. Prog. Earth Planet. Sci. 2020, 7, 56. [Google Scholar] [CrossRef]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S., III. Permafrost and the global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef]
- Walz, J.; Knoblauch, C.; Tigges, R.; Opel, T.; Schirrmeister, L.; Pfeiffer, E.-M. Greenhouse gas production in degrading ice-rich permafrost deposits in northeastern Siberia. Biogeosciences 2018, 15, 5423–5436. [Google Scholar] [CrossRef]
- Knoblauch, C.; Beer, C.; Liebner, S.; Grigoriev, M.N.; Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 2018, 8, 309–312. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Bockheim, J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; LaFleur, P.M.; Lee, H.; et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- Vonk, J.E.; Mann, P.J.; Davydov, S.; Davydova, A.; Spencer, R.G.M.; Schade, J.; Sobczak, W.V.; Zimov, N.; Zimov, S.; Bulygina, E.; et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 2013, 40, 2689–2693. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.E.; Mann, P.J.; Spencer, R.G.M.; Treat, C.C.; Striegl, R.G.; Abbott, B.W.; Wickland, K.P. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: A meta-analysis. Biogeosciences 2015, 12, 6915–6930. [Google Scholar] [CrossRef]
- Textor, S.R.; Wickland, K.P.; Podgorski, D.C.; Johnston, S.E.; Spencer, R.G.M. Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect. Front. Earth Sci. 2019, 7, 275. [Google Scholar] [CrossRef]
- Tanski, G.; Wagner, D.; Knoblauch, C.; Fritz, M.; Sachs, T.; Lantuit, H. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 2019, 46, 11244–11252. [Google Scholar] [CrossRef]
- Coble, P.G.; Green, S.A.; Blough, N.V.; Gagosian, R.B. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 1990, 348, 432–435. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of aquatic fulvic acids for determination of precursor organic material and general structural properties. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tanoue, E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar. Chem. 2003, 82, 255–271. [Google Scholar] [CrossRef]
- Hudson, N.; Baker, A.; Reynolds, D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—A review. River Res. Appl. 2007, 23, 631–649. [Google Scholar] [CrossRef]
- Fellman, J.B.; Miller, M.P.; Cory, R.M.; D’Amore, D.V.; White, D. Characterizing Dissolved Organic Matter Using PARAFAC Modeling of Fluorescence Spectroscopy: A Comparison of Two Models. Environ. Sci. Technol. 2009, 43, 6228–6234. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Hur, J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter. Water Res. 2015, 83, 217–226. [Google Scholar] [CrossRef]
- Repeta, D.J. Chemical characterization and cycling of dissolved organic matter. In Biogeochemistry of Marine Dissolved Organic Matter; Hansell, D.A., Carlson, C.A., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 21–63. [Google Scholar] [CrossRef]
- Shirokova, L.S.; Chupakov, A.V.; Zabelina, S.A.; Neverova, N.V.; Payandi-Rolland, D.; Causserand, C.; Karlsson, J.; Pokrovsky, O.S. Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation. Biogeosciences 2019, 16, 2511–2526. [Google Scholar] [CrossRef]
- Pismeniuk, A.; Semenov, P.; Veremeeva, A.; He, W.; Kozachek, A.; Malyshev, S.; Shatrova, E.; Lodochnikova, A.; Streletskaya, I. Geochemical Features of Ground Ice from the Faddeevsky Peninsula Eastern Coast (Kotelny Island, East Siberian Arctic) as a Key to Understand Paleoenvironmental Conditions of Its Formation. Land 2023, 12, 324. [Google Scholar] [CrossRef]
- Belova, N.G.; Babkina, E.A.; Dvornikov, Y.A.; Nesterova, N.B.; Khomutov, A.V. Permafrost sediments with tabular ground ice on the coast of the Yugra Peninsula. Arct. Antarct. 2019, 4, 74–83. [Google Scholar] [CrossRef]
- Streletskaya, I.D.; Pismeniuk, A.A.; Vasiliev, A.A.; Gusev, E.A.; Oblogov, G.E.; Zadorozhnaya, N.A. The ice-rich permafrost sequences as a paleoenvironmental archive for the kara sea region (Western Arctic). Front. Earth Sci. 2021, 9, 723382. [Google Scholar] [CrossRef]
- Govorukha, L.S.; Popova, N.M.; Semenov, I.V.; Shamontieva, L.A. Catalog of Glaciers of the USSR; Angara-Yenisei Region; Lenizdat: Leningrad, USSR, 1980; Volume 16. [Google Scholar]
- Fritzsche, D.; Schütt, R.; Meyer, H.; Miller, H.; Wilhelms, F.; Opel, T.; Savatyugin, L.M. A 275 year ice-core record from Akademii Nauk ice cap, Severnaya Zemlya, Russian Arctic. Ann. Glaciol. 2005, 42, 361–366. [Google Scholar] [CrossRef]
- Kotlyakov, V.M.; Arkhipov, S.M.; Henderson, K.A.; Nagornov, O.V. Deep drilling of glaciers in Eurasian Arctic as a source of paleoclimatic records. Quat. Sci. Rev. 2004, 23, 1371–1390. [Google Scholar] [CrossRef]
- Semenov, P.B.; Pismeniuk, A.A.; Malyshev, S.A.; Leibman, M.O.; Streletskaya, I.D.; Shatrova, E.V.; Kizyakov, A.I.; Vanshtein, B.G. Methane and dissolved organic matter in the ground ice samples from Central Yamal: Implications to biogeochemical cycling and greenhouse gas emission. Geosciences 2020, 10, 450. [Google Scholar] [CrossRef]
- Yamamoto, S.; Alcauskas, J.B.; Crozier, T.E. Solubility of methane in distilled water and seawater. J. Chem. Eng. 1976, 21, 78–80. [Google Scholar] [CrossRef]
- Kim, K.; Yang, J.; Yoon, H.; Byun, E.; Fedorov, A.; Ryu, Y.; Ahn, J. Greenhouse gas formation in ice wedges at Cyuie, central Yakutia. Permafr. Periglac. Process. 2019, 30, 48–57. [Google Scholar] [CrossRef]
- Yang, J.; Ahn, J.; Iwahana, G.; Ko, N.; Kim, J.; Kim, K.; Fedorov, A.; Han, S. Origin of CO2, CH4, and N2O trapped in ice wedges in central Yakutia and their relationship. Permafr. Periglac. Process. 2023, 34, 122–141. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Murphy, K.R.; Butler, K.D.; Spencer, R.G.M.; Stedmon, C.A.; Boehme, J.R.; Aiken, G.R. Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environ. Sci. Technol. 2010, 44, 9405–9412. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and applications. Chemometr. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Parr, T.B.; Ohno, T.; Cronan, C.S.; Simon, K.S. comPARAFAC: A library and tools for rapid and quantitative comparison of dissolved organic matter components resolved by Parallel Factor Analysis. Limnol. Oceanogr. Methods 2014, 12, 114–125. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; D’Amore, D.V.; Edwards, R.T.; White, D. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 2009, 95, 277–293. [Google Scholar] [CrossRef]
- Chen, M.L.; Price, R.M.; Yamashita, Y.; Jaffe, R. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Appl. Geochem. 2010, 25, 872–880. [Google Scholar] [CrossRef]
- Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffe, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159–1171. [Google Scholar] [CrossRef]
- Holland, K.M.; Porter, T.J.; Criscitiello, A.S.; Froese, D.G. Ion geochemistry of a coastal ice wedge in northwestern Canada: Contributions from marine aerosols and implications for ice-wedge paleoclimate interpretations. Permafr. Periglac. Process. 2023, 34, 180–193. [Google Scholar] [CrossRef]
- Heffernan, L.; Kothawala, D.N.; Tranvik, L.J. A systematic review of terrestrial dissolved organic carbon in northern permafrost. Cryosphere 2023, 2023, 1–58. [Google Scholar] [CrossRef]
- Streletskaya, I.D.; Vasiliev, A.A.; Oblogov, G.E.; Streletskiy, D.A. Methane content in ground ice and sediments of the kara sea coast. Geosciences 2018, 8, 434. [Google Scholar] [CrossRef]
- Kraev, G.; Schulze, E.-D.; Yurova, A.; Kholodov, A.; Chuvilin, E.; Rivkina, E. Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils. Atmosphere 2017, 8, 105. [Google Scholar] [CrossRef]
- Rivkina, E.; Shcherbakova, V.; Laurinavichius, K.; Petrovskaya, L.; Krivushin, K.; Kraev, G.; Pecheritsina, S.; Gilichinsky, D. Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol. Ecol. 2007, 61, 1–15. [Google Scholar] [CrossRef]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Brouchkov, A.; Fukuda, M. Preliminary measurements on methane content in permafrost, Central Yakutia, and some experimental data. Permafr. Periglac. Process. 2002, 13, 187–197. [Google Scholar] [CrossRef]
- Kellerman, A.M.; Hawkings, J.R.; Wadham, J.L.; Kohler, T.J.; Stibal, M.; Grater, E.; Marshall, M.; Hatton, J.E.; Beaton, A.; Spencer, R.G.M. Glacier outflow dissolved organic matter as a window into seasonally changing carbon sources: Leverett Glacier, Greenland. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005161. [Google Scholar] [CrossRef]
- Dubnick, A.; Barker, J.; Sharp, M.; Wadham, J.; Lis, G.; Telling, J.; Fitzsimons, S.; Jackson, M. Characterization of dissolved organic matter (DOM) from glacial environments using total fluorescence spectroscopy and parallel factor analysis. Ann. Glaciol. 2010, 51, 111–122. [Google Scholar] [CrossRef]
- Wünsch, U.J.; Acar, E.; Koch, B.P.; Murphy, K.R.; Schmitt-Kopplin, P.; Stedmon, C.A. The Molecular Fingerprint of Fluorescent Natural Organic Matter Offers Insight into Biogeochemical Sources and Diagenetic State. Anal. Chem. 2018, 90, 14188–14197. [Google Scholar] [CrossRef] [PubMed]
- Wickland, K.P.; Aiken, G.R.; Butler, K.; Dornblaser, M.M.; Spencer, R.G.M.; Striegl, R.G. Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: Seasonality and importance of inorganic nitrogen. Glob. Biogeochem. Cycles 2012, 26, B0E03. [Google Scholar] [CrossRef]
- Leibman, M.O. Results of chemical testing for various types of water and ice, Yamal Peninsula, Russia. Permafr. Periglac. Process. 1996, 7, 287–296. [Google Scholar] [CrossRef]
- Kirpes, R.M.; Bonanno, D.; May, N.W.; Fraund, M.; Barget, A.J.; Moffet, R.C.; Ault, A.P.; Pratt, K.A. Wintertime arctic sea spray aerosol composition controlled by sea ice lead microbiology. ACS Cent. Sci. 2019, 5, 1760–1767. [Google Scholar] [CrossRef]
- Iizuka, Y.; Miyamoto, C.; Matoba, S.; Iwahana, G.; Horiuchi, K.; Takahashi, Y.; Kanna, N.; Suzuki, K.; Ohno, H. Ion concentrations in ice wedges: An innovative approach to reconstruct past climate variability. Earth Planet. Sci. Lett. 2019, 515, 58–66. [Google Scholar] [CrossRef]
- Guo, B.; Li, W.; Santibáñez, P.; Priscu, J.C.; Liu, Y.; Liu, K. Organic matter distribution in the icy environments of Taylor Valley, Antarctica. Sci. Total Environ. 2022, 841, 156639. [Google Scholar] [CrossRef] [PubMed]
Region | Location | Type of Ice | Age of Ice Wedges | Solid Fraction Content | Group of Samples |
---|---|---|---|---|---|
Yugorsky Peninsula | Amderma 69°44′53″ N 61°47′17″ E | TGI | Pure | AM.TGI/p 1–9 | |
Yamal Peninsula | Vaskiny Dachi 70°16′03″ N 68°55′22″ E | TGI | Pure | VD.TGI/p 1–2 | |
TGI | Impure | VD.TGI/imp 1–13 | |||
IW | Late Pleistocene | VD.LPW 1–15 | |||
IW | Holocene | VD.HW 1–4 | |||
Marre-Sale 69°42′14″ N 66°48′30″ E | TGI | Pure | MS.TGI/p 1–3 | ||
New Siberian Islands | Faddeevsky, Kotelny Island 75°46′23″ N 144°8′18″ E | TGI | Pure | F.TGI/p 1–5 | |
75°50′10″ N 142°47′37″ E | IW | Late Pleistocene | F.LPW 1–8 | ||
75°31′03″ N 145°20′49″ E | IW | Holocene | F.HW 1–16 | ||
Severnaya Zemlya | Leningradsky glacier, Bolshevik 78°24′42″ N 103°17′54″ E | Glacier | SZ.G1 | ||
78°37′44″ N 104°4′36″ E | SZ.G2 | ||||
78°36′21″ N 103°45′05″ E | SZ.G3 | ||||
78°32′39″ N 104°54′60″ E | SZ.G4 |
Component | Emission Maxima | Excitation, Max | Description | Comparison with Previous Study (Library Search) |
---|---|---|---|---|
P1 | 470 | 370 | Humic-like | mTCC = 0.97; humic-like, but not quinone-like [44] |
P2 | 425 | 310 | Humic-like | mTCC = 0.99, terrestrial or ubiquitous humic-like components, a photoproduct or a photorefractory component [45] |
P3 | 470 | 260 | Humic-like | mTCC = 0.97, humic-like, UV and visible, terrestrial, a biorefractory component [46] |
P4 | 340 | 270 | Protein-like | mTCC = 0.90. tryptophan-like, more biodegradable [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenov, P.; Pismeniuk, A.; Kil, A.; Shatrova, E.; Belova, N.; Gromov, P.; Malyshev, S.; He, W.; Lodochnikova, A.; Tarasevich, I.; et al. Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context. Geosciences 2024, 14, 77. https://doi.org/10.3390/geosciences14030077
Semenov P, Pismeniuk A, Kil A, Shatrova E, Belova N, Gromov P, Malyshev S, He W, Lodochnikova A, Tarasevich I, et al. Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context. Geosciences. 2024; 14(3):77. https://doi.org/10.3390/geosciences14030077
Chicago/Turabian StyleSemenov, Petr, Anfisa Pismeniuk, Anna Kil, Elizaveta Shatrova, Natalia Belova, Petr Gromov, Sergei Malyshev, Wei He, Anastasiia Lodochnikova, Ilya Tarasevich, and et al. 2024. "Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context" Geosciences 14, no. 3: 77. https://doi.org/10.3390/geosciences14030077
APA StyleSemenov, P., Pismeniuk, A., Kil, A., Shatrova, E., Belova, N., Gromov, P., Malyshev, S., He, W., Lodochnikova, A., Tarasevich, I., Streletskaya, I., & Leibman, M. (2024). Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context. Geosciences, 14(3), 77. https://doi.org/10.3390/geosciences14030077