Assessment of the Spatial Structure of Black Carbon Concentrations in the Near-Surface Arctic Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
- Quasi two-dimensional approximation: back trajectories of Lagrangian particles are used in real 3D space, but the solution is sought on the surface of a ‘flat’ 2D computational grid;
- Long-range transport of the pollutant is considered when advection predominates over small-scale turbulent diffusion;
- The passive impurity, i.e., the contribution to the change in the admixture concentration from various physicochemical processes, is negligibly small compared with the contribution from the action external sources and sinks;
- The trend in the average concentration fields is absent.
3. Results and Discussion
3.1. Results of the FLA Technology Modelling
3.2. Comparison with MERRA-2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The emergence of surface-based Arctic amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef] [Green Version]
- England, M.R.; Eisenman, I.; Lutsko, N.J.; Wagner, T.J.W. The recent emergence of Arctic Amplification. Geophys. Res. Lett. 2021, 48, e2021GL094086. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Iziomon, M.G.; Lohmann, U.; Quinn, P.K. Summertime pollution events in the Arctic and potential implications. J. Geophys. Res. 2006, 111, D12206. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; et al. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmos. Chem. Phys. 2008, 8, 1723–1725. [Google Scholar] [CrossRef] [Green Version]
- Valero, F.P.J.; Ackerman, T.P.; Gore, J.Y. The absorption of solar radiation by the Arctic atmosphere during the haze season and its effects on the radiation balance. Geophys. Res. Lett. 1984, 11, 465–468. [Google Scholar] [CrossRef]
- Ricard, V.; Jaffrezo, J.-L.; Kerminen, V.-M.; Hillamo, R.E.; Sillanpaa, M.; Ruellan, S.; Liousse, C.; Cachier, H. Two years of continuous aerosol measurements in northern Finland. J. Geophys. Res. 2002, 107, ACH 10-1–ACH 10-17. [Google Scholar] [CrossRef]
- MacCracken, M.; Cess, R.; Potter, G. Climatic effects of anthropogenic Arctic aerosols: An illustration of climate feedback mechanisms with one-and two-dimensional climate models. J. Geophys. Res. 1986, 911, 14445–14450. [Google Scholar] [CrossRef]
- Jacobson, M. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 2001, 409, 695–697. [Google Scholar] [CrossRef]
- Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J.R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T.C.; Boucher, O.; et al. Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys. 2009, 9, 9001–9026. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Stohl, A. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Koch, D.; Hansen, J. Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Satahye, J.A. Large historical changes of fossil-fuel black carbon aerosols. Geophys. Res. Lett. 2003, 30, 1324. [Google Scholar] [CrossRef] [Green Version]
- Schmale, J.; Sharma, S.; Decesari, S.; Pernov, J.; Massling, A.; Hansson, H.-C.; von Salzen, K.; Skov, H.; Andrews, E.; Quinn, P.K.; et al. Pan-Arctic Seasonal Cycles and Long-Term Trends of Aerosol Properties from 10 Observatories. Atmos. Chem. Phys. 2022, 22, 3067–3096. [Google Scholar] [CrossRef]
- Popovicheva, O.B.; Evangeliou, N.; Kobelev, V.O.; Chichaeva, M.A.; Eleftheriadis, K.; Gregorič, A.; Kasimov, N.S. Siberian Arctic Black Carbon: Gas Flaring and Wildfire Impact. Atmos. Chem. Phys. 2022, 22, 5983–6000. [Google Scholar] [CrossRef]
- Boyer, M.; Aliaga, D.; Pernov, J.B.; Angot, H.; Quéléver, L.L.J.; Dada, L.; Heutte, B.; Dall’Osto, M.; Beddows, D.C.S.; Brasseur, Z.; et al. Full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic oscillation: Insights from the MOSAiC Expedition. Atmos. Chem. Phys. Discuss. 2022. preprint. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Kabanov, D.M.; Kopeikin, V.M.; Kruglinsky, I.A.; Novigatsky, A.N.; Pol’kin, V.V.; Shevchenko, V.P.; Turchinovich, Y.S. Spatial Distribution of Black Carbon Concentrations in the Atmosphere of the North Atlantic and the European Sector of the Arctic Ocean. Atmosphere 2021, 12, 949. [Google Scholar] [CrossRef]
- McCarty, J.L.; Aalto, J.; Paunu, V.-V.; Arnold, S.R.; Eckhardt, S.; Klimont, Z.; Fain, J.J.; Evangeliou, N.; Venäläinen, A.; Tchebakova, N.M.; et al. Reviews and Syntheses: Arctic Fire Regimes and Emissions in the 21st Century. Biogeosciences 2021, 18, 5053–5083. [Google Scholar] [CrossRef]
- Whaley, C.H.; Mahmood, R.; von Salzen, K.; Winter, B.; Eckhardt, S.; Arnold, S.; Beagley, S.; Becagli, S.; Chien, R.-Y.; Christensen, J.; et al. Model evaluation of short-lived climate forcers for the Arctic monitoring and assessment programme: A multi-species, multi-model study. Atmos. Chem. Phys. 2022, 22, 5775–5828. [Google Scholar] [CrossRef]
- Matsui, H.; Mori, T.; Ohata, S.; Moteki, N.; Oshima, N.; Goto-Azuma, K.; Koike, M.; Kondo, Y. Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects. Atmos. Chem. Phys. 2022, 22, 8989–9009. [Google Scholar] [CrossRef]
- Zhao, N.; Dong, X.; Huang, K.; Fu, J.S.; Lund, M.T.; Sudo, K.; Henze, D.; Kucsera, T.; Lam, Y.F.; Chin, M.; et al. Responses of Arctic black carbon and surface temperature to multi-region emission reductions: A hemispheric transport of air pollution phase 2 (HTAP2) ensemble modeling study. Atmos. Chem. Phys. 2021, 21, 8637–8654. [Google Scholar] [CrossRef]
- Eckhardt, S.; Quennehen, B.; Olivié, D.J.L.; Berntsen, T.K.; Cherian, R.; Christensen, J.H.; Collins, W.; Crepinsek, S.; Daskalakis, N.; Flanner, M.; et al. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive measurement data set. Atmos. Chem. Phys. 2015, 15, 9413–9433. [Google Scholar] [CrossRef] [Green Version]
- Im, U.; Tsigaridis, K.; Faluvegi, G.; Langen, P.L.; French, J.P.; Mahmood, R.; Thomas, M.A.; von Salzen, K.; Thomas, D.C.; Whaley, C.H.; et al. Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 earth system model. Atmos. Chem. Phys. 2021, 21, 10413–10438. [Google Scholar] [CrossRef]
- Xian, P.; Zhang, J.; O’Neill, N.T.; Toth, T.D.; Sorenson, B.; Colarco, P.R.; Kipling, Z.; Hyer, E.J.; Campbell, J.R.; Reid, J.S.; et al. Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses—Part 1: Climatology and trend. Atmos. Chem. Phys. 2022, 22, 9915–9947. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Garay, M.J.; Witek, M.L.; Kahn, R.A.; Seidel, F.C.; Limbacher, J.A.; Bull, M.A.; Diner, D.J.; Hansen, E.G.; Kalashnikova, O.V.; Lee, H.; et al. Introducing the 4.4 km spatial resolution multi-angle Imaging Spectroradiometer (MISR) aerosol product. Atmos. Meas. Tech. 2020, 13, 593–628. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.; Shevchenko, V.P.; Kopeikin, V.M.; Novigatsky, A.N. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys. 2013, 13, 8833–8855. [Google Scholar] [CrossRef] [Green Version]
- Poddubny, V.A.; Nagovitsyna, E.S.; Markelov, Y.I.; Buevich, A.G.; Antonov, K.L.; Omel’kova, E.V.; Manzhurov, I.L. Estimation of the spatial distribution of methane concentration in the area of the barents and Kara seas in summer in 2016–2017. Russ. Meteorol. Hydrol. 2020, 45, 193–200. [Google Scholar] [CrossRef]
- Poddubny, V.; Nagovitsyna, E.; Antonov, K.; Markelov, J.; Buevich, A.; Omelkova, E.; Manzhurov, I.; Medvedev, A.; Vasilyeva, J. Estimation of the atmospheric greenhouse gas spatial distribution in the Arctic using a back trajectory model. Math. Meth. Appl. Sci. 2020, 43, 7657–7663. [Google Scholar] [CrossRef]
- Poddubny, V.A.; Nagovitsyna, E.S. Retrieval of spatial field of atmospheric aerosol concentration according to data from local measurements: A modification of the method of back trajectory statistics. Izv. Atmos. Ocean. Phys. 2013, 49, 404–410. [Google Scholar] [CrossRef]
- Poddubny, V.A.; Nagovitsyna, E.S. Estimate of errors and verification of the method of fluid location of the atmosphere. Atmos. Ocean Opt. 2015, 28, 282–289. [Google Scholar] [CrossRef]
- Ashbaugh, L.L. A statistical trajectory technique for determining air pollution source regions. J. Air Pollut. Control. Ass. 1983, 33, 1096–1098. [Google Scholar] [CrossRef]
- Seibert, P.; Kromp-Kolb, H.; Baltensperger, U.; Jost, D.T.; Schwikowski, M. Trajectory analysis of high-alpine air pollution data. In Air Pollution Modeling and Its Application X; Gryning, S.E., Millán, M.M., Eds.; Springer: Boston, MA, USA, 1994; Volume 18, pp. 595–596. [Google Scholar] [CrossRef]
- Stohl, A. Trajectory statistics—A new method to establish source-reseptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579–587. [Google Scholar] [CrossRef]
- Nagovitsyna, E.S.; Poddubny, V.A.; Vilinsky, D.A. Construction of various regular computational grids for addressing the tasks of fluid location of the atmosphere. AIP Conf. Proc. 2020, 2293, 120013. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Kabanov, D.M.; Polkin, V.V.; Pochufarov, A.O.; Radionov, V.F.; Rize, D.D. Variations in optical and microphysical characteristics of atmospheric aerosol in expeditions “Transarctic-2019”. Proc. SPIE 2020, 11560, 115602H. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Kabanov, D.M.; Kalashnikova, D.A.; Kruglinsky, I.A.; Makarov, V.I.; Novigatinsky, A.N.; Polkin, V.V.; Popova, S.A.; Pochufarov, A.O.; Simonova, G.V.; et al. Measurements of aerosol physicochemical characteristics in the 80th cruise of RV akademik mstislav keldysh on the route from the Baltic to Barents Sea. Atmos. Ocean. Opt. 2021, 34, 455–463. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Golobokova, L.P.; Kabanov, D.M.; Kalashnikova, D.A.; Kozlov, V.S.; Kruglinsky, I.A.; Makarov, V.I.; Makshtas, A.P.; Popova, S.A.; Radionov, V.F.; et al. Measurements of physicochemical characteristics of atmospheric aerosol at research station ice base cape baranov in 2018. Atmos. Ocean. Opt. 2019, 32, 511–520. [Google Scholar] [CrossRef]
- Radionov, V.F.; Sidorova, O.R.; Golobokova, L.P.; Khuriganova, O.I.; Khodzher, T.V.; Sakerin, S.M.; Kabanov, D.M.; Chernov, D.G.; Kozlov, V.S.; Panchenko, M.V. Aerosol component of the atmosphere in Barentsburg. In The Current State of the Natural Environment on Spitzbergen Archipelago; Chapter 5.2; Savatyugin, L.M., Ed.; AARI: St. Petersburg, Russia, 2020; pp. 268–302. [Google Scholar] [CrossRef]
- Kozlov, V.S.; Shmargunov, V.P.; Panchenko, M.V. Modified aethalometer for monitoring of black carbon concentration in atmospheric aerosol and technique for correction of the spot loading effect. Proc. SPIE 2016, 10035, 1003530. [Google Scholar] [CrossRef]
- Baklanov, A.M.; Kozlov, V.S.; Panchenko, M.V.; Ankilov, A.N.; Vlasenko, A.L. Generation of soot particles in submicron range. J. Aerosol Sci. 1998, 29, 919–920. [Google Scholar] [CrossRef]
- Turchinovich, Y.S.; Pochufarov, A.O.; Sakerin, S.M. Algorithm of controlling the quality and retrieval of data from measurements of aerosol and black carbon concentrations in marine expeditions. Proc. SPIE 2021, 11916, 119161U. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’S HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Rienecker, M.M.; Suarez, M.J.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.-C.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R.; et al. The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1 and 5.1.0, and 5.2.0; NASA Tech. Rep. Series on Global Modeling and Data Assimilation; NASA/TM-2008-104606; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2008; Volume 27, p. 92. [Google Scholar]
- Chin, M.; Rood, R.B.; Lin, S.-J.; Muller, J.-F.; Thompson, A.M. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res. 2000, 105, 24671–24687. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. [Google Scholar] [CrossRef]
- Zhuravleva, T.B.; Artyushina, A.V.; Vinogradova, A.A.; Voronina, Y.V. Black Carbon in the near-surface atmosphere far away from emission sources: Comparison of measurements and MERRA-2 reanalysis data. Atmos. Ocean. Opt. 2020, 33, 591–601. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Kabanov, D.M.; Makarov, V.I.; Pol’kin, V.V.; Popova, S.A.; Chankina, O.V.; Pochufarov, A.O.; Radionov, V.F.; Rize, D.D. Spatial distribution of atmospheric aerosol physicochemical characteristics in the Russian sector of the Arctic Ocean. Atmosphere 2020, 11, 1170. [Google Scholar] [CrossRef]
Characteristics | Barentsburg | |||
---|---|---|---|---|
2019 | 2020 | |||
In Situ | MERRA-2 | In Situ | MERRA-2 | |
Mean | 30 | 118 | 40 | 24 |
Std | 56 | 88 | 85 | 18 |
Min. | 0 | 30 | 0 | 0 |
Q1 | 6 | 68 | 5 | 11 |
Median | 15 | 101 | 10 | 20 |
Q3 | 30 | 142 | 38 | 33 |
Max. | 704 | 789 | 1067 | 97 |
Characteristics | Cape Baranov | |||
2019 | 2020 | |||
In Situ | MERRA-2 | In Situ | MERRA-2 | |
Mean | 82 | 149 | 17 | 25 |
Std | 253 | 168 | 26 | 17 |
Min. | 2 | 0 | 3 | 1 |
Q1 | 9 | 50 | 7 | 13 |
Median | 21 | 100 | 12 | 21 |
Q3 | 56 | 186 | 19 | 32 |
Max. | 3678 | 1392 | 339 | 79 |
Characteristics | RV | |||
2019 | 2020 | |||
In Situ | MERRA-2 | In Situ | MERRA-2 | |
Mean | 85 | 202 | 76 | 80 |
Std | 80 | 197 | 96 | 120 |
Min. | 2 | 13 | 0 | 0 |
Q1 | 28 | 81 | 19 | 18 |
Median | 63 | 123 | 40 | 38 |
Q3 | 118 | 254 | 75 | 85 |
Max. | 494 | 1380 | 485 | 860 |
Characteristics | 2019 | 2020 | ||
---|---|---|---|---|
FLA | Merra-2 | FLA | Merra-2 | |
Mean | 0.97 | 0.71 | 0.75 | 0.58 |
Std | 0.89 | 0.40 | 0.71 | 0.84 |
Min. | 0.03 | 0.35 | 0.03 | 0.10 |
Q1 | 0.41 | 0.46 | 0.32 | 0.22 |
Median | 0.77 | 0.56 | 0.55 | 0.31 |
Q3 | 1.18 | 0.84 | 0.91 | 0.49 |
Max. | 7.32 | 3.56 | 4.66 | 5.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagovitsyna, E.S.; Poddubny, V.A.; Karasev, A.A.; Kabanov, D.M.; Sidorova, O.R.; Maslovsky, A.S. Assessment of the Spatial Structure of Black Carbon Concentrations in the Near-Surface Arctic Atmosphere. Atmosphere 2023, 14, 139. https://doi.org/10.3390/atmos14010139
Nagovitsyna ES, Poddubny VA, Karasev AA, Kabanov DM, Sidorova OR, Maslovsky AS. Assessment of the Spatial Structure of Black Carbon Concentrations in the Near-Surface Arctic Atmosphere. Atmosphere. 2023; 14(1):139. https://doi.org/10.3390/atmos14010139
Chicago/Turabian StyleNagovitsyna, Ekaterina S., Vassily A. Poddubny, Alexander A. Karasev, Dmitry M. Kabanov, Olga R. Sidorova, and Alexander S. Maslovsky. 2023. "Assessment of the Spatial Structure of Black Carbon Concentrations in the Near-Surface Arctic Atmosphere" Atmosphere 14, no. 1: 139. https://doi.org/10.3390/atmos14010139
APA StyleNagovitsyna, E. S., Poddubny, V. A., Karasev, A. A., Kabanov, D. M., Sidorova, O. R., & Maslovsky, A. S. (2023). Assessment of the Spatial Structure of Black Carbon Concentrations in the Near-Surface Arctic Atmosphere. Atmosphere, 14(1), 139. https://doi.org/10.3390/atmos14010139