Glacier Flow Dynamics of the Severnaya Zemlya Archipelago in Russian High Arctic Using the Differential SAR Interferometry (DInSAR) Technique
Abstract
1. Introduction
2. Datasets and Study Area
3. Methodology
3.1. Glacier Movement Using DInSAR
3.2. Error Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Kumar, P.; Shukla, A.; Kamal, R.; Singh, A. Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: A multiparametric approach. Geomorphology 2017, 284, 99–114. [Google Scholar]
- Space Applications centre. Monitoring Snow and Glaciers of the Himalayas; Space Applications centre: Ahmedabad, India, 2016. [Google Scholar]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol. 2010, 30, 535–548. [Google Scholar] [CrossRef]
- Burgess, E.W.; Forster, R.R.; Larsen, C.F. Flow velocities of Alaskan glaciers. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Liu, L.; Jing, Z.; Zhang, X. The application of GPS in glacier flow velocity: A case study of Qiyi Glacier. Appl. Mech. Mater. 2012, 130, 1794–1798. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmüller, U.; Werner, C.L. Glacier Motion Estimation Using SAR Offset-Tracking Procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Satyabala, S.P. Spatiotemporal variations in surface velocity of the Gangotri glacier, Garhwal Himalaya, India: Study using synthetic aperture radar data. Remote Sens. Environ. 2016, 181, 151–161. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef]
- Joughin, I.R.; Winebrenner, D.P. Observations of ice-sheet motion in Greenland using satellite. Geophys. Res. Lett. 1995, 22, 571–574. [Google Scholar] [CrossRef]
- Cheng, X.; Li, X.W.; Shao, Y.; Li, Z. DInAR measurement of glacier motion in Antarctic Grove Mountain. Chin. Sci. Bull. 2007, 52, 358–366. [Google Scholar] [CrossRef]
- Moll, A.; Braun, M.; Lluberas, A. Determination of Glacier Velocities on King George Island (Antarctica) by DInSAR; IGARSS: Denver, CO, USA, 2006; pp. 1236–1239. [Google Scholar]
- Wangensteen, B.; Weydahl, D.A.N.J.; Hagen, J.O.N.O.V.E. Mapping glacier velocities on Svalbard using ERS tandem DInSAR data Mapping glacier velocities on Svalbard using ERS tandem DInSAR data. Nor. Geogr. Tidsskr-Nor. J. Geogr. 2005, 59, 276–285. [Google Scholar] [CrossRef]
- Caló, F.; Notti, D.; Galve, J.P.; Abdikan, S.; Görüm, T.; Pepe, A.; Şanli, F.B. DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya plain, Turkey. Remote Sens. 2017, 9, 83. [Google Scholar] [CrossRef]
- Tomás, R.; Herrera, G.; Delgado, J.; Lopez-Sanchez, J.M.; Mallorquí, J.J.; Mulas, J. A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain). Eng. Geol. 2010, 111, 19–30. [Google Scholar] [CrossRef]
- Fang, J.; Xu, C.; Wen, Y.; Wang, S.; Xu, G.; Zhao, Y.; Yi, L. The 2018 Mw 7.5 Palu earthquake: A supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sens. 2019, 11, 1330. [Google Scholar] [CrossRef]
- Mora, O.; Ordoqui, P.; Iglesias, R.; Blanco, P. Earthquake Rapid Mapping Using Ascending and Descending Sentinel-1 TOPSAR Interferograms. Procedia Comput. Sci. 2016, 100, 1135–1140. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.; Werner, C.L. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. 1994, 99, 617–634. [Google Scholar] [CrossRef]
- Lu, Z.; Freymueller, J.T. Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska. J. Geophys. Res. Solid Earth 1998, 103, 29887–29894. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Aoki, Y. Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J. Geophys. Res. Solid Earth 2013, 118, 3957–3969. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped By Radar Interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Kumar, V.; Venkataraman, G.; Larsen, Y. IGARSS. In Proceedings of the SAR Interferometry and offset tracking approaches for glacier movement estimation in the Himalaya, Vancouver, BC, Canada, 24–29 July 2011; pp. 3175–3178. [Google Scholar]
- Sánchez-gámez, P.; Navarro, F.J. Glacier Surface Velocity Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic. Remote Sens. 2017, 9, 442. [Google Scholar] [CrossRef]
- Wang, T.; Jónsson, S. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3271–3278. [Google Scholar] [CrossRef]
- Ou, D.; Tan, K.; Du, Q.; Chen, Y.; Ding, J. Decision fusion of D-InSAR and pixel offset tracking for coal mining deformation monitoring. Remote Sens. 2018, 10, 1055. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Bassford, R.P.; Gorman, M.R.; Williams, M.; Glazovsky, A.F.; Macheret, Y.Y.; Shepherd, A.P.; Vasilenko, Y.V.; Savatyuguin, L.M.; Hubberten, H.W.; et al. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. J. Geophys. Res. 2002, 107, EPM-5. [Google Scholar] [CrossRef]
- Sánchez-Gámez, P.; Navarro, F.J.; Glazovsky, A.F.; Bassford, R.P.; Dowdeswell, J.A. Intra- and inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance. J. Glaciol. 2019, 65, 780–797. [Google Scholar] [CrossRef]
- Willis, M.J.; Zheng, W.; Durkin, W.J., IV; Pritchard, M.E.; Ramage, J.M.; Dowdeswell, J.A.; Benham, T.J.; Bassford, R.P.; Stearns, L.A.; Glazovsky, A.F.; et al. Massive destabilization of an Arctic ice cap. Earth Planet. Sci. Lett. 2018, 502, 146–155. [Google Scholar] [CrossRef]
- Gardner, A.S.; Fahnestock, M.A.; Scambos, T.A. Sept,2019:ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities; Data archived at National Snow and Ice Data Center: Pasadena, CA, USA, 2019. [Google Scholar]
- Raju, N.B.; Singh, G.; Anil, V.K.; Kapil, M. Optimum Conditions for Differential Sar Interferometry Technique to Estimate Himalayan Glacier Velocity. In Proceedings of the ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., Dehradun, India, 20–23 November 2018; Volume IV-5, pp. 137–140. [Google Scholar]
- Gardner, A.S.; Moholdt, G.; Scambos, T.; Fahnstock, M.; Ligtenberg, S.; Broeke, M. Van Den Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 2018, 12, 521–547. [Google Scholar] [CrossRef]
- Strozzi, T.; Paul, F.; Wiesmann, A.; Schellenberger, T.; Kääb, A. Circum-arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sens. 2017, 9, 947. [Google Scholar] [CrossRef]
- Michael, A.; Robert, C. ASTER Global Digital Elevation Model V003; NASA EOSDIS Land Processes DAAC; NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team: Pasadena, CA, USA, 2018.
- Tao, Q.; Gao, T.; Liu, G.; Wang, Z. Effect of external digital elevation model on monitoring of mine subsidence by two-pass differential interferometric synthetic aperture radar. J. Appl. Remote Sens. 2017, 11, 026037. [Google Scholar] [CrossRef]
- Doyle, S.H.; Hubbard, B.; Christoffersen, P.; Young, T.J.; Hofstede, C.; Bougamont, M.; Box, J.E.; Hubbard, A. Physical Conditions of Fast Glacier Flow: 1. Measurements From Boreholes Drilled to the Bed of Store Glacier, West Greenland. J. Geophys. Res. Earth Surf. Res. 2018, 123, 324–348. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Williams, M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. J. Glaciol. 1997, 43, 489–494. [Google Scholar] [CrossRef][Green Version]
Pair No. | Dates | Path Number | Temporal Baseline (days) | Polarization |
---|---|---|---|---|
1 to 4 | 28/03/2014 | 134 | 0 | HH + HV |
11/04/2018 | 134 | 14 | HH + HV | |
5 to 11 | 01/04/2018 | 132 | 0 | HH + HV |
15/04/2018 | 132 | 14 | HH + HV |
Glacier No | Observed Max Velocity (cm/day) | Ice Cap | Type of Glacier | Description |
---|---|---|---|---|
1 | 21.93 | Rusanov | Marine-terminating | High at the terminus (increasing gradually) |
2 | 11.49 | Rusanov | Marine-terminating | High at the terminus (increasing gradually) |
3 | 20.48 | Rusanov | Marine-terminating | High velocity in the middle part (frontal area has no data) |
4 | 17.71 | Rusanov | Marine-terminating | High velocity in the middle part (frontal area has no data) |
5 | 11.76 | Rusanov | Marine-terminating | Near the terminus (velocity is almost uniform) |
6 | 19.12 | Karpinsky | Marine-terminating | High velocity in the middle part (low–high–low) |
7 | 32.12 | Karpinsky | Marine-terminating | High velocity in the middle part (frontal area has no data) |
8 | 26.19 | Karpinsky | Marine-terminating | High velocity in the middle part (frontal area has no data) |
9 | 8.89 | Karpinsky | Marine-terminating | High velocity in the middle part (low–high–low) |
10 | 17.80 | Karpinsky | Marine-terminating | High velocity in the middle part |
11 | 7.43 | Karpinsky | Land-terminating | High velocity in the middle part (low–high–low) |
12 | 25.48 | Karpinsky | Marine-terminating | High velocity in the middle part (frontal area has no data) |
13 | 17.23 | Karpinsky | Marine-terminating | High velocity at the terminus (increasing gradually) |
14 | 27.07 | University | Marine-terminating | High velocity at the terminus (increasing gradually) |
15 | 6.62 | Kropotkin Glacier | Land-terminating | Constant flow |
16 | 72.24 | Glacier ‘A’ | Marine-terminating | High velocity in the middle part (low–high–low) |
Scene Pair No. | Perpendicular Baseline (m) | Deformation Error in LOS Direction (cm) |
---|---|---|
1 | 33.2 | 0.12 |
2 | 36.5 | 0.13 |
3 | 39.6 | 0.14 |
4 | 43.3 | 0.15 |
5 | 15.1 | 0.05 |
6 | 13.6 | 0.05 |
7 | 12 | 0.04 |
8 | 10.4 | 0.04 |
9 | 8.8 | 0.03 |
10 | 7.3 | 0.03 |
11 | 5.7 | 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nela, B.R.; Bandyopadhyay, D.; Singh, G.; Glazovsky, A.F.; Lavrentiev, I.I.; Kromova, T.E.; Arigony-Neto, J. Glacier Flow Dynamics of the Severnaya Zemlya Archipelago in Russian High Arctic Using the Differential SAR Interferometry (DInSAR) Technique. Water 2019, 11, 2466. https://doi.org/10.3390/w11122466
Nela BR, Bandyopadhyay D, Singh G, Glazovsky AF, Lavrentiev II, Kromova TE, Arigony-Neto J. Glacier Flow Dynamics of the Severnaya Zemlya Archipelago in Russian High Arctic Using the Differential SAR Interferometry (DInSAR) Technique. Water. 2019; 11(12):2466. https://doi.org/10.3390/w11122466
Chicago/Turabian StyleNela, Bala Raju, Debmita Bandyopadhyay, Gulab Singh, Andrey F. Glazovsky, Ivan I. Lavrentiev, Tatiana E. Kromova, and Jorge Arigony-Neto. 2019. "Glacier Flow Dynamics of the Severnaya Zemlya Archipelago in Russian High Arctic Using the Differential SAR Interferometry (DInSAR) Technique" Water 11, no. 12: 2466. https://doi.org/10.3390/w11122466
APA StyleNela, B. R., Bandyopadhyay, D., Singh, G., Glazovsky, A. F., Lavrentiev, I. I., Kromova, T. E., & Arigony-Neto, J. (2019). Glacier Flow Dynamics of the Severnaya Zemlya Archipelago in Russian High Arctic Using the Differential SAR Interferometry (DInSAR) Technique. Water, 11(12), 2466. https://doi.org/10.3390/w11122466