Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = Schrödinger equation for electrons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1356 KB  
Article
Fractatomic Physics: Atomic Stability and Rydberg States in Fractal Spaces
by Nhat A. Nghiem and Trung V. Phan
Atoms 2026, 14(1), 2; https://doi.org/10.3390/atoms14010002 - 31 Dec 2025
Viewed by 355
Abstract
We explore the physical quantum properties of atoms in fractal spaces, both as a theoretical generalization of normal integer-dimensional Euclidean spaces and as an experimentally realizable setting. We identify the threshold of fractality at which Ehrenfest atomic instability emerges, where the Schrödinger equation [...] Read more.
We explore the physical quantum properties of atoms in fractal spaces, both as a theoretical generalization of normal integer-dimensional Euclidean spaces and as an experimentally realizable setting. We identify the threshold of fractality at which Ehrenfest atomic instability emerges, where the Schrödinger equation describing the wavefunction of a single electron orbiting around an atom becomes scale-free, and discuss the potential of observing this phenomena in laboratory settings. We then study the Rydberg states of stable atoms using the Wentzel–Kramers–Brillouin approximation, along with a proposed extension for the Langer modification, in general fractal dimensionalities. We show that fractal space atoms near instability explode in size even at low-number excited state, making them highly suitable to induce strong entanglements and foster long-range many-body interactions. We argue that atomic physics in fractal spaces—“fractatomic physics”—is a rich research avenue deserving of further theoretical and experimental investigations. Full article
Show Figures

Figure 1

19 pages, 3573 KB  
Article
Time-Dependent Theory of Electron Emission Perpendicular to Laser Polarization for Reconstruction of Attosecond Harmonic Beating by Interference of Multiphoton Transitions
by Matías L. Ocello, Sebastián D. López, Martín Barlari and Diego G. Arbó
Atoms 2025, 13(12), 99; https://doi.org/10.3390/atoms13120099 - 10 Dec 2025
Viewed by 364
Abstract
We present a time-dependent nonperturbative theory of the reconstruction of attosecond beating by interference of multiphoton transitions (RABBIT) for photoelectron emission from hydrogen atoms in the transverse direction relative to the laser polarization axis. Extending our recent semiclassical strong-field approximation (SFA) model developed [...] Read more.
We present a time-dependent nonperturbative theory of the reconstruction of attosecond beating by interference of multiphoton transitions (RABBIT) for photoelectron emission from hydrogen atoms in the transverse direction relative to the laser polarization axis. Extending our recent semiclassical strong-field approximation (SFA) model developed for parallel emission, we deduce analytical expressions for the transition amplitudes and demonstrate that the photoelectron probability distribution can be factorized into interhalf- and intrahalfcycle interference contributions, the latter modulating the intercycle pattern responsible for sideband formation. We identify the intrahalfcycle interference arising from trajectories released within the same half cycle as the mechanism governing attosecond phase delays in the perpendicular geometry. Our results reveal the suppression of even-order sidebands due to destructive interhalfcycle interference, leading to a characteristic spacing between adjacent peaks that doubles the standard spacing observed along the polarization axis. Comparisons with numerical calculations of the SFA and the ab initio solution of the time-dependent Schrödinger equation confirm the accuracy of the semiclassical description. This work provides a unified framework for understanding quantum interferences in attosecond chronoscopy, bridging the cases of parallel and perpendicular electron emission in RABBIT-like protocols. Full article
Show Figures

Figure 1

21 pages, 1551 KB  
Article
Excitonic States in GaAs/AlxGa1−xAs Quantum Wells: Direct Coulomb Interaction Modeling via Finite Element Electrostatics and Parametric Analysis Under Impurity and Field Effects
by Fabian Andres Castaño, David Laroze and Carlos Alberto Duque
Nanomaterials 2025, 15(17), 1345; https://doi.org/10.3390/nano15171345 - 1 Sep 2025
Viewed by 996
Abstract
This study presents a comprehensive numerical investigation of excitonic states in GaAs quantum wells embedded in AlxGa1xAs barriers, incorporating the effects of donor and acceptor impurities, external electric and magnetic fields, and varying well widths. The electron [...] Read more.
This study presents a comprehensive numerical investigation of excitonic states in GaAs quantum wells embedded in AlxGa1xAs barriers, incorporating the effects of donor and acceptor impurities, external electric and magnetic fields, and varying well widths. The electron and hole wavefunctions are computed by directly solving the Schrödinger equation using the finite element method in cylindrical coordinates, without assuming trial forms. To evaluate the exciton binding energy, the implementation and comparison of two independent approaches were performed: a numerical integration method based on elliptic function corrections, and a novel finite element electrostatic formulation using COMSOL Multiphysics v5.6. The latter computes the Coulomb interaction by solving Poisson’s equation with the hole charge distribution and integrating the resulting potential over the electron density. Both methods agree within 1% and capture the spatial and field-induced modifications in excitonic properties. The results show that quantum confinement enhances binding in narrow wells, while donor impurities and electric fields reduce binding via spatial separation of carriers. Magnetic fields counteract this effect by providing radial confinement. The FEM-based electrostatic method demonstrates high spatial accuracy, computational efficiency, and flexibility for complex heterostructures, making it a promising tool for exciton modeling in low-dimensional systems. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

21 pages, 13405 KB  
Article
Impact of Nonresonant Intense Laser and Electric Fields on a Low-Dimensional CdTe/CdSe Type-II Cone
by Fredy Amador Donado, Fernando Guerrero Almanza, Camilo Frías Viña, Juan Alejandro Vinasco, J. Sierra-Ortega, Gene Elizabeth Escorcia-Salas, R. V. H. Hahn, M. E. Mora-Ramos, O. Mommadi, A. El Moussaouy, R. Boussetta, D. Duque, A. L. Morales, S. Uran-Parra and C. A. Duque
Nanomaterials 2025, 15(15), 1208; https://doi.org/10.3390/nano15151208 - 7 Aug 2025
Viewed by 753
Abstract
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a [...] Read more.
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a type-II CdTe/CdSe heterostructure (core/shell). Using the effective mass approximation with parabolic bands and the finite element method, the Schrödinger equation was solved to analyze the confined states of electron, hole, and exciton. This study demonstrates the potential of combining nonresonant intense laser and electric fields to control confinement properties in semiconductor nanodevices, with potential applications in optoelectronics and quantum mechanics-related technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 2555 KB  
Article
Optical Characteristics of GaAs Spherical Quantum Dots Based on Single and Double Quartic Anharmonic Potentials: The Role of Structural Parameters
by Najah Abdullah Alashqar, Walid Belhadj, Najla S. Al-Shameri, Hassen Dakhlaoui, Fatih Ungan and Sake Wang
Photonics 2025, 12(7), 675; https://doi.org/10.3390/photonics12070675 - 4 Jul 2025
Viewed by 892
Abstract
This is a numerical investigation of optical and electronic characteristics of GaAs spherical quantum dots based on single and double quartic potentials and presenting a hydrogenic impurity at their center. The radial Schrödinger equation was solved using the finite difference method (FDM) to [...] Read more.
This is a numerical investigation of optical and electronic characteristics of GaAs spherical quantum dots based on single and double quartic potentials and presenting a hydrogenic impurity at their center. The radial Schrödinger equation was solved using the finite difference method (FDM) to obtain the energy levels and the wavefunctions. These physical quantities were then used to compute the dipole matrix elements, the total optical absorption coefficient (TOAC), and the binding energies. The impact of the structural parameters in the confining potentials on the red and blue shifts of the TOAC is discussed in the presence and absence of hydrogenic impurity. Our results indicate that the structural parameter k in both potentials plays a crucial role in tuning the TOAC. In the case of single quartic potential, increasing k produces a blue shift; however, its augmentation in the case of double quartic potential displays a blue shift at first, and then a red shift. Furthermore, the augmentation of the parameter k can control the binding energies of the two lowest states, (1s) and (1p). In fact, enlarging this parameter reduces the binding energies and converges them to constant values. In general, the modification of the potential’s parameters, which can engender two shapes of confining potentials (single quartic and double quartic), enables the experimenters to control the desired energy levels and consequently to adjust and select the suitable TOAC between the two lowest energy states (ground (1s) and first excited (1p)). Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

18 pages, 433 KB  
Article
Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration
by Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas and Abdelkader Makhoute
Atoms 2025, 13(7), 63; https://doi.org/10.3390/atoms13070063 - 1 Jul 2025
Viewed by 870
Abstract
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) [...] Read more.
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) radiation in the presence of a strong, synchronized NIR pulse. The theoretical investigation is conducted using an ab initio method to solve the time-dependent Schrödinger equation within the single active electron (SAE) approximation. The simulation results show a sequence of above-threshold ionization (ATI) peaks that shift to lower energies with increasing laser intensity. This behavior reflects the onset of the Stark effect, which modifies atomic energy levels and increases the number of photons required for ionization. An examination of the two-color photoionization spectrum, which includes sideband structures and harmonic peaks, shows how the ionization probability is redistributed between the direct path (single XUV photon absorption) and sideband pathways (XUV ± n × IR) as the intensity of the infrared field increases. Quantum interference between continuum states is further revealed by the photoelectron angular distribution, clearly indicating the control of ionization dynamics by the IR field. Full article
Show Figures

Figure 1

21 pages, 1298 KB  
Article
Electro-Optical Modulation of the Nonlinear Optical Response in a GaAs/AlGaAs Symmetric Multiple Quantum Well System
by Carlos Alberto Dagua-Conda, John Alexander Gil-Corrales, Rebeca Victoria Herrero-Hahn, Miguel Eduardo Mora-Ramos, Alvaro Luis Morales and Carlos Alberto Duque
Physics 2025, 7(2), 22; https://doi.org/10.3390/physics7020022 - 12 Jun 2025
Cited by 2 | Viewed by 2142
Abstract
External fields modify the confinement potential and electronic structure in a multiple quantum well system, affecting the light–matter interaction. Here, we present a theoretical study of the modulation of the nonlinear optical response simultaneously employing an intense non-resonant laser field and an electric [...] Read more.
External fields modify the confinement potential and electronic structure in a multiple quantum well system, affecting the light–matter interaction. Here, we present a theoretical study of the modulation of the nonlinear optical response simultaneously employing an intense non-resonant laser field and an electric field. Considering four occupied subbands, we focus on a GaAs/AlGaAs symmetric multiple quantum well system with five wells and six barriers. By solving the Schrödinger equation through the finite element method under the effective mass approximation, we determine the electronic structure and the nonlinear optical response using the density matrix formalism. The laser field dresses the confinement potential while the electric field breaks the inversion symmetry. The combined effect of both fields modifies the intersubband transition energies and the overlap of the wave functions. The results obtained demonstrate an active tunability of the nonlinear optical response, opening up the possibility of designing optoelectronic devices with tunable optical properties. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

14 pages, 1754 KB  
Article
The Single-Active-Electron Approximation with Angular-Momentum-Dependent Potentials: Application to the Helium Atom
by Juan Carlos del Valle and Klaus Bartschat
Atoms 2025, 13(5), 43; https://doi.org/10.3390/atoms13050043 - 14 May 2025
Cited by 1 | Viewed by 1905
Abstract
We discuss an extension of the Single-Active-Electron (SAE) approximation in atoms by allowing the model potential to depend on the angular-momentum quantum number . We refer to this extension as the -SAE approximation. The main ideas behind -SAE are illustrated [...] Read more.
We discuss an extension of the Single-Active-Electron (SAE) approximation in atoms by allowing the model potential to depend on the angular-momentum quantum number . We refer to this extension as the -SAE approximation. The main ideas behind -SAE are illustrated using the helium atom as a benchmark system. We show that introducing -dependent potentials improves the accuracy of key quantities in atomic structure computed from the Time-Independent Schrödinger Equation (TISE), including energies, oscillator strengths, and static and dynamic polarizabilities, compared to the standard SAE approach. Additionally, we demonstrate that the -SAE approximation is suitable for quantum simulations of light−atom interactions described by the Time-Dependent Schrödinger Equation (TDSE). As an illustration, we simulate High-order Harmonic Generation (HHG) and the three-sideband (3SB) version of the Reconstruction of Attosecond Beating by Interference of Two-photon Transitions (RABBITT) technique, achieving enhanced accuracy comparable to that obtained in all-electron calculations. One of the main advantages of the -SAE approach is that existing SAE codes can be easily adapted to handle -dependent potentials without any additional computational cost. Full article
Show Figures

Figure 1

11 pages, 3389 KB  
Article
Applications of Prepared MnMoO4 Nanoparticles as Saturable Absorbers for Q-Switched Erbium-Doped Fiber Lasers: Experimental and Theoretical Analysis
by Tahani A. Alrebdi, Shahid Sadiq, Si-Cong Tian, Mamoon Asghar, Izhar Saghir and Haroon Asghar
Photonics 2025, 12(5), 474; https://doi.org/10.3390/photonics12050474 - 12 May 2025
Cited by 3 | Viewed by 878
Abstract
This study presents the synthesis of manganese molybdenum tetraoxide (MnMoO4)-based nanoparticles and then their experimental demonstration as saturable absorbers (SAs) in erbium-doped fiber lasers (EDFLs). The MnMoO4 nanoparticles were prepared and then embedded between the fiber ferrule to act as [...] Read more.
This study presents the synthesis of manganese molybdenum tetraoxide (MnMoO4)-based nanoparticles and then their experimental demonstration as saturable absorbers (SAs) in erbium-doped fiber lasers (EDFLs). The MnMoO4 nanoparticles were prepared and then embedded between the fiber ferrule to act as an SA to generate Q-switched pulsed operation in EDFLs. For the characterization, scanning electron microscopy (SEM) was employed to confirm the particle size of the prepared MnMoO4 nanoparticles, and the SA optical properties were further investigated by measuring their modulation depth and saturation intensity. By implementing the prepared SA within the cavity, the measured results revealed that under pump power ranging from 28 to 312.5 mW, the laser exhibited Q-switched pulse durations varying from 15.22 to 2.35 µs and repetition rates spanning from 24.98 to 88.11 kHz. The proposed EDFL system delivered an average output power between 0.128 and 2.95 mW, pulse energies ranging from 5.12 to 33.49 nJ, and peak power from 0.281 to 6.26 mW. The laser stability was also confirmed by continuously noticing the pulse duration, emission wavelengths, and pulse repetition rates for 4 h. Finally, a numerical model based on a nonlinear Schrödinger equation (NLSE) was employed to validate both experimental and theoretical results of the passive Q-switched EDFL. These findings highlight the potential of EDFLs utilizing MnMoO4-based SAs for potential applications in pulsed laser sources. Full article
(This article belongs to the Special Issue The Latest Frontiers in Fiber Laser Innovations)
Show Figures

Figure 1

11 pages, 586 KB  
Article
Theoretical Proof of and Proposed Experimental Search for the Ground Triplet State of a Wigner-Regime Two-Electron ‘Artificial Atom’ in a Magnetic Field
by Marlina Slamet and Viraht Sahni
Axioms 2025, 14(5), 349; https://doi.org/10.3390/axioms14050349 - 3 May 2025
Viewed by 957
Abstract
It is experimentally established that there is no ground triplet state of the natural He atom. There is also no exact analytical solution to the Schrödinger equation corresponding to this state. For a two-dimensional two-electron ‘artificial atom’ or a semiconductor quantum dot [...] Read more.
It is experimentally established that there is no ground triplet state of the natural He atom. There is also no exact analytical solution to the Schrödinger equation corresponding to this state. For a two-dimensional two-electron ‘artificial atom’ or a semiconductor quantum dot in a magnetic field, as described by the Schrödinger–Pauli equation, we provide theoretical proof of the existence of a ground triplet state by deriving an exact analytical correlated wave function solution to the equation. The state exists in the Wigner high-electron-correlation regime. We further explain that the solution satisfies all requisite symmetry and electron coalescence constraints of a triplet state. Since, due to technological advances, such a Wigner crystal quantum dot can be created, we propose an experimental search for the theoretically predicted ground triplet-state spectral line. We note that there exists an analytical solution to the Schrödinger–Pauli equation for a ground singlet state in the Wigner regime for the same value of the magnetic field. The significance to quantum mechanics of the probable experimental observation of the ground triplet state for an ‘artificial atom’ is discussed. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Mechanics and Mathematical Physics)
Show Figures

Figure 1

26 pages, 4050 KB  
Article
Vibrational Excitation of HDO Molecule by Electron Impact
by Mehdi Adrien Ayouz, Alexandre Faure, Ioan F. Schneider, János Zsolt Mezei and Viatcheslav Kokoouline
Atoms 2025, 13(4), 32; https://doi.org/10.3390/atoms13040032 - 8 Apr 2025
Viewed by 824
Abstract
Cross sections and thermally averaged rate coefficients for the vibrational excitation and de-excitation by electron impact on the HDO molecule are computed using a theoretical approach based entirely on first principles. This approach combines scattering matrices obtained from the UK R-matrix codes for [...] Read more.
Cross sections and thermally averaged rate coefficients for the vibrational excitation and de-excitation by electron impact on the HDO molecule are computed using a theoretical approach based entirely on first principles. This approach combines scattering matrices obtained from the UK R-matrix codes for various geometries of the target molecule, three-dimensional vibrational states of HDO, and the vibrational frame transformation. The vibrational states of the molecule are evaluated by solving the Schrödinger equation numerically, without relying on the normal-mode approximation, which is known to be inaccurate for water molecules. As a result, couplings and transitions between the vibrational states of HDO are accurately accounted for. From the calculated cross sections, thermally averaged rate coefficients and their analytical fits are provided. Significant differences between the results for HDO and H2O are observed. Additionally, an uncertainty assessment of the obtained data is performed for potential use in modeling non-local thermodynamic equilibrium (non-LTE) spectra of water in various astrophysical environments. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

23 pages, 3342 KB  
Article
Tuning Electromagnetically Induced Transparency in a Double GaAs/AlGaAs Quantum Well with Modulated Doping
by C. A. Dagua-Conda, J. A. Gil-Corrales, R. V. H. Hahn, R. L. Restrepo, M. E. Mora-Ramos, A. L. Morales and C. A. Duque
Crystals 2025, 15(3), 248; https://doi.org/10.3390/cryst15030248 - 6 Mar 2025
Cited by 6 | Viewed by 2490
Abstract
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, [...] Read more.
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, electromagnetically induced transparency remains largely unexplored. Here, we show that the effect of an n-doped layer GaAs/AlxGa1−xAs in an asymmetric double quantum well system is quite sensitive to the width and position of the doped layer. By self-consistently solving the Poisson and Schrödinger’s equations, we determine the electronic structure using the finite element method within the effective mass approximation. We found that the characteristics of the n-doped layer can modulate the resonance frequencies involved in the electromagnetically induced transparency phenomenon. Our results demonstrate that an n-doped layer can control the electromagnetically induced transparency effect, potentially enhancing its applications in optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

33 pages, 26837 KB  
Article
On a Schrödinger Equation in the Complex Space Variable
by Manuel L. Esquível, Nadezhda P. Krasii and Philippe L. Didier
AppliedMath 2024, 4(4), 1555-1587; https://doi.org/10.3390/appliedmath4040083 - 19 Dec 2024
Viewed by 1784
Abstract
We study a separable Hilbert space of smooth curves taking values in the Segal–Bergmann space of analytic functions in the complex plane, and two of its subspaces that are the domains of unbounded non self-adjoint linear partial differential operators of the first and [...] Read more.
We study a separable Hilbert space of smooth curves taking values in the Segal–Bergmann space of analytic functions in the complex plane, and two of its subspaces that are the domains of unbounded non self-adjoint linear partial differential operators of the first and second order. We show how to build a Hilbert basis for this space. We study these first- and second-order partial derivation non-self-adjoint operators defined on this space, showing that these operators are defined on dense subspaces of the initial space of smooth curves; we determine their respective adjoints, compute their respective commutators, determine their eigenvalues and, under some normalisation conditions on the eigenvectors, we present examples of a discrete set of eigenvalues. Using these derivation operators, we study a Schrödinger-type equation, building particular solutions given by their representation as smooth curves on the Segal–Bergmann space, and we show the existence of general solutions using an Fourier–Hilbert base of the space of smooth curves. We point out the existence of self-adjoint operators in the space of smooth curves that are obtained by the composition of the partial derivation operators with multiplication operators, showing that these operators admit simple sequences of eigenvalues and eigenvectors. We present two applications of the Schrödinger-type equation studied. In the first one, we consider a wave associated with an object having the mass of an electron, showing that two waves, when considered as having only a free real space variable, are entangled, in the sense that the probability densities in the real variable are almost perfectly correlated. In the second application, after postulating that a usual package of information may have a mass of the order of magnitude of the neutron’s mass attributed to it—and so well into the domain of possible quantisation—we explore some consequences of the model. Full article
Show Figures

Figure 1

17 pages, 1261 KB  
Article
Spatial Entanglement Between Electrons Confined to Rings
by Orion Ciftja, Josep Batle, Mahmoud Abdel-Aty, Mohamed Ahmed Hafez and Shawkat Alkhazaleh
Symmetry 2024, 16(12), 1662; https://doi.org/10.3390/sym16121662 - 16 Dec 2024
Cited by 3 | Viewed by 1372
Abstract
We study systems of two and three electrons confined to circular rings. The electrons are considered spinless, and we assume that one electron occupies a single ring. We use the framework of such a model to calculate the linear entropy and, thus, the [...] Read more.
We study systems of two and three electrons confined to circular rings. The electrons are considered spinless, and we assume that one electron occupies a single ring. We use the framework of such a model to calculate the linear entropy and, thus, the spatial entanglement between the confined electrons. The geometry of the problem for the case of two electrons incorporates situations in which the planes of the two rings form an arbitrary angle with each other. The resulting Schrödinger’s equation is solved numerically with very high accuracy by means of the exact diagonalization method. We compute the ground state energy and entanglement for all configurations under consideration. We also study the case of three electrons confined to identical, parallel and concentric rings which are located in three different equidistant planes. The vertically separated system of rings is allowed to gradually merge into a single ring geometry, which would represent the equivalent system of a ring with three electrons. It is observed that the system of three electrons gives rise to a richer structure, as the three rings merge into a single one. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2024)
Show Figures

Figure 1

13 pages, 2552 KB  
Article
Enhancing the Photovoltaic Efficiency of In0.2Ga0.8N/GaN Quantum Well Intermediate Band Solar Cells Using Combined Electric and Magnetic Fields
by Hassan Abboudi, Redouane En-nadir, Mohamed A. Basyooni-M. Kabatas, Ayoub El Baraka, Walid Belaid, Ilyass Ez-zejjari, Haddou El Ghazi, Anouar Jorio and Izeddine Zorkani
Materials 2024, 17(21), 5219; https://doi.org/10.3390/ma17215219 - 26 Oct 2024
Cited by 6 | Viewed by 1798
Abstract
This study presents a theoretical investigation into the photovoltaic efficiency of InGaN/GaN quantum well-based intermediate band solar cells (IBSCs) under the simultaneous influence of electric and magnetic fields. The finite element method is employed to numerically solve the one-dimensional Schrödinger equation within the [...] Read more.
This study presents a theoretical investigation into the photovoltaic efficiency of InGaN/GaN quantum well-based intermediate band solar cells (IBSCs) under the simultaneous influence of electric and magnetic fields. The finite element method is employed to numerically solve the one-dimensional Schrödinger equation within the framework of the effective-mass approximation. Our findings reveal that electric and magnetic fields significantly influence the energy levels of electrons and holes, optical transition energies, open-circuit voltages, short-circuit currents, and overall photovoltaic conversion performances of IBSCs. Furthermore, this research indicates that applying a magnetic field positively influences conversion efficiency. Through the optimization of IBSC parameters, an efficiency of approximately 50% is achievable, surpassing the conventional Shockley–Queisser limit. This theoretical study demonstrates the potential for next-generation photovoltaic technology advancements. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

Back to TopTop