Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Salmonella enterica serovar Pullorum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1613 KiB  
Article
Genome-Based Analysis of Genetic Diversity, Antimicrobial Susceptibility, and Virulence Gene Distribution in Salmonella Pullorum Isolates from Poultry in China
by Yiluo Cheng, Jigao Zhang, Qi Huang, Qingping Luo, Tengfei Zhang and Rui Zhou
Animals 2024, 14(18), 2675; https://doi.org/10.3390/ani14182675 - 14 Sep 2024
Cited by 1 | Viewed by 1449
Abstract
Pullorum disease, caused by Salmonella enterica serovar Pullorum (S. Pullorum) infection, is a major pathogenic threat to the poultry industry. In this study, 40 S. Pullorum isolates from seven provinces of China were comprehensively analyzed in terms of antigenic type [...] Read more.
Pullorum disease, caused by Salmonella enterica serovar Pullorum (S. Pullorum) infection, is a major pathogenic threat to the poultry industry. In this study, 40 S. Pullorum isolates from seven provinces of China were comprehensively analyzed in terms of antigenic type and antimicrobial susceptibility, and their drug-resistance genes and virulence genes were identified with whole-genome sequencing (WGS). We show that all these isolates were standard antigenic types, with ST92 the predominant genotype (92.5%). Disk diffusion assays revealed high resistance rates to streptomycin (92.5%), ciprofloxacin (82.5%), and ampicillin (80%), and the resistance rates to streptomycin, gentamicin, ampicillin, and cefotaxime were higher in isolates from sick chickens than in those from healthy chickens. In addition, gyrA mutations and eight acquired resistance genes were identified, with aac(6′)-Iaa the most prevalent, followed by blaTEM1β, sul2, and the GyrA S83F mutation. The resistance phenotypes to streptomycin, ampicillin, and ciprofloxacin correlated strongly with the presence of the aac(6′)-Iaa resistance gene, blaTEM1β resistance gene, and gyrA mutations, respectively. Analysis of the virulence genes showed that the isolates expressed numerous factors associated with secretion systems, including SPI-1 and SPI-2. Overall, this study extends our understanding of the epidemiology and antibiotic resistance of S. Pullorum in China. Full article
Show Figures

Figure 1

7 pages, 704 KiB  
Brief Report
Dual-Emission Fluorescence Resonance Energy Transfer (FRET) PCR Discriminates Salmonella Pullorum and Gallinarum
by Jiansen Gong, Nneka Vivian Iduu, Di Zhang, Kelly Chenoweth, Lanjing Wei, Yi Yang, Xinhong Dou and Chengming Wang
Microorganisms 2024, 12(9), 1815; https://doi.org/10.3390/microorganisms12091815 - 2 Sep 2024
Cited by 1 | Viewed by 1185
Abstract
Salmonella Pullorum (S. Pullorum) and Salmonella Gallinarum (S. Gallinarum) are two biovars of Salmonella enterica serovar Gallinarum, responsible for pullorum disease and fowl typhoid, which are the most prevalent and pathogenic forms of salmonellosis in poultry in developing countries. Traditional differentiation methods [...] Read more.
Salmonella Pullorum (S. Pullorum) and Salmonella Gallinarum (S. Gallinarum) are two biovars of Salmonella enterica serovar Gallinarum, responsible for pullorum disease and fowl typhoid, which are the most prevalent and pathogenic forms of salmonellosis in poultry in developing countries. Traditional differentiation methods for S. Pullorum and S. Gallinarum are based on distinct clinical manifestations and biochemical traits, given their indistinguishable nature via serological assays alone. Molecular differentiation methods such as allele-specific PCR and dual PCR combined with gel electrophoresis or enzyme digestion have also been used to discriminate S. Pullorum and S. Gallinarum, but the detection efficiency is not high. This investigation introduces a Fluorescence Resonance Energy Transfer (FRET) PCR assay targeting the pegB gene, exclusively found in specific Salmonella serovars such as S. Pullorum and S. Gallinarum, and exhibiting conserved single-nucleotide polymorphisms across these two biovars. High-resolution melting curve analysis demonstrates distinct dissolution profiles, facilitating the precise discrimination of S. Pullorum and S. Gallinarum. This FRET-PCR assay exhibits a detection limit of 10 copies per reaction and has been rigorously validated utilizing 17 reference strains and 39 clinical isolates. The innovation presented herein provides a valuable tool for the rapid differentiation of S. Pullorum and S. Gallinarum, thereby enhancing diagnostic efficiency and molecular surveillance of poultry Salmonella. The developed pegB-targeting FRET-PCR assay presents a promising alternative to current cumbersome and time-consuming diagnostic modalities, offering significant potential for expedited identification and control of Salmonella in poultry and mitigating economic losses associated with Salmonella contamination in poultry production. Full article
(This article belongs to the Special Issue Detection and Identification of Pathogenic Bacteria and Viruses)
Show Figures

Figure 1

14 pages, 3575 KiB  
Article
Microbiome and Microbial Pure Culture Study Reveal Commensal Microorganisms Alleviate Salmonella enterica Serovar Pullorum Infection in Chickens
by Jianshen Zhu, Jinmei Ding, Kaixuan Yang, Hao Zhou, Wenhao Yang, Chao Qin, Liyuan Wang, Fuquan Xiao, Beibei Zhang, Qing Niu, Zhenxiang Zhou, Shengqing Yu, Qizhong Huang, Shaohui Wang and He Meng
Microorganisms 2024, 12(9), 1743; https://doi.org/10.3390/microorganisms12091743 - 23 Aug 2024
Cited by 1 | Viewed by 1706
Abstract
Pullorum disease, an intestinal disease in chickens caused by Salmonella enterica serovar pullorum (S. Pullorum), is a significant threat to the poultry industry and results in substantial economic losses. The bacteria’s transmission, both vertical and horizontal, makes it difficult to completely eliminate [...] Read more.
Pullorum disease, an intestinal disease in chickens caused by Salmonella enterica serovar pullorum (S. Pullorum), is a significant threat to the poultry industry and results in substantial economic losses. The bacteria’s transmission, both vertical and horizontal, makes it difficult to completely eliminate it. Control strategies for pullorum disease primarily involve stringent eradication programs that cull infected birds and employ antibiotics for treatment. However, eradication programs are costly, and antibiotic use is restricted. Therefore, developing alternative control strategies is essential. Increasingly, studies are focusing on modulating the gut microbiota to control intestinal diseases. Modulating the chicken gut microbiota may offer a novel strategy for preventing and controlling pullorum disease in poultry. However, the impact of S. Pullorum on the chicken gut microbiota has not been well established, prompting our exploration of the relationship between S. Pullorum and the chicken gut microbiota in this study. In this study, we initially analyzed the dynamic distribution of the gut microbiota in chickens infected with S. Pullorum. Alpha diversity analysis revealed a decrease in observed OTUs and the Shannon diversity index in the infected group, suggesting a reduction in the richness of the chicken gut microbiota due to S. Pullorum infection. Principal coordinate analysis (PCoA) showed distinct clusters between the gut microbiota of infected and uninfected groups, indicating S. Pullorum infection changed the chicken gut microbiota structure. Specifically, S. Pullorum infection enriched the relative abundance of the genera Escherichia-Shigella (65% in infected vs. 40.6% in uninfected groups) and Enterococcus (10.8% vs. 3.7%) while reducing the abundance of Lactobacillus (9.9% vs. 32%) in the chicken microbiota. Additionally, based on the observed changes in the chicken gut microbiota, we isolated microorganisms, including Bifidobacterium pseudolongum, Streptococcus equi and Lacticaseibacillus paracasei (L. paracasei), which were decreased by S. Pullorum infection. Notably, the L. paracasei Lp02 strain was found to effectively inhibit S. Pullorum proliferation in vitro and alleviate its infection in vivo. We found that S. Pullorum infection reduced the richness of the chicken gut microbiota and enriched the relative abundance of the genera Escherichia-Shigella and Enterococcus while decreasing the abundance of the anaerobic genus Lactobacillus. Furthermore, microbiota analysis enabled the isolation of several antimicrobial microorganisms from healthy chicken feces, with a L. paracasei strain notably inhibiting S. Pullorum proliferation in vitro and alleviating its infection in vivo. Overall, this research enhances our understanding of the interaction between gut microbiota and pathogen infection, as well as offers new perspectives and strategies for modulating the chicken gut microbiota to control pullorum disease. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

20 pages, 373 KiB  
Review
Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era
by Mouad Farhat, Slimane Khayi, Jaouad Berrada, Mohamed Mouahid, Najia Ameur, Hosny El-Adawy and Siham Fellahi
Antibiotics 2024, 13(1), 23; https://doi.org/10.3390/antibiotics13010023 - 25 Dec 2023
Cited by 21 | Viewed by 4450
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. [...] Read more.
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms. Full article
13 pages, 1342 KiB  
Article
Unveiling the Potential Ways to Apply Citrus Oil to Control Causative Agents of Pullorum Disease and Fowl Typhoid in Floor Materials
by Dita Julianingsih, Chuan-Wei Tung, Kanchan Thapa and Debabrata Biswas
Animals 2024, 14(1), 23; https://doi.org/10.3390/ani14010023 - 20 Dec 2023
Cited by 3 | Viewed by 2242
Abstract
This study investigates the potential role of Cold-pressed Valencia Terpeneless citrus oil (CO), as a natural antimicrobial, in controlling causative agents of pullorum disease and fowl typhoid in floor materials for poultry farming, specifically wooden chips. The study addresses the issues that have [...] Read more.
This study investigates the potential role of Cold-pressed Valencia Terpeneless citrus oil (CO), as a natural antimicrobial, in controlling causative agents of pullorum disease and fowl typhoid in floor materials for poultry farming, specifically wooden chips. The study addresses the issues that have arisen as a result of the reduction in antibiotic use in poultry farming, which has resulted in the re-emergence of bacterial diseases including salmonellosis. CO efficiently inhibits the growth of pathogens including various serovars of Salmonella enterica (SE), including SE serovar Gallinarum (S. Gallinarum) and SE serovar Pullorum (S. Pullorum), in a dose-dependent manner. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of CO showed potential for controlling diverse S. Gallinarum and S. Pullorum isolates. Growth inhibition assays demonstrated that 0.4% (v/w) CO eliminated S. Pullorum and S. Gallinarum from 24 h onwards, also impacting poultry gut microbiota and probiotic strains. Floor material simulation, specifically wooden chips treated with 0.4% CO, confirmed CO’s effectiveness in preventing S. Gallinarum and S. Pullorum growth on poultry house floors. This study also investigated the effect of CO on the expression of virulence genes in S. Gallinarum and S. Pullorum. Specifically, the study revealed that the application of CO resulted in a downregulation trend in virulence genes, including spiA, invA, spaN, sitC, and sifA, in both S. Pullorum and S. Gallinarum, implying that CO may alter the pathogenicity of these bacterial pathogens. Overall, this study reveals that CO has the potential to be used as a natural antimicrobial in the prevention and management of Salmonella-related infections in chicken production, offering a viable alternative to control these re-emerging diseases. Full article
(This article belongs to the Collection Application of Antibiotic Alternatives in the Poultry Industry)
Show Figures

Figure 1

13 pages, 1798 KiB  
Article
The Genomic Characteristics of an Arthritis-Causing Salmonella pullorum
by Zhiyuan Lu, Jiaqi Huang, Peiyong Li, Mengze Song, Ben Liu, Wenli Tang and Shuhong Sun
Microorganisms 2023, 11(12), 2986; https://doi.org/10.3390/microorganisms11122986 - 14 Dec 2023
Cited by 2 | Viewed by 1763
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum biovar pullorum (Salmonella pullorum) is an avian-specific pathogen that has caused considerable economic losses to the poultry industry. High endemicity, poor implementation of hygiene measures, and lack of effective vaccines hinder the prevention and control of [...] Read more.
Salmonella enterica subsp. enterica serovar Gallinarum biovar pullorum (Salmonella pullorum) is an avian-specific pathogen that has caused considerable economic losses to the poultry industry. High endemicity, poor implementation of hygiene measures, and lack of effective vaccines hinder the prevention and control of this disease in intensively maintained poultry flocks. In recent years, the incidence of arthritis in chicks caused by Salmonella pullorum infection has increased. In this study, four Salmonella pullorum strains were identified from the livers, spleens, and joint fluids of Qingjiaoma chicken breeders with arthritis clinical signs, and an arthritis model of chicks was successfully established using SP206-2. Whole genome sequencing of the SP206-2 strain showed that the genome was 4,730,579 bp, 52.16% GC content, and contained 5007 genes, including 4729 protein-coding regions. The genomic analysis of four arthritis-causing isolates and three diarrhea-causing isolates showed that the genome of arthritis-causing isolates was subject to nonsynonymous mutations, shift mutations, and gene copy deletions. An SNP phylogenetic tree analysis showed that arthritis-causing isolates are located in a different evolutionary branch from diarrhea-causing isolates. Further differential genes analysis showed that the genome of arthritis-causing isolates had missense mutations in genes related to substance metabolism and substance transport, as a result of adaptive evolution. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases)
Show Figures

Figure 1

16 pages, 3052 KiB  
Article
Identification and Evaluation of Novel Antigen Candidates against Salmonella Pullorum Infection Using Reverse Vaccinology
by Zhijie Jiang, Xiamei Kang, Yan Song, Xiao Zhou and Min Yue
Vaccines 2023, 11(4), 865; https://doi.org/10.3390/vaccines11040865 - 18 Apr 2023
Cited by 14 | Viewed by 3035
Abstract
Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their [...] Read more.
Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their endemics and global spreading. To mitigate the prevalence of MDR Salmonella Pullorum infections in poultry farms, it is urgent to develop effective vaccines. Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new vaccine targets. The present study used the RV approach to identify new antigen candidates against Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select strain R51 for presentative and general importance. An additional complete genome sequence (4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of Salmonella Pullorum was analyzed to predict outer membrane and extracellular proteins, and was further selected for evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully expressed and purified. The chick embryo model was used to assess protection efficacy, in which vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were able to elicit a significant immune response. Particularly, PstS confers a significant protective effect, with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified antigens can be promising targets against Salmonella Pullorum infection. Thus, we offer RV to discover novel effective antigens in an important veterinary infectious agent with high priority. Full article
(This article belongs to the Special Issue Vaccines for Chicken)
Show Figures

Figure 1

15 pages, 2313 KiB  
Article
Salmonella Phage CKT1 Effectively Controls the Vertical Transmission of Salmonella Pullorum in Adult Broiler Breeders
by Ketong Cui, Peiyong Li, Jiaqi Huang, Fang Lin, Ruibo Li, Dingguo Cao, Guijuan Hao and Shuhong Sun
Biology 2023, 12(2), 312; https://doi.org/10.3390/biology12020312 - 14 Feb 2023
Cited by 11 | Viewed by 3363
Abstract
Phage therapy is widely being reconsidered as an alternative to antibiotics for the treatment of multidrug-resistant bacterial infections, including salmonellosis caused by Salmonella. As facultative intracellular parasites, Salmonella could spread by vertical transmission and pose a great threat to both human and [...] Read more.
Phage therapy is widely being reconsidered as an alternative to antibiotics for the treatment of multidrug-resistant bacterial infections, including salmonellosis caused by Salmonella. As facultative intracellular parasites, Salmonella could spread by vertical transmission and pose a great threat to both human and animal health; however, whether phage treatment might provide an optional strategy for controlling bacterial vertical infection remains unknown. Herein, we explored the effect of phage therapy on controlling the vertical transmission of Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum), a poultry pathogen that causes economic losses worldwide due to high mortality and morbidity. A Salmonella phage CKT1 with lysis ability against several S. enterica serovars was isolated and showed that it could inhibit the proliferation of S. Pullorum in vitro efficiently. We then evaluated the effect of phage CKT1 on controlling the vertical transmission of S. Pullorum in an adult broiler breeder model. The results demonstrated that phage CKT1 significantly alleviated hepatic injury and decreased bacterial load in the liver, spleen, heart, ovary, and oviduct of hens, implying that phage CKT1 played an active role in the elimination of Salmonella colonization in adult chickens. Additionally, phage CKT1 enabled a reduction in the Salmonella-specific IgG level in the serum of infected chickens. More importantly, the decrease in the S. Pullorum load on eggshells and in liquid whole eggs revealed that phage CKT1 effectively controlled the vertical transmission of S. Pullorum from hens to laid eggs, indicating the potential ability of phages to control bacterial vertical transmission. Full article
(This article belongs to the Special Issue Microbial Contamination and Food Safety)
Show Figures

Figure 1

17 pages, 107429 KiB  
Article
The Feed Additive Potassium Diformate Prevents Salmonella enterica Serovar Pullorum Infection and Affects Intestinal Flora in Chickens
by Yufan Sun, Panyuan Yu, Yiluo Cheng, Jiahui Liu, Xiabing Chen, Tengfei Zhang, Ting Gao, Rui Zhou and Lu Li
Antibiotics 2022, 11(9), 1265; https://doi.org/10.3390/antibiotics11091265 - 18 Sep 2022
Cited by 17 | Viewed by 3289
Abstract
Extensive studies have shown that potassium diformate (KDF), an antibiotic substitute used as a feed additive, improves animal growth performance, although there is less direct evidence of its preventive effect on bacterial infections and its influence on the intestinal flora of animals. In [...] Read more.
Extensive studies have shown that potassium diformate (KDF), an antibiotic substitute used as a feed additive, improves animal growth performance, although there is less direct evidence of its preventive effect on bacterial infections and its influence on the intestinal flora of animals. In this study, the inhibition effect of KDF on Salmonella enterica serovar Pullorum, an important enteric pathogen causing pullorum disease, was investigated in vitro and on a chicken infection model. The effect of KDF on the diversities and structures of chicken duodenal and cecum flora were also investigated using 16S rRNA gene sequencing. The results showed that addition of 0.5% KDF in feed or 0.1% KDF in drinking water significantly reduced the bacterial loads and the degree of pathological changes in the cecum, improved digestion and reduced the pH of the gastrointestinal tract of chickens infected with S. pullorum. KDF also significantly modified the diversity and abundance of intestinal microflorae in chickens. In particular, it promoted the colonization of several probiotics, such as Bacteroides, Blautia, Ruminococcus_torques_group and Faecalibacteriumm, which are involved in maintenance of the intestinal barrier, modulation of inflammation, energy supply for intestinal cells and pathogen resistance. These results enrich the theoretical basis for the clinical application of KDF in chickens. Full article
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Characterization of Two-Component System CitB Family in Salmonella Pullorum
by Xiamei Kang, Xiao Zhou, Yanting Tang, Zhijie Jiang, Jiaqi Chen, Muhammad Mohsin and Min Yue
Int. J. Mol. Sci. 2022, 23(17), 10201; https://doi.org/10.3390/ijms231710201 - 5 Sep 2022
Cited by 17 | Viewed by 3380
Abstract
Salmonella enterica, serovar Gallinarum, biovar Pullorum, is an avian-specific pathogen which has caused considerable economic losses to the poultry industry worldwide. Two-component systems (TCSs) play an essential role in obtaining nutrients, detecting the presence of neighboring bacteria and regulating the expression of virulence [...] Read more.
Salmonella enterica, serovar Gallinarum, biovar Pullorum, is an avian-specific pathogen which has caused considerable economic losses to the poultry industry worldwide. Two-component systems (TCSs) play an essential role in obtaining nutrients, detecting the presence of neighboring bacteria and regulating the expression of virulence factors. The genome analysis of S. Pullorum strain S06004 suggesting the carriage of 22 pairs of TCSs, which belong to five families named CitB, OmpR, NarL, Chemotaxis and LuxR. In the CitB family, three pairs of TCSs, namely CitA-CitB, DcuS-DcuR and DpiB-DpiA, remain unaddressed in S. Pullorum. To systematically investigate the function of the CitB family in S. Pullorum, four mutants, ΔcitAB (abbreviated as Δcit), ΔdcuSRdcu), ΔdpiBAdpi) and ΔcitABΔdcuSRΔdpiBA (Δ3), were made using the CRISPR/Cas9 system. The results demonstrated that the CitB family did not affect the growth of bacteria, the results of biochemical tests, invasion and proliferation in chicken macrophage HD-11 cells and the expression of fimbrial protein. But the mutants showed thicker biofilm formation, higher resistance to antimicrobial agents, enhanced tolerance to inhibition by egg albumen and increased virulence in chicken embryos. Moreover, the deletion of Dpi TCS was detrimental to survival after exposure to hyperosmotic and oxidative environments, as well as the long-term colonization of the small intestine of chickens. Collectively, we provided new knowledge regarding the possible role of the CitB family involved in the pathogenic processes of S. Pullorum. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Bacterial Communication and Their Control)
Show Figures

Figure 1

21 pages, 1463 KiB  
Review
Revisiting Persistent Salmonella Infection and the Carrier State: What Do We Know?
by Neil Foster, Ying Tang, Angelo Berchieri, Shizhong Geng, Xinan Jiao and Paul Barrow
Pathogens 2021, 10(10), 1299; https://doi.org/10.3390/pathogens10101299 - 9 Oct 2021
Cited by 38 | Viewed by 8318
Abstract
One characteristic of the few Salmonella enterica serovars that produce typhoid-like infections is that disease-free persistent infection can occur for months or years in a small number of individuals post-convalescence. The bacteria continue to be shed intermittently which is a key component of [...] Read more.
One characteristic of the few Salmonella enterica serovars that produce typhoid-like infections is that disease-free persistent infection can occur for months or years in a small number of individuals post-convalescence. The bacteria continue to be shed intermittently which is a key component of the epidemiology of these infections. Persistent chronic infection occurs despite high levels of circulating specific IgG. We have reviewed the information on the basis for persistence in S. Typhi, S. Dublin, S. Gallinarum, S. Pullorum, S. Abortusovis and also S. Typhimurium in mice as a model of persistence. Persistence appears to occur in macrophages in the spleen and liver with shedding either from the gall bladder and gut or the reproductive tract. The involvement of host genetic background in defining persistence is clear from studies with the mouse but less so with human and poultry infections. There is increasing evidence that the organisms (i) modulate the host response away from the typical Th1-type response normally associated with immune clearance of an acute infection to Th2-type or an anti-inflammatory response, and that (ii) the bacteria modulate transformation of macrophage from M1 to M2 type. The bacterial factors involved in this are not yet fully understood. There are early indications that it might be possible to remodulate the response back towards a Th1 response by using cytokine therapy. Full article
(This article belongs to the Special Issue Salmonella Persistent Infections)
Show Figures

Figure 1

14 pages, 3809 KiB  
Article
AvrA Exerts Inhibition of NF-κB Pathway in Its Naïve Salmonella Serotype through Suppression of p-JNK and Beclin-1 Molecules
by Chao Yin, Zijian Liu, Honghong Xian, Yang Jiao, Yu Yuan, Yang Li, Qiuchun Li and Xinan Jiao
Int. J. Mol. Sci. 2020, 21(17), 6063; https://doi.org/10.3390/ijms21176063 - 23 Aug 2020
Cited by 20 | Viewed by 2812
Abstract
Avian salmonellosis caused by Salmonella enterica serovar Enteritidis (S. Enteritidis) and Pullorum (S. Pullorum) remains a big threat to the poultry industry and public hygiene. AvrA is an effector involved in inhibiting inflammation. Compared to AvrA from S. Enteritidis [...] Read more.
Avian salmonellosis caused by Salmonella enterica serovar Enteritidis (S. Enteritidis) and Pullorum (S. Pullorum) remains a big threat to the poultry industry and public hygiene. AvrA is an effector involved in inhibiting inflammation. Compared to AvrA from S. Enteritidis (SE-AvrA), the AvrA from S. Pullorum (SP-AvrA) lacks ten amino acids at the C-terminal. In this study, we compared the anti-inflammatory response induced by SP-AvrA to that of SE-AvrA. Transient expression of SP-AvrA in epithelial cells resulted in significantly weaker inhibition of NF-κB pathway activation when treated with TNF-α compared to the inhibition by SE-AvrA. SP-AvrA expression in the S. Enteritidis resulted in weaker suppression of NF-κB pathway in infected HeLa cells compared to SE-AvrA expression in the cells, while SP-AvrA expressed in S. Pullorum C79-13 suppressed NF-κB activation in infected HeLa and Caco 2 BBE cells to a greater extent than did SE-AvrA because of the higher expression of SP-AvrA than SE-AvrA in S. Pullorum. Further analysis demonstrated that the inhibition of NF-κB pathway in Salmonella-infected cells corresponded to the downregulation of the p-JNK and Beclin-1 protein molecules. Our study reveals that AvrA modifies the anti-inflammatory response in a manner dependent on the Salmonella serotype through inhibition of NF-κB pathway. Full article
(This article belongs to the Special Issue Microbial Virulence Factors 2.0)
Show Figures

Figure 1

18 pages, 2952 KiB  
Article
Characterization of Salmonella Phage LPST153 That Effectively Targets Most Prevalent Salmonella Serovars
by Md. Sharifull Islam, Yang Hu, Md. Furkanur Rahaman Mizan, Ting Yan, Ishatur Nime, Yang Zhou and Jinquan Li
Microorganisms 2020, 8(7), 1089; https://doi.org/10.3390/microorganisms8071089 - 21 Jul 2020
Cited by 50 | Viewed by 6153
Abstract
Foodborne diseases represent a major risk to public health worldwide. In this study, LPST153, a novel Salmonella lytic phage with halo (indicative of potential depolymerase activity) was isolated by employing Salmonella enterica serovar Typhimurium ATCC 13311 as the host and had excellent lytic [...] Read more.
Foodborne diseases represent a major risk to public health worldwide. In this study, LPST153, a novel Salmonella lytic phage with halo (indicative of potential depolymerase activity) was isolated by employing Salmonella enterica serovar Typhimurium ATCC 13311 as the host and had excellent lytic potential against Salmonella. LPST153 is effectively able to lyse most prevalent tested serotypes of Salmonella, including S. Typhimurium, S. Enteritidis, S. Pullorum and S. Gallinarum. Morphological analysis revealed that phage LPST153 belongs to Podoviridae family and Caudovirales order and could completely prevent host bacterial growth within 9 h at multiplicity of infection (MOI) of 0.1, 1, 10 and 100. LPST153 had a latent period of 10 min and a burst size of 113 ± 8 PFU/cell. Characterization of the phage LPST153 revealed that it would be active and stable in some harsh environments or in different conditions of food processing and storage. After genome sequencing and phylogenetic analysis, it is confirmed that LPST153 is a new member of the Teseptimavirus genus of Autographivirinae subfamily. Further application experiments showed that this phage has potential in controlling Salmonella in milk and sausage. LPST153 was also able to inhibit the formation of biofilms and it had the ability to reduce and kill bacteria from inside, including existing biofilms. Therefore, the phage LPST153 could be used as a potential antibacterial agent for Salmonella control in the food industry. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop