Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era
Abstract
:1. Introduction
2. Salmonella Gallinarum/Pullorum’s Genome and Its Relationship with Virulence
3. Multi-Drug Resistance: A Worldwide Threat
4. Diagnostic Advances in Salmonella Gallinarum/Pullorum
4.1. Polymerase Chain Reaction
4.2. Next Generation Sequencing
5. Vaccination against FT and PD
6. Reversion to Virulence of SG9R and Differential Diagnosis between Wild-Type SG and SG9R
7. Livestock Hygiene Practices as Measure of Control of Salmonella Infection in Poultry
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- BezabihYitbarek, M. Livestock and Livestock Project View Project Poultry Production View Project. Available online: https://www.researchgate.net/publication/344188926 (accessed on 1 October 2023).
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J. Salmonella pathogenicity and Host Adaptation in Chicken-Associated Serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, G. Pullorum Disease and Fowl Typhoid in Poultry: A Review Antibacterial and antifungal activity of medicinal plants View project Assessment of Public Awareness on Common Zoonotic Diseases View project. Br. J. Poult. Sci. 2020, 9, 48–56. [Google Scholar]
- Eriksson, H.; Söderlund, R.; Ernholm, L.; Melin, L.; Jansson, D.S. Diagnostics, epidemiological observations and genomic subtyping in an outbreak of pullorum disease in non-commercial chickens. Vet. Microbiol. 2018, 217, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Eng, S.K.; Pusparajah, P.; Mutalib, N.S.A.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef]
- Barrow, P.A.; Neto, O.C.F. Pullorum disease and fowl typhoid-new thoughts on old diseases: A review. Avian Pathol. 2011, 40, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Tan, R.; Xiong, D.; Jiao, X.; Pan, Z. Accurate identification and discrimination of Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum by a multiplex PCR based on the new genes of torT and I137_14430. Front. Vet. Sci. 2023, 10. [Google Scholar] [CrossRef]
- Salisu, I.B.; Amin, A.B.; Ibrahim, S.L. Abdurrahman, and Ali, Molecular Techniques for Rapid Diagnosis of Infectious Livestock Diseases. Available online: https://www.unimaid.edu.ng (accessed on 1 October 2023).
- Shivaprasad, H.I. Fowl typhoid and pullorum disease. Rev. Sci. Et Tech. Int. Off. Epizoot. 2000, 19, 405–424. [Google Scholar] [CrossRef]
- Thomson, N.R.; Clayton, D.J.; Windhorst, D.; Vernikos, G.; Davidson, S.; Churcher, C.; Quail, M.A.; Stevens, M.; Jones, M.A.; Watson, M.; et al. Comparative genome analysis of Salmonella enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008, 18, 1624–1637. [Google Scholar] [CrossRef]
- Filho, R.A.C.P.; de Paiva, J.B.; da Silva, M.D.; de Almeida, A.M.; Junior, A.B. Control of Salmonella enteritidis and Salmonella gallinarum in birds by using live vaccine candidate containing attenuated Salmonella gallinarum mutant strain. Vaccine 2010, 28, 2853–2859. [Google Scholar] [CrossRef]
- Kaiser, P.; Rothwell, L.; Galyov, E.E.; Barrow, P.A.; Burnside, J.; Wigley, P. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology 2000, 146, 3217–3226. [Google Scholar] [CrossRef]
- Iqbal, M.; Philbin, V.J.; Withanage, G.S.K.; Wigley, P.; Beal, R.K.; Goodchild, M.J.; Barrow, P.; McConnell, I.; Maskell, D.J.; Young, J.; et al. Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar typhimurium. Infect. Immun. 2005, 73, 2344–2350. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, K.L.; Threlfall, E.J. Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. J. Med. Microbiol. 2004, 53, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Hardt, W.D.; Murugkar, H.V.; Bhattacharyya, D.K. Occurrence of sopE gene and its phenotypic expression among different serovars of Salmonella enterica isolated from man and animals. Indian J. Exp. Biol. 2005, 43, 631–634. [Google Scholar] [PubMed]
- Li, Q.; Yaohui, X.; Xinan, J. Identification of Salmonella pullorum genomic sequences using suppression subtractive hybridization. J. Microbiol. Biotechnol. 2009, 19, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.R.; Lawrence, J.G.; Bobik, T.A. COBALAMIN (COENZYME B 12): Synthesis and Biological Significance. 1996. Available online: https://www.annualreviews.org (accessed on 1 October 2023).
- Crichton, P.B.; Old, D.C. Salmonellae of Serotypes Gallinarum and Pullorum Grouped by Biotyping and Fimbrial-Gene Probing. 1990. Available online: https://www.microbiologyresearch.org (accessed on 1 October 2023).
- McMeechan, A.; Lovell, M.A.; Cogan, T.A.; Marston, K.L.; Humphrey, T.J.; Barrow, P.A. Glycogen production by different Salmonella enterica serotypes: Contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology 2005, 151, 3969–3977. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Dasti, J.I.; Shah, M.A.A.; Zafar, M.A.; Hasan, M.U.; Riaz, A.; Rehman, S.U.; Khan, M.A. Salmonellosis in Poultry, New Prospects of an Old Disease: A Review. Pak. J. Sci. 2017. Available online: https://www.researchgate.net/publication/338139973 (accessed on 1 October 2023).
- Jones, M.A.; Wigley, P.; Page, K.L.; Hulme, S.D.; Barrow, P.A. Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect. Immun. 2001, 69, 5471–5476. [Google Scholar] [CrossRef] [PubMed]
- Wigley, P.; Jones, M.A.; Barrow, P.A. Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol. 2002, 31, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.K.; Singh, B.R.; Babu, N.; Chandra, M. Novel haemolysins of Salmonella enterica spp. enterica serovar Gallinarum. Indian J. Exp. Biol. 2005, 43, 626–630. [Google Scholar]
- Tariq, S.; Samad, A.; Hamza, M.; Ahmer, A.; Muazzam, A.; Ahmad, S.; Amhabj, A.M. Salmonella in Poultry; An Overview. Int. J. Multidiscip. Sci. Arts 2022, 1, 80–84. [Google Scholar] [CrossRef]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Mcdermott, P.F.; Walker, R.D.; White, D.G. Antimicrobials: Modes of Action and Mechanisms of Resistance The discovery of potent, relatively nontoxic antimicrobial therapeutic agents is perhaps the foremost medical advance of. Int. J. Toxicol. 2003, 22, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ndagi, U.; Falaki, A.A.; Abdullahi, M.; Lawal, M.M.; Soliman, M.E. Antibiotic resistance: Bioinformatics-based understanding as a functional strategy for drug design. RSC Adv. 2020, 10, 18451–18468. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, A.; Tariq, A.; Shehzad, A.; Iqbal, M.; Mirza, O.; Maslov, D.A.; Rahman, M. Transcriptional regulation of drug resistance mechanisms in Salmonella: Where we stand and what we need to know. World J. Microbiol. Biotechnol. 2020, 36, 85. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Arakawa, Y. 16S ribosomal RNA methylation: Emerging resistance mechanism against aminoglycosides. Clin. Infect. Dis. 2007, 45, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Forge, A.; Schacht, J. Aminoglycoside antibiotics. Audiol. Neurotol. 2000, 10, 3–22. [Google Scholar] [CrossRef]
- Kong, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. APMIS 2009, 118, 1–36. [Google Scholar] [CrossRef]
- Lewis, K. The Science of Antibiotic Discovery. Cell 2020, 181, 29–45. [Google Scholar] [CrossRef]
- Dinos, G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Nelson, M.L.; Levy, S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci. 2011, 1241, 17–32. [Google Scholar] [CrossRef]
- Wang, N.; Yang, X.; Jiao, S.; Zhang, J.; Ye, B.; Gao, S. Sulfonamide-resistant bacteria and their resistance genes in soils fertilized with manures from Jiangsu province, Southeastern China. PLoS ONE 2014, 9, e112626. [Google Scholar] [CrossRef] [PubMed]
- Ramtahal, M.A.; Amoako, D.G.; Akebe, A.L.K.; Somboro, A.M.; Bester, L.A.; Essack, S.Y. A Public Health Insight into Salmonella in Poultry in Africa: A Review of the Past Decade: 2010–2020. Microb. Drug Resist. 2022, 28, 710–733. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.W.; Kim, J.J.; Mo, I.P.; Lee, Y.J. Molecular characteristic of antimicrobial resistance of Salmonella gallinarum isolates from chickens in Korea, 2014 to 2018. Poult. Sci. 2019, 98, 5416–5423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-F.; Shang, K.; Park, J.-Y.; Lee, Y.-J.; Choi, Y.-R.; Kim, S.-W.; Cha, S.-Y.; Jang, H.-K.; Wei, B.; Kang, M. Antimicrobial resistance and pfge molecular typing of Salmonella enterica serovar gallinarum isolates from chickens in south korea from 2013 to 2018. Animals 2022, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Kim, T.E.; Cho, S.H.; Seol, J.G.; Kim, B.J.; Hyun, J.W.; Park, K.Y.; Kim, S.J.; Yoo, H.S. Distribution and characterization of class 1 integrons in Salmonella enterica serotype Gallinarum biotype Gallinarum. Veter Microbiol. 2002, 89, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Xu, M.; Zhu, C.; Miao, J.; Liu, X.; Xu, B.; Zhang, J.; Yu, Y.; Jia, X. Antimicrobial resistance, presence of integrons and biofilm formation of Salmonella pullorum isolates from eastern China (1962–2010). Avian Pathol. 2013, 42, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Trouchon, T.; Lefebvre, S. A Review of Enrofloxacin for Veterinary Use. Open J. Vet. Med. 2016, 06, 40–58. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, K.S.; Kim, J.H.; Tak, R.B. Salmonella gallinarum gyrA mutations associated with fluoroquinolone resistance. Avian Pathol. 2004, 33, 251–257. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, X.; Zhang, X.; Geng, S.; Chen, X.; Pan, W.; Cong, Q.; Liu, X.; Jiao, X.; Liu, X. Changes in antimicrobial resistance among Salmonella enterica subspecies enterica serovar Pullorum isolates in China from 1962 to 2007. Vet. Microbiol 2009, 136, 387–392. [Google Scholar] [CrossRef]
- Penha Filho RA, C.; Ferreira, J.C.; Kanashiro AM, I.; Darini AL, D.C.; Berchieri Junior, A. Antimicrobial susceptibility of Salmonella gallinarum and Salmonella pullorum isolated from ill poultry in brazil. Ciência Rural. 2016, 46, 513–518. [Google Scholar] [CrossRef]
- Farahani, R.K.; Ebrahimi-Rad, M.; Shahrokhi, N.; Farahani, A.H.K.; Ghafouri, S.A.; Rezaei, M.; Gharibzadeh, S.; Langeroudi, A.G.; Ehsani, P. High Prevalence of Antibiotic Resistance and Biofilm Formation in Salmonella gallinarum. Iran. J. Microbiol. 2023, 15, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Lizcano, A.; Chin, T.; Sauer, K.; Tuomanen, E.I.; Orihuela, C.J. Early biofilm formation on microtiter plates is not correlated with the invasive disease potential of Streptococcus pneumoniae. Microb. Pathog. 2010, 48, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Ghasemmahdi, H.; Tajik, H.; Moradi, M.; Mardani, K.; Modaresi, R.; Badali, A.; Dilmaghani, M. Antibiotic Resistance Pattern and Biofilm Formation Ability of Clinically Isolates of Salmonella enterica Serotype typhimurium. Int. J. Enteric Pathog. 2015, 3, 4. [Google Scholar] [CrossRef]
- Kwon, Y.-K.; Kim, A.; Kang, M.-S.; Her, M.; Jung, B.-Y.; Lee, K.-M.; Jeong, W.; An, B.-K.; Kwon, J.-H. Prevalence and characterization of Salmonella gallinarum in the chicken in Korea during 2000 to 2008. Poult. Sci. 2010, 89, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.G.; Panzenhagen, P.H.N.; Conte-Junior, C.A. Phenotypic and genotypic eligible methods for Salmonella typhimurium source tracking. Front. Microbiol. 2017, 8, 2587. [Google Scholar] [CrossRef] [PubMed]
- Liebana, E.; Garcia-Migura, L.; Breslin, M.F.; Davies, R.H.; Woodward, M.J. Diversity of strains of Salmonella enterica serotype Enteritidis from English poultry farms assessed by multiple genetic fingerprinting. J. Clin. Microbiol. 2001, 39, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-Y.; Kang, X.-L.; Meng, C.; Xiong, D.; Xu, Y.; Geng, S.-Z.; Pan, Z.-M.; Jiao, X.-A. Multiple PCR assay based on the cigR gene for detection of Salmonella spp. and Salmonella pullorum/Gallinarum identification. Poult. Sci. 2020, 99, 5991–5998. [Google Scholar] [CrossRef]
- Zhu, C.; Yue, M.; Rankin, S.; Weill, F.X.; Frey, J.; Schifferli, D.M. One-step identification of five prominent chicken salmonella serovars and biotypes. J. Clin. Microbiol. 2015, 53, 3881–3883. [Google Scholar] [CrossRef]
- Xiong, D.; Song, L.; Geng, S.; Tao, J.; An, S.; Pan, Z.; Jiao, X. One-step PCR detection of Salmonella pullorum/Gallinarum using a novel target: The flagellar biosynthesis gene flhB. Front. Microbiol. 2016, 7, 1863. [Google Scholar] [CrossRef]
- Xiong, D.; Song, L.; Tao, J.; Zheng, H.; Zhou, Z.; Geng, S.; Pan, Z.; Jiao, X. An efficient multiplex PCR-based assay as a novel tool for accurate inter-serovar discrimination of Salmonella Enteritidis, S. Pullorum/Gallinarum and S. Dublin. Front. Microbiol. 2017, 8, 420. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, R.A.; Kay, S.; Connor, T.; Barquist, L.; Sait, L.; Holt, K.E.; Sivaraman, K.; Wileman, T.; Goulding, D.; Clare, S.; et al. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted salmonella enterica Serovar Typhimurium pathovar. Mbio 2013, 4, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Niemann, G.S.; Brown, R.N.; Gustin, J.K.; Stufkens, A.; Shaikh-Kidwai, A.S.; Li, J.; McDermott, J.E.; Brewer, H.M.; Schepmoes, A.; Smith, R.D.; et al. Discovery of novel secreted virulence factors from salmonella enterica serovar typhimurium by proteomic analysis of culture supernatants. Infect. Immun. 2011, 79, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.H.; Park, J.H.; Cho, M.R.; Kim, M.C.; Chae, J.S. Allele-specific PCR method based on rfbS sequence for distinguishing Salmonella gallinarum from Salmonella pullorum: Serotype-specific rfbS sequence polymorphism. J. Microbiol. Methods 2005, 60, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.R.; Shah, D.H.; Shringi, S.; Lee, M.-J.; Li, Y.-H.; Cho, M.-R.; Park, J.-H.; Eo, S.-K.; Lee, J.-H.; Chae, J.-S. An allele-specific PCR assay for the rapid and serotype-specific detection of Salmonella pullorum. Avian Dis. 2005, 49, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-S.; Kwon, Y.-K.; Jung, B.-Y.; Kim, A.; Lee, K.-M.; An, B.-K.; Song, E.-A.; Kwon, J.-H.; Chung, G.-S. Differential identification of Salmonella enterica subsp. enterica serovar Gallinarum biovars Gallinarum and Pullorum based on polymorphic regions of glgC and speC genes. Vet. Microbiol. 2011, 147, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Song, L.; Pan, Z.; Jiao, X. Identification and Discrimination of Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum Based on a One-Step Multiplex PCR Assay. Front. Microbiol. 2018, 9, 1718. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Z.; Li, Y.; Yin, C.; Hu, Y.; Xie, X.; Li, Q.; Jiao, X. A rapid method to identify Salmonella enterica serovar Gallinarum biovar Pullorum using a specific target gene ipaJ. Avian Pathol. 2018, 47, 238–244. [Google Scholar] [CrossRef]
- Tümmler, B. Molecular epidemiology in current times. Environ. Microbiol. 2020, 22, 4909–4918. [Google Scholar] [CrossRef]
- Narvaez, S.A.; Shen, Z.; Yan, L.; Stenger, B.L.S.; Goodman, L.B.; Lim, A.; Nissly, R.H.; Nair, M.S.; Zhang, S.; Sanchez, S. Optimized conditions for Listeria, Salmonella and Escherichia whole genome sequencing using the Illumina iSeq100 platform with point-and-click bioinformatic analysis. PLoS ONE 2022, 17, e0277659. [Google Scholar] [CrossRef]
- Vaid, R.K.; Thakur, Z.; Anand, T.; Kumar, S.; Tripathi, B.N. Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS ONE 2021, 16, e0255612. [Google Scholar] [CrossRef] [PubMed]
- Nuccio, S.P.; Bäumler, A.J. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio 2014, 5, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Rakov, A.V.; Mastriani, E.; Liu, S.L.; Schifferli, D.M. Association of Salmonella virulence factor alleles with intestinal and invasive serovars. BMC Genom. 2019, 20, 429. [Google Scholar] [CrossRef] [PubMed]
- Langridge, G.C.; Fookes, M.; Connor, T.R.; Feltwell, T.; Feasey, N.; Parsons, B.N.; Seth-Smith, H.M.B.; Barquist, L.; Stedman, A.; Humphrey, T.; et al. Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc. Natl. Acad. Sci. USA 2015, 112, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Batista, D.F.A.; Neto, O.C.F.; Barrow, P.A.; de Oliveira, M.T.; Almeida, A.M.; Ferraudo, A.S.; Berchieri, A., Jr. Identification and characterization of regions of difference between the Salmonella gallinarum biovar Gallinarum and the Salmonella gallinarum biovar Pullorum genomes. Infect. Genet. Evol. 2015, 30, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-J.; Park, K.-Y.; Kim, S.-J.; Yoo, H.-S. Application of nucleotide sequence of RNA polymerase b-subunit gene (rpoB) to molecular differentiation of serovars of Salmonella enterica subsp. enterica. Vet. Microbiol. 2001, 82, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Johnston, R.N.; Liu, G.R.; Liu, S.L. Genomic Comparison between Salmonella gallinarum and Pullorum: Differential Pseudogene Formation under Common Host Restriction. PLoS ONE 2013, 8, e59427. [Google Scholar] [CrossRef]
- Matthews, T.D.; Schmieder, R.; Silva, G.G.Z.; Busch, J.; Cassman, N.; Dutilh, B.E.; Green, D.; Matlock, B.; Heffernan, B.; Olsen, G.J.; et al. Genomic comparison of the closely-related Salmonella enterica serovars Enteritidis, Dublin and Gallinarum. PLoS ONE 2015, 10, e0126883. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Qiang, B.; Xu, Y.; Chen, X.; Li, Q.; Jiao, X. Loss and Gain in the Evolution of the Salmonella enterica Serovar Gallinarum Biovar Pullorum Genome. mSphere 2019, 4, e00627-18. [Google Scholar] [CrossRef]
- Ricke, S.C.; Kim, S.A.; Shi, Z.; Park, S.H. Molecular-based identification and detection of Salmonella in food production systems: Current perspectives. J. Appl. Microbiol. 2018, 125, 313–327. [Google Scholar] [CrossRef]
- Łaniewski, P.; Mitra, A.; Karaca, K.; Khan, A.; Prasad, R.; Curtiss, R.; Roland, K.L. Evaluation of protective efficacy of live attenuated Salmonella enterica serovar gallinarum vaccine strains against fowl typhoid in chickens. Clin. Vaccine Immunol. 2014, 21, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Barrow, P.A. Salmonella infections: Immune and non-immune protection with vaccines. Avian Pathol. 2007, 36, 1–13. [Google Scholar] [CrossRef]
- Jawale, C.V.; Lee, J.H. Evaluation of immunogenicity and protective efficacy of adjuvanted Salmonella typhimurium ghost vaccine against salmonellosis in chickens. Vet. Q. 2016, 36, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Desin, T.S.; Köster, W.; Potter, A.A. Salmonella vaccines in poultry: Past, present and future. Expert Rev. Vaccines 2013, 12, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Gast, R.K.; Stone, H.D.; Holt, P.S. Evaluation of the Efficacy of Oil-Emulsion Bacterins for Reducing Fecal Shedding of Salmonella enteritidis by Laying Hens. Avian Dis. 1993, 37, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Revolledo, L.; Ferreira, A.J.P. Current perspectives in avian salmonellosis: Vaccines and immune mechanisms of protection. J. Appl. Poult. Res. 2012, 21, 418–431. [Google Scholar] [CrossRef]
- Smith, H.W. The use of live vaccines in experimental Salmonella gallinarum infection in chickens with observations on their interference effect. Epidemiol. Infect. 1956, 54, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.W. The immunity to Salmonella gallinarum infection in chickens produced by live cultures of members of the salmonella genus. Epidemiol. Infect. 1956, 54, 433–439. [Google Scholar] [CrossRef]
- Audisio, M.C.; Terzolo, H.R. Virulence Analysis of a Salmonella gallinarum Strain by Oral Inoculation of 20-Day-Old Chickens. Avian Dis. 2002, 46, 186–191. [Google Scholar] [CrossRef]
- Lee, Y.J.; Mo, I.P.; Kang, M.S. Safety and efficacy of Salmonella gallinarum 9R vaccine in young laying chickens. Avian Pathol. 2005, 34, 362–366. [Google Scholar] [CrossRef]
- ESilva, N.; Snoeyenbos, G.H.; Weinack, O.M.; Smyser, C.F. Studies on the Use of 9R Strain of Salmonella gallinarum as a Vaccine in Chickens. Avian Dis. 1981, 25, 38–52. [Google Scholar]
- Revolledo, L. Vaccines and vaccination against fowl typhoid and pullorum disease: An overview and approaches in developing countries. J. Appl. Poult. Res. 2018, 27, 279–291. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Studholme, D.; Eeckhaut, V.; Heyndrickx, M.; Dewulf, J.; Dewaele, I.; Van Hoorebeke, S.; Haesebrouck, F.; Van Meirhaeghe, H.; Ducatelle, R.; et al. Salmonella gallinarum field isolates from laying hens are related to the vaccine strain SG9R. Vaccine 2013, 31, 4940–4945. [Google Scholar] [CrossRef] [PubMed]
- Griffin, H.G.; Barrow, P.A. Construction of an aroA mutant of Salmonella serotype Gallinarum: Its effectiveness in immunization against experimental fowl typhoid. Vaccine 1993, 11, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Zhang-Barber, L.; Turner, A.K.; Dougan, G.; Barrow, P.A. Protection of experimental nuoG mutant Gallinarum chickens against fowl typhoid using a of Salmonella serotype. Vaccine 1998, 16, 899–903. [Google Scholar] [CrossRef]
- Barrow, P.A.; Lovell, M.A.; Stocker, B.A.D. Protection against experimental fowl typhoid by parenteral administration of live SL5828, an aroA-serC (aromatic dependent) mutant of a wild-type Salmonella gallinarum strain made lysogenic for P22 sie. Avian Pathol. 2000, 29, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Chacana, P.A.; Terzolo, H.R. Protection Conferred by a Live Salmonella enteritidis Vaccine against Fowl Typhoid in Laying Hens. Avian Dis. 2006, 50, 280–283. [Google Scholar] [CrossRef]
- Shah, D.H.; Shringi, S.; Desai, A.R.; Heo, E.J.; Park, J.H.; Chae, J.S. Effect of metC mutation on Salmonella gallinarum virulence and invasiveness in 1-day-old White Leghorn chickens. Vet. Microbiol. 2007, 119, 352–357. [Google Scholar] [CrossRef]
- Penha Filho, R.A.C.; Diaz, S.J.A.; da Silva Medina, T.; Chang, Y.F.; da Silva, J.S.; Berchieri, A., Jr. Evaluation of protective immune response against fowl typhoid in chickens vaccinated with the attenuated strain Salmonella gallinarum ΔcobSΔcbiA. Res. Vet. Sci. 2016, 107, 220–227. [Google Scholar] [CrossRef]
- Matsuda, K.; Chaudhari, A.A.; Lee, J.H. Comparison of the Safety and Efficacy of a New Live Salmonella gallinarum Vaccine Candidate, JOL916, with the SG9R Vaccine in Chickens. Avian Dis. 2011, 55, 407–412. [Google Scholar] [CrossRef]
- Nandre, R.M.; Lee, J.H. Comparative evaluation of safety and efficacy of a live Salmonella gallinarum vaccine candidate secreting an adjuvant protein with SG9R in chickens. Vet. Immunol. Immunopathol. 2014, 162, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Schroll, C.; Christensen, J.P.; Christensen, H.; Pors, S.E.; Thorndahl, L.; Jensen, P.R.; Olsen, J.E.; Jelsbak, L. Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes. Vet. Microbiol. 2014, 170, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Yin, J.; Kang, X.; Geng, S.; Hu, M.; Pan, Z.; Jiao, X. Safety and protective efficacy of a spiC and crp deletion mutant of Salmonella gallinarum as a live attenuated vaccine for fowl typhoid. Res. Vet. Sci. 2016, 107, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Senevirathne, A.; Hewawaduge, C.; Sivasankar, C.; Lee, J.H. Prospective lipid-A altered live attenuated Salmonella gallinarum confers protectivity, DIVA capability, safety and low endotoxicity against fowl typhoid. Vet. Microbiol. 2022, 274, 109572. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Jiao, X.; Barrow, P.; Pan, Z.; Chen, X. Virulence determinants of Salmonella gallinarum biovar Pullorum identified by PCR signature-tagged mutagenesis and the spiC mutant as a candidate live attenuated vaccine. Vet. Microbiol. 2014, 168, n388–n394. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Yang, Y.; Meng, C.; Wang, X.; Liu, B.; Geng, S.; Jiao, X.; Pan, Z. Safety and protective efficacy of Salmonella pullorum spiC and rfaH deletion rough mutant as a live attenuated DIVA vaccine candidate. Poult. Sci. 2021, 101, 101655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, C.; Tang, J.; Liu, G.; Hu, M.; Kang, X.; Zhang, J.; Zhang, Y.; Pan, Z.; Jiao, X.; et al. Salmonella pullorum spiC mutant is a desirable LASV candidate with proper virulence, high immune protection and easy-to-use oral administration. Vaccine 2021, 39, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Cheng, Z.; Wang, X.; Xu, L.; Li, Q.; Geng, S.; Jiao, X. Evaluation of the Salmonella enterica serovar Pullorum pathogenicity island 2 mutant as a candidate live attenuated oral vaccine. Clin. Vaccine Immunol. 2015, 22, 706–710. [Google Scholar] [CrossRef]
- Guo, R.; Geng, S.; Jiao, H.; Pan, Z.; Chen, X.; Jiao, X. Evaluation of protective efficacy of a novel inactivated Salmonella pullorum ghost vaccine against virulent challenge in chickens. Vet. Immunol. Immunopathol. 2016, 173, 27–33. [Google Scholar] [CrossRef]
- Kim, N.H.; Ko, D.S.; Ha, E.J.; Ahn, S.; Choi, K.S.; Kwon, H.J. Optimized detoxification of a live attenuated vaccine strain (SG9R) to improve vaccine strategy against fowl typhoid. Vaccines 2021, 9, 122. [Google Scholar] [CrossRef]
- McDermott, J.E.; Yoon, H.; Nakayasu, E.S.; Metz, T.O.; Hyduke, D.R.; Kidwai, A.S.; Palsson, B.O.; Adkins, J.N.; Heffron, F. Technologies and approaches to elucidate and model the virulence program of Salmonella. Front. Microbiol. 2011, 2, 121. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Wang, A.H.J.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008, 12, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Cho, S.H. Pathogenicity of SG 9R, a rough vaccine strain against fowl typhoid. Vaccine 2011, 29, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- De Carli, S.; Gräf, T.; Kipper, D.; Lehmann, F.K.M.; Zanetti, N.; Siqueira, F.M.; Cibulski, S.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Molecular and phylogenetic analyses of Salmonella gallinarum trace the origin and diversification of recent outbreaks of fowl typhoid in poultry farms. Vet. Microbiol. 2017, 212, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Koerich, P.K.V.; Fonseca, B.B.; Balestrin, E.; Tagliari, V.; Hoepers, P.G.; Ueira-Vieira, C.; Oldoni, I.; Rauber, R.H.; Ruschel, L.; Nascimento, V.P. Salmonella gallinarum field isolates and its relationship to vaccine strain SG9R. Br. Poult. Sci. 2018, 59, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-S.; Kwon, Y.-K.; Kim, H.-R.; Oh, J.-Y.; Kim, M.-J.; An, B.-K.; Shin, E.-G.; Kwon, J.-H.; Park, C.-K. Comparative proteome and transcriptome analyses of wild-type and live vaccine strains of Salmonella enterica serovar Gallinarum. Vaccine 2012, 30, 6368–6375. [Google Scholar] [CrossRef]
- Kang, M.-S.; Kwon, Y.-K.; Kim, H.-R.; Oh, J.-Y.; Kim, M.-J.; An, B.-K.; Shin, E.-G.; Kwon, J.-H.; Park, C.-K. Differential identification of Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum and the biovar Gallinarum live vaccine strain 9R. Vet. Microbiol. 2012, 160, 491–495. [Google Scholar] [CrossRef]
- Beylefeld, A.; Abolnik, C. Salmonella gallinarum strains from outbreaks of fowl typhoid fever in Southern Africa closely related to SG9R vaccines. Front. Vet. Sci. 2023, 10, 1191497. [Google Scholar] [CrossRef]
- Feuillet, L. Etude Comparée Des Vaccins et Des Flores Bactériennes Dans la Lutte Contre les Salmonelles en Elevage de Poules Pondeuses (Etude Bibliographique). Ph.D. Thesis, Alfort National Veterinary School, Maisons-Alfort, France, 2007. [Google Scholar]
- United States Department of Agriculture, Animal andPlant Health Inspection Service (USDA). National Poultry Improvement Plan Program Standards: Washington, D.C. United States of America. December 2019. Available online: https://www.poultryimprovement.org/documents/ProgramStandardsA-E.pdf (accessed on 1 November 2023).
Study | Country | Year | SG/SP | Number of Isolates | Phenotypical Antimicrobial Resistance |
---|---|---|---|---|---|
[38] | Korea | 2014–2018 | SG | 130 | AMP (28.6%), AUG2 (10.7%), NAL (100.0%), CIP (50.0%), CHL (17.9%), and COL (14.3%), CF (21%), FOX (15%), TET (11%), GEN (68%), SXT (14%). |
[39] | Korea | 2013–2018 | SG | 30 | STR (100%), FIS (100%), COL (100%), NAL (96.7%), CIP (90%), GEN (66.7%), CHL (3.3%), AMP (3.3%), TET (3.3%), FFC (3.3%). |
[41] | China | 1962–2010 | SP | 337 | AMP (34.4%), CAB (25.5%), CFM (46.6%), CTX (2.4%), STR (61.7%), GEN (5.3%), KA (3.9%), SPC (45.0%), CHL (4.1%), TET (58.7%), SMX (52.8%), TMP (82.8%), SXT (49.4%), NAL (69.0%), CIP (4.5%), NIT (26.4%). |
[44] | China | 1962–2007 | SP | 450 | AMP (40.2%); CAB (39.1%); GEN (2.5%); KA (2.5%); STR (58%); CHL (1.8%); TET (58.9%); TMP (93.1%); SXT (24.2%); ENR (6.7%); CIP (0.4%); NAL (19.3%). |
[46] | Iran | 2012–2017 | SG | 60 | PE (100%); AMX (75%); AUG2 (50%); NIT (80%); NAL (45%); CIP (37%); CHL (20%); NEO(30%); KA (0%); SXT (0%); COL (0%). |
[45] | Brazil | 2006–2013 | SG | 24 | Intermediate to Resistant: AUG2 (0%), CTX (0%), IMP (0%), CAZ (0%), CFP (0%), ETP (0%), CEF (0%), TET (8% R), ETP (0%), FFC (4%), SXT (4%), NAL (42%), CIP (34.4%), ENR (33%). |
Brazil | 2006–2013 | SP | 17 | Intermediate to Resistant: AUG2 (0%), CTX (0%), ATM (0%), CAZ (0%), CFP (0%), ETP (0%), CEF (0%), TET (6%), ETP (0%), FFC (0%), SXT (0%), NAL (35%), CIP (29%), ENR (6%). |
Targeted Gene/ Locus | Protein Encoded | Primer | Sequence (5′ to 3′) | Amplicon Size (bp) | PCR Conditions | SG | SP | Reference |
---|---|---|---|---|---|---|---|---|
rhs locus 2 | Type II toxin-antitoxin | rhs (F) | TCGTTTACGGCATTACACAAGTA | 402 | 95 °C for 5 min; 25 cycles at 95 °C for 30 s, 56 °C for 45 s, and 72 °C for 50 s; and 72 °C for 10 min | + * | + | [54] |
rhs (R) | CAAACCCAGAGCCAATCTTATCT | |||||||
steB gene | Fimbrial ushers | steB (F) | TGTCGACTGGGACCCGCCCGCCCGC | 636 | + | − | ||
steB (R) | CCATCTTGTAGCGCACCAT | |||||||
stn gene | Enterotoxin | stn (F) | TATTTTGCACCACAGCCAGC | 131 | 94 °C for 5 min; 30 cycles of 94 °C for 45 s, 52 °C for 45 s, and 72 °C for 40 s; and 72 °C for 10 min | + | + | [62] |
stn (R) | CGACCGCGTTATCATCACTG | |||||||
I137_08605gene | Unknown | I137_08605 (F) | CACTGGAGACTCTGAGGACA | 290 | + | + | ||
I137_08605 (R) | GGGCAGGGAGTCTTGAGATT | |||||||
ratA gene | RNA Antitoxin A | ratA (F) | ATTGCTCTCGTCCTGGGTAC | 571 | + | − | ||
ratA (R) | TACCGATACGCCCAACTACC | |||||||
cigR gene | T3SS2 effector | cigR (F) | ATGAATAATCGTCGTGGTTT | 421 | 95 °C for 3 min; 30 cycles of 95 °C for 15 s, 50 °C for 15 s, and 72 °C for 30 s, and 72 °C for 10 min | + | + | [53] |
cigR (R) | TAATAATCGCCGTGACCACC | |||||||
ipaJ gene | T3SS effector | ipaJ (F) | TACCTGTCTGCTGCCGTGA | 741 | 95 °C for 3 min; 30 cycles at 95 °C for 30 s, 58 °C for 45 s, and 72 °C for 50 s; and 72 °C for 10 min | − | + | [63] |
ipaJ (R) | ACCCTGCAAACCTGAAATC | |||||||
glgC gene | Glycogen biosynthesis | glgC (F) | TGGAGAGGATAATCCGGTGA | 252 | 94 °C for 5 min; 30 cycles of 94 °C for 30 s, 55–65 °C for 30 s, and 30 s at 72 °C for 30 s; and 72 °C for 7 min | + | − | [61] |
glgC (R) | ATCAACACCATCCGCAATTT | |||||||
speC gene | Ornithine decarboxylase | speC (F) | CCCGTTGCACATTAATCCTT | 174 | 94 °C for 5 min; 30 cycles of 94 °C for 30 s, 55–65 °C for 30 s, and 72 °C for 30 s; and 72 °C for 7 min | + | + | |
speC (R) | CGGAGCTGGTATCCAGTTTG | |||||||
rfbS gene | paratose synthetase | rfbSF (F) | GTATGGTTATTAGACGTTGTT | 187 | 94 °C for 5 min; 25–30 cycles of 94 °C for 1 min, 45 °C for 1 min, and 72 °C for 2 min; and 72 °C for 5 min. | + | − | [59] |
rfbSG (R) | TATTCACGAATTGATATACTC | |||||||
rfbSF (F) | GTATGGTTATTAGACGTTGTT | 187 | − | + | ||||
rfbSP (R) | TATTCACGAATTGATATATCC | |||||||
rfbS gene | rfbS-SP (F) | GATCGAAAAAATAGTAGAATT | 147 | 94 °C for 5 min, 30 cycles of 94 °C for 1 min, 62 °C for 1 min, 72 °C for 1 min; and 72 °C for 5 min. | − | + | [60] | |
rfbS-SP (R) | GCATCAAGTGATGAGATAATC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhat, M.; Khayi, S.; Berrada, J.; Mouahid, M.; Ameur, N.; El-Adawy, H.; Fellahi, S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics 2024, 13, 23. https://doi.org/10.3390/antibiotics13010023
Farhat M, Khayi S, Berrada J, Mouahid M, Ameur N, El-Adawy H, Fellahi S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics. 2024; 13(1):23. https://doi.org/10.3390/antibiotics13010023
Chicago/Turabian StyleFarhat, Mouad, Slimane Khayi, Jaouad Berrada, Mohamed Mouahid, Najia Ameur, Hosny El-Adawy, and Siham Fellahi. 2024. "Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era" Antibiotics 13, no. 1: 23. https://doi.org/10.3390/antibiotics13010023
APA StyleFarhat, M., Khayi, S., Berrada, J., Mouahid, M., Ameur, N., El-Adawy, H., & Fellahi, S. (2024). Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics, 13(1), 23. https://doi.org/10.3390/antibiotics13010023