Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = SNX10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 32710 KiB  
Article
Differences in Starvation-Induced Autophagy Response and miRNA Expression Between Rat Mammary Epithelial and Cancer Cells: Uncovering the Role of miR-218-5p
by Mateusz Gotowiec, Antoni Smoliński, Katarzyna Marcinkowska, Wiktor Pascal and Paweł Krzysztof Włodarski
Cancers 2025, 17(15), 2446; https://doi.org/10.3390/cancers17152446 - 23 Jul 2025
Viewed by 315
Abstract
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA [...] Read more.
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA changes during starvation-induced autophagy in both mammary epithelial cells and BC cells could reveal potential molecular therapy targets. Methods: Rat mammary gland healthy epithelial and cancer cells were subjected to starvation, and differences in proliferation, migration, invasion, autophagy, and expression of autophagy-associated miRNAs were determined. Afterward, we assessed the effects of miR-218-5p modulation on the aforementioned processes. Results: Starvation-induced autophagy reduced the proliferation of all cells and increased the invasive and migratory capacity of cancer cells (p ≤ 0.05). We identified a miRNA signature related to starvation, comprising twenty-seven miRNAs. One miRNA had a significantly elevated baseline expression, while another six, including miR-218-5p, had a significantly lower basal expression in cancer cells compared to healthy cells (p ≤ 0.05). However, starvation caused significant miRNA expression changes, with miR-218-5p being upregulated specifically in cancer cells (p = 0.20–0.01). Functional studies on the role of miR-218-5p show that its inhibition decreases migration and leads to autophagosome accumulation. The study of miR-218-5p molecular targets has shown that its inhibition of sorting nexin 18 (SNX18) may act as an important regulator of the starvation-induced response in cancer cells. Conclusions: The baseline expression of miRNA related to starvation and autophagy differs between rat mammary gland cancer and healthy cells. The response to starvation also varies between cancer cells and normal cells. Starvation induces BC-specific miRNA dysregulation, affecting particularly miR-218-5p, which acts via SNX18, promoting the cancer cells’ survival. Full article
(This article belongs to the Special Issue The Role of Apoptosis and Autophagy in Cancer)
Show Figures

Figure 1

11 pages, 1220 KiB  
Article
The Combination of HSP90 Inhibitors and Selumetinib Reinforces the Inhibitory Effects on Plexiform Neurofibromas
by Sajjad Khan, Oluwatosin Aina, Ximei Veneklasen, Hannah Edens, Donia Alson, Li Sun, Huda Zayed, Kimani Njoya and Daochun Sun
Cancers 2025, 17(14), 2359; https://doi.org/10.3390/cancers17142359 - 16 Jul 2025
Viewed by 308
Abstract
Background/Objectives: Plexiform neurofibromas (pNFs) are one of the cardinal presentations of NF1 patients, often arising during early childhood. Since selumetinib was approved by the FDA in 2020, the long-term side effects and various responses of mitogen-activated protein kinase inhibitors (MEKi) in pediatric [...] Read more.
Background/Objectives: Plexiform neurofibromas (pNFs) are one of the cardinal presentations of NF1 patients, often arising during early childhood. Since selumetinib was approved by the FDA in 2020, the long-term side effects and various responses of mitogen-activated protein kinase inhibitors (MEKi) in pediatric patients necessitate a new strategy. We propose that combining selumetinib with heat shock protein 90 inhibitors (HSP90i) can enhance the inhibitory effects as well as reduce the dosage of selumetinib in combination. We validated the synergistic effects and the significantly improved treatment effects of the combination of selumetinib and HSP90i in pNFs. Methods: We used drug screen data mining to predict the combination of selumetinib and HSP90i. Using cell lines and in vivo mouse models for pNFs, we tested a series of combinations with different concentrations. We validated the in vivo inhibitory effects using the transplanted tumors from DhhCreNf1f/f mouse models. Results: We demonstrated that combining selumetinib and SNX-2112 or retaspimycin can achieve better tumor inhibition with synergistic effects. The combination significantly delays the progression of mouse pNFs. Conclusions: The combination of selumetinib and HSP90i has significant synergistic effects, provides therapeutic inhibitor effects, and reduces the selumetinib dosage in combination. Full article
(This article belongs to the Special Issue Neurofibromatosis Type 1 (NF1) Related Tumors (2nd Edition))
Show Figures

Figure 1

11 pages, 1596 KiB  
Article
SNX11 Deletion Inhibits Dabie bandavirus Infection by Interfering with the Assembly of V-ATPase
by Tiezhu Liu, Xueqi Wang, Yang Fang, Ping Zhang, Qiang Sun, Jiandong Li and Shiwen Wang
Pathogens 2025, 14(7), 677; https://doi.org/10.3390/pathogens14070677 - 9 Jul 2025
Viewed by 322
Abstract
SNX11, a sorting nexin protein localized on the endosomal membrane, is an important protein closely related to protein sorting and endosomal trafficking. Previously, through a genome-wide CRISPR screening, we identified SNX11 as a critical protein for the entry of Dabie bandavirus. SNX11 deletion [...] Read more.
SNX11, a sorting nexin protein localized on the endosomal membrane, is an important protein closely related to protein sorting and endosomal trafficking. Previously, through a genome-wide CRISPR screening, we identified SNX11 as a critical protein for the entry of Dabie bandavirus. SNX11 deletion significantly inhibits the replication of Dabie bandavirus. We further discovered that the loss of SNX11 alters endosomal pH, potentially affecting the release process of Dabie bandavirus from endosomes to the cytoplasm. However, the mechanism by which SNX11 modulates endosomal pH and whether SNX11 deletion similarly inhibits other viruses remain to be elucidated. This study reveals that SNX11 can interact with the V1 subunit of the endosomal proton pump V-ATPase, affecting the expression level of this subunit on the endosomal membrane and thereby disrupting the assembly of V-ATPase. Additionally, we found that SNX11 deletion significantly inhibits the replication of dengue virus, hantavirus, and influenza virus. These findings suggest that SNX11 may be a key protein in the process of viral infection and could serve as a broad-spectrum antiviral target. Full article
Show Figures

Figure 1

11 pages, 3538 KiB  
Article
Effect of Sm3+ Doping on Energy Storage Property and Thermal Stability of BaSnxTi1−xO3 Ceramics
by Zhengchao Qin, Zhiyi Wang, Si Gao, Hongjuan Zheng, Jin Luo, Yunfei Liu and Yinong Lyu
Crystals 2025, 15(7), 600; https://doi.org/10.3390/cryst15070600 - 26 Jun 2025
Viewed by 298
Abstract
Dielectric capacitors have become a key component for energy storage systems, owing to their exceptional power density and swift charge–discharge performance. In a series of lead-free ferroelectric ceramic materials, BaSnxTi1-xO3 (BTS) received widespread attention due to its [...] Read more.
Dielectric capacitors have become a key component for energy storage systems, owing to their exceptional power density and swift charge–discharge performance. In a series of lead-free ferroelectric ceramic materials, BaSnxTi1-xO3 (BTS) received widespread attention due to its unique properties. However, BTS ceramics with high Sn content have high efficiency (η) but low recovery energy storage density (Wrec). We incorporated the Sm element into BTS ceramics and aimed to optimize both efficiency and recoverable energy density at moderate Sn content. With the synergistic effect between Sm and Sn, the optimal composition was found at 5% Sn content with 1% low-level Sm dopants, where the energy storage density reached 0.2310 J/cm3 at 40 kV/cm. Furthermore, the thermal stability of the ceramic was investigated using temperature-dependent dielectric spectroscopy, in situ XRD, and temperature-dependent hysteresis loops. With Sm doping, the fluctuation of Wrec decreased from 18.48% to 12.01%. In general, this work not only enhances the understanding of samarium dopants but also proposes strategies for developing lead-free ferroelectric ceramics with superior energy storage properties. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

14 pages, 638 KiB  
Systematic Review
Genetic Determinants of Colonic Diverticulosis—A Systematic Review
by Piotr Nehring and Adam Przybyłkowski
Genes 2025, 16(5), 581; https://doi.org/10.3390/genes16050581 - 15 May 2025
Viewed by 820
Abstract
Background: Colonic diverticulosis is a common condition, particularly in the elderly population. While dietary habits, obesity, smoking, and physical inactivity contribute to its pathogenesis, emerging evidence highlights a genetic predisposition affecting extracellular matrix (ECM) remodeling, inflammation, and connective tissue integrity. The aim [...] Read more.
Background: Colonic diverticulosis is a common condition, particularly in the elderly population. While dietary habits, obesity, smoking, and physical inactivity contribute to its pathogenesis, emerging evidence highlights a genetic predisposition affecting extracellular matrix (ECM) remodeling, inflammation, and connective tissue integrity. The aim of this systematic review was to summarize genetic determinants of colonic diverticulosis. Methods: The PubMed® database was searched for original studies in humans. The inclusion criteria were named genetic factor and confirmed diverticulosis. Patients with diverticulitis and diverticular diseases were excluded from this review. Results: Out of 137 publications, 10 articles met the inclusion criteria: six large association studies (GWAS) and four cross-sectional studies. The genes regulating ECM turnover, including TIMP1, MMP3, and MMP9, are involved in diverticulosis development. The TIMP1 (rs4898) T allele has been associated with increased susceptibility, potentially due to its role in ECM remodeling. Similarly, MMP3 (rs3025058) and MMP9 (rs3918242) polymorphisms contribute to altered collagen degradation. The COL3A1 (rs3134646) variant coding modified collagen type III may promote diverticular formation. Other genes, such as ARHGAP15 (rs4662344, rs6736741), affect cytoskeletal dynamics. Identified in GWAS studies, gene candidates may be grouped into blood group and immune system-related genes (ABO, HLA-DQA1, HLA-H, OAS1, TNFSF13, FADD), extracellular matrix and connective tissue genes (COL6A1, COLQ, EFEMP1, ELN, HAS2, TIMP2), signaling and cell communication (BMPR1B, WNT4, RHOU, PHGR1, PCSK5), nervous system and neurodevelopment (BDNF, CACNB2, GPR158, SIRT1, SCAPER, TRPS1), metabolism and transporters (SLC25A28, SLC35F3, RBKS, PPP1R14A, PPP1R16B), lipids and cholesterol (LDAH, LYPLAL1, STARD13), transcription and gene regulation (ZBTB4, UBTF, TNRC6B), apoptosis (FADD, PIAS1), and poorly characterized genes (C1TNF7, ENSG00000224849, ENSG00000251283, LINC01082, DISP2, SNX24, THEM4, UBL4B, UNC50, WDR70, SREK1IP1). Conclusions: There are a number of gene variants that probably predispose to colonic diverticulosis. Detailed characterization of the multigene background of diverticulosis will enable appropriate therapeutic or preventive interventions in the future. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 2291 KiB  
Article
Genetic Analysis Reveals a Protective Effect of Sphingomyelin on Cholelithiasis
by Kun Mao, Ang Li, Haochen Liu, Yuntong Gao, Ziyan Wang, Xisu Wang, Shixuan Liu, Ziyuan Gao, Jiaqi Quan, Moyan Shao, Yunxi Liu, Liang Shi, Bo Zhang and Tianxiao Zhang
Genes 2025, 16(5), 523; https://doi.org/10.3390/genes16050523 - 29 Apr 2025
Viewed by 584
Abstract
Background: Cholelithiasis is the most common disorder affecting the biliary system. Choline is an essential nutrient in the human diet and is crucial for the synthesis of neurotransmitters. Previous studies have suggested an association between choline metabolites and cholelithiasis. However, the underlying mechanisms [...] Read more.
Background: Cholelithiasis is the most common disorder affecting the biliary system. Choline is an essential nutrient in the human diet and is crucial for the synthesis of neurotransmitters. Previous studies have suggested an association between choline metabolites and cholelithiasis. However, the underlying mechanisms remain unclear. This research aims to fill the knowledge gap regarding the role of choline metabolites in cholelithiasis. Methods: Genetic data related to choline metabolites and other covariates were retrieved from the U.K. Biobank and IEU OpenGWAS database. Two-sample (TSMR) and multivariate Mendelian randomization (MVMR) analyses, mediation analysis, linkage disequilibrium score regression (LDSC), colocalization analysis, and enrichment analysis were performed. Results: A significant causal relationship was identified between serum level of sphingomyelin and cholelithiasis (p-value = 0.0002). A protective causal effect was identified in MVMR analysis. The following mediated MR analysis indicated that only LDL mediated a large part of the causal relationship (59.18%). Seven genes, including GCKR, SNX17, ABCG8, MARCH8, FUT2, APOH, and HNF1A, were revealed to be colocalized with the causal signal between sphingomyelin and cholelithiasis. Conclusion: The present study has identified a protective effect between sphingomyelin and cholelithiasis. This effect is largely mediated by LDL. The findings of this study offer valuable information for further exploration of the molecular mechanisms of cholelithiasis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 6026 KiB  
Article
Anthraquinone-2-Carboxylic Acid Is a Potential Antiviral Candidate Against Influenza Viruses In Vitro and In Vivo
by Sichen Ren, Yan Luo, Huimin Tao, Ping Wang, Song Li and Jingjing Yang
Viruses 2025, 17(5), 628; https://doi.org/10.3390/v17050628 - 27 Apr 2025
Viewed by 628
Abstract
Seasonal outbreaks and occasional pandemics triggered by influenza viruses annually impose considerable burdens on public health and finances. The continual evolution of viral strains with drug resistance emphasizes the urgency of discovering novel agents for influenza viruses. This study investigated a set of [...] Read more.
Seasonal outbreaks and occasional pandemics triggered by influenza viruses annually impose considerable burdens on public health and finances. The continual evolution of viral strains with drug resistance emphasizes the urgency of discovering novel agents for influenza viruses. This study investigated a set of innovative substances derived from Morinda officinalis with antiviral potential against influenza virus strains. The top candidate, anthraquinone-2-carboxylic acid (A2CA), presented antiviral activity against diverse influenza virus strains, including those resistant to oseltamivir. In an influenza mouse model, the pre-administration of A2CA dose-dependently ameliorated influenza A virus (IAV)-mediated weight loss as well as protected mice from a lethal IAV infection. In addition, lung injury and cytokine dysregulation were mitigated. Further investigation revealed that IAV-induced activation of the RIG-I/STAT1 signaling pathway did not occur after A2CA treatment. A time-of-addition assay revealed that A2CA targeted the final phase of intracellular replication, which was further determined by molecular docking between A2CA and the IAV RdRp protein. Finally, transcriptome analysis revealed that the TP53TG3C, CFAP57 and SNX30-DT genes may be involved in the antiviral effects of A2CA. These results play a part in achieving a thorough comprehension of the capacity of A2CA to inhibit influenza virus infection. Full article
(This article belongs to the Special Issue Antiviral Agents to Influenza Virus 2025)
Show Figures

Figure 1

20 pages, 6217 KiB  
Article
SNX10 Is Involved in Ovarian Cancer Cell Metastasis by Repolarizing Tumor-Associated Macrophages Through mTOR1/Lysosomes Pathway
by Ranran Chai, Kewei Zheng, Ting Xu, Hui Wang, Xiaobo Cheng, Chong Lu and Yu Kang
Biomedicines 2025, 13(5), 1021; https://doi.org/10.3390/biomedicines13051021 - 23 Apr 2025
Viewed by 678
Abstract
Background: Tumor-associated macrophages (TAMs) are prevalent in advanced ovarian cancer tissues and ascites, significantly influencing disease prognosis. However, the mechanisms driving TAM polarization and their tumor-promoting effects remain poorly understood. Methods: The subcellular distribution of SNX10 in ovarian cancer tissues was analyzed [...] Read more.
Background: Tumor-associated macrophages (TAMs) are prevalent in advanced ovarian cancer tissues and ascites, significantly influencing disease prognosis. However, the mechanisms driving TAM polarization and their tumor-promoting effects remain poorly understood. Methods: The subcellular distribution of SNX10 in ovarian cancer tissues was analyzed using single-cell datasets (GSE147082, GSE58937). The Kaplan–Meier Plotter and GEPIA2 databases were used to evaluate SNX10’s prognostic relevance. Lentivirus-mediated SNX10 overexpression in THP-1 cells was employed in tumor cell–macrophage co-culture experiments. Transwell assays and flow cytometry assessed SNX10’s effects on ovarian cancer cell metastasis and cisplatin-induced apoptosis. RNA sequencing, Western blotting, lysosomal pH detection, lipid droplet staining, and RT-qPCR were performed to explore SNX10’s molecular mechanisms in TAM polarization and immune modulation. Results: SNX10 was specifically expressed in TAMs, promoting their polarization into the M2 phenotype. This enhanced the migration and invasion of ovarian cancer cell lines A2780 and A2780/CP70 while reducing cisplatin-induced apoptosis. SNX10 decreased lipid droplet content, downregulated p-mTOR1, and impaired lysosomal function in TAMs. Additionally, SNX10 differentially modulated PD-L1 mRNA expression in platinum-sensitive and platinum-resistant ovarian cancer cells. Conclusions: SNX10 regulates the mTOR1/lysosome pathway in TAMs, influencing lipid metabolism and indirectly modulating ovarian cancer cell metastasis. It also alters PD-L1 mRNA expression, suggesting a role in shaping the tumor immune microenvironment. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

26 pages, 3037 KiB  
Article
Contribution of Sorting Nexin 3 in the Cytomegalovirus Assembly
by Ivona Viduka, Igor Štimac, Silvija Lukanović Jurić, Tamara Gulić, Berislav Lisnić, Gordana Blagojević Zagorac, Hana Mahmutefendić Lučin and Pero Lučin
Biomedicines 2025, 13(4), 936; https://doi.org/10.3390/biomedicines13040936 - 11 Apr 2025
Viewed by 2383
Abstract
Background/Objectives: Cytomegalovirus (CMV) infection expands early endosomes (EEs) into tubular extensions that may contribute to the control of virus replication and virion assembly. Sequential recruitment of protein coats and sorting nexins (SNXs) creates membrane zones at the EEs that serve as scaffolds [...] Read more.
Background/Objectives: Cytomegalovirus (CMV) infection expands early endosomes (EEs) into tubular extensions that may contribute to the control of virus replication and virion assembly. Sequential recruitment of protein coats and sorting nexins (SNXs) creates membrane zones at the EEs that serve as scaffolds for membrane tubulation and retrieval of cargo proteins, including host cell signaling proteins and viral glycoproteins. This study aims to investigate whether the SNX3-dependent zone of EEs contributes to CMV replication and assembly. Methods: Protein localization was analyzed by confocal imaging and expression by Western blot. The contribution of SNX3 to murine CMV (MCMV) replication, assembly compartment (AC) formation, and virion release was analyzed by siRNA and shRNA depletion. The impact of other downstream SNXs that act in EE tubulation was investigated by combined siRNA knockdowns of SNX1, SNX2, SNX4, SNX17, and SNX27 on cell lines expressing shRNA for SNX3. Results: The SNX3-162 isoform acting at EEs was efficiently knocked down by siRNA and shRNA. The SNX3-dependent EE zone recruited SNX27 and contributed to Rab10-dependent tubulation within the pre-AC. SNX3 was not essential for MCMV replication but contributed to the SNX27-, SNX17- and SNX4-dependent release of virions. Silencing SNX3 further reduced the release of virions after silencing SNX27, SNX4, and SNX17, three SNXs that control recycling to the plasma membrane. Conclusions: SNX3 contributes to the formation of pre-AC and MCMV assembly. It acts sequentially with SNX27, SNX4, and SNX17 along the recycling pathway in the process of the production and release of infection virions, suggesting that multiple membrane sources may contribute to the secondary envelopment of MCMV virions. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

15 pages, 3760 KiB  
Article
Leucine-Rich Repeat Kinase 1 Signaling Targets Proteins Critical for Endosome/Lysosome Sorting and Trafficking in Osteoclasts
by Weirong Xing, Yian Chen, Anakha Udayakumar, Haibo Zhao and Subburaman Mohan
Biology 2025, 14(4), 326; https://doi.org/10.3390/biology14040326 - 24 Mar 2025
Viewed by 732
Abstract
Global knockout (KO) of the Lrrk1 gene in mice causes severe osteopetrosis because of the failure of osteoclasts to resorb bone. The molecular mechanism of LRRK1 regulation of osteoclast function is not fully understood. Here, we performed a 2D DIGE phosphor-proteomics analysis to [...] Read more.
Global knockout (KO) of the Lrrk1 gene in mice causes severe osteopetrosis because of the failure of osteoclasts to resorb bone. The molecular mechanism of LRRK1 regulation of osteoclast function is not fully understood. Here, we performed a 2D DIGE phosphor-proteomics analysis to identify potential LRRK1 targets in osteoclasts. Splenocytes from Lrrk1 KO and wild-type (WT) mice were differentiated into osteoclasts for protein extraction. Lysates from Lrrk1 KO and WT cells were labeled with Cy3- and Cy5-dye, respectively. Labeled proteins were mixed and analyzed on the same 2D SDS PAGE for protein profiling. The same amounts of cellular protein were also labeled with Cy3-dye and ran on a 2D SDS PAGE. The gels were then stained using Pro-Q® Diamond Phosphoprotein Gel Stain for phosphoprotein profiling. Differentially phosphorylated protein spots between the two types of cells were collected, digested with trypsin, and identified by mass spectrometry. Seventeen phosphoproteins were identified, six of which are known to be involved in endosome/lysosome sorting, vacuolar protection, and trafficking. While five of these proteins (SNX2, VPS35, VTA1, CFL1, and CTSA) were significantly hypophosphorylated, SNX3 was hyperphosphorylated in LRRK1-deficient osteoclasts. The downregulation of VSP35 and CFL1 phosphorylation in LRRK1-deficient cells was validated by Phos-tag SDS PAGE analysis. Our results indicate that LRRK1 signaling regulates osteoclast function via modulating VPS35 and CFL1 phosphorylation critical for endosome/lysosome trafficking and dynamic cytoskeleton arrangement in osteoclasts. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

14 pages, 4498 KiB  
Article
Chemical Synthesis of Nanostructured Topological Pb1−xSnxSe (x = 0–1) Alloy Films—A Study of Their Structural, Optical, and Thermopower Properties
by Esteban Díaz-Torres, Ángel Guillén-Cervantes and Mauricio Ortega-López
Micro 2025, 5(1), 13; https://doi.org/10.3390/micro5010013 - 16 Mar 2025
Viewed by 747
Abstract
The spray pyrolysis deposition of nanostructured Pb1−xSnxSe alloy films, x = 0.0 to 1.0, from as-prepared Pb1−xSnxSe alloy colloids as the starting solution is reported. The colloidal dispersions were prepared by dissolving selenium [...] Read more.
The spray pyrolysis deposition of nanostructured Pb1−xSnxSe alloy films, x = 0.0 to 1.0, from as-prepared Pb1−xSnxSe alloy colloids as the starting solution is reported. The colloidal dispersions were prepared by dissolving selenium in an amine–thiol mixture, reacted with the Sn and Pb precursors in propylene glycol, and subsequently sprayed onto glass substrates at 300 °C. Structural characterization indicated the formation of the alloyed rock-salt cubic phase for 0.0 ≤ x ≤ 0.75, oxidized Pb and Se phases produced during the deposition, and only orthorhombic SnSe for x = 1.0 with Se and SnSe2 as impurities. Nanocrystalline films ranging from 16 to 16.5 nm in size were obtained. The films displayed a shift in their optical structure and a non-monotonic variation in the band gap energy, first a decrease, reaching the minimum at x = 0.30 and a further increase in the Sn content. The decrease in the optical band gap resembles that of a topological insulator behavior. The morphology of the alloyed films confirmed the large nanocrystal formation by self-assembly processes in both the PbSe and SnSe phases and segregated PbSnSe platelets for x ≥ 0.30. Seebeck coefficient revealed that a typical semiconductor behavior dominated by bipolar transport, and p-type conductivity, but only for x = 0.0 n-type conductivity was exhibited. The maximal Seebeck coefficient magnitude behaved similarly to the band gap energy, evidencing the influence of energy band structure and the topological character. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

12 pages, 3662 KiB  
Article
Enhanced Catalytic Reduction of 4-Nitrophenol over Porous Silica Nanospheres Encapsulating Pt-SnxOy Hybrid Nanoparticles
by Kaijie Li, Qin Wang, Qifan Zhao, Hongbo Yu and Hongfeng Yin
Catalysts 2025, 15(3), 263; https://doi.org/10.3390/catal15030263 - 11 Mar 2025
Cited by 1 | Viewed by 787
Abstract
In this article, Pt-SnxOy hybrid nanoparticles encaged in porous silica nanospheres (Pt-SnxOy@PSNs) were prepared by using 1-dodecanethiol (C12-SH) as a coordination agent to confine Pt and Sn ions in a microemulsion system, which is [...] Read more.
In this article, Pt-SnxOy hybrid nanoparticles encaged in porous silica nanospheres (Pt-SnxOy@PSNs) were prepared by using 1-dodecanethiol (C12-SH) as a coordination agent to confine Pt and Sn ions in a microemulsion system, which is formed by cetyltrimethylammonium bromide (CTAB) and C12-SH as co-surfactants in water. Compared with Pt@PSNs, when different molar ratios of SnxOy were introduced into Pt@PSNs to form Pt-SnxOy@PSNs, the catalytic efficiency of 4-nitrophenol (4-NP) reduction with NaBH4 can be significantly enhanced. At molar ratios of 4-NP/Pt of 150/1, the 4-NP conversion reached 100% over Pt-SnxOy@PSNs with Pt/Sn molar ratios of 1/0.75 in 8 min. This catalytic performance showed a slight decrease after six reaction cycles. This enhanced catalytic efficiency can be ascribed to the synergistic effect between Pt and SnxOy, and the protection of porous silica nanostructures can effectively improve the stability of the catalyst. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Homogeneous/Heterogeneous Catalysis)
Show Figures

Graphical abstract

16 pages, 6583 KiB  
Article
Targeting Mediator Kinase Cyclin-Dependent Kinases 8/19 Potentiates Chemotherapeutic Responses, Reverses Tumor Growth, and Prolongs Survival from Ovarian Clear Cell Carcinoma
by Wade C. Barton, Asha Kumari, Zachary T. Mack, Gary P. Schools, Liz Macias Quintero, Alex Seok Choi, Karthik Rangavajhula, Rebecca C. Arend, Eugenia V. Broude and Karthikeyan Mythreye
Cancers 2025, 17(6), 941; https://doi.org/10.3390/cancers17060941 - 10 Mar 2025
Viewed by 1003
Abstract
Background/Objective: Ovarian clear cell carcinomas (OCCCs) are a rare histological subtype of epithelial ovarian cancer characterized by resistance to platinum-based therapy. CDK8/19, a component of the regulatory CDK module associated with Mediator complex, has been implicated in transcriptional reprogramming and drug resistance in [...] Read more.
Background/Objective: Ovarian clear cell carcinomas (OCCCs) are a rare histological subtype of epithelial ovarian cancer characterized by resistance to platinum-based therapy. CDK8/19, a component of the regulatory CDK module associated with Mediator complex, has been implicated in transcriptional reprogramming and drug resistance in various solid tumors. Our study aimed to investigate the therapeutic potential of CDK8/19 kinase inhibition using selective inhibitors SNX631 and SNX631-6 in OCCC treatment, both as monotherapy and in combination with standard chemotherapeutics. Methods: CDK8 and Ki67 levels were evaluated via immunohistochemistry in benign, primary, and metastatic ovarian cancer tissues. The efficacy of SNX631 alone and in combination with cisplatin or paclitaxel was assessed in OCCC cell lines (ES-2, TOV-21-G, RMG-1). In vivo evaluation utilized xenograft models with subcutaneous and intraperitoneal delivery of the OCCC ES2 cells and oral delivery of SNX631-6, with the monitoring of tumor growth, metastatic spread, and survival. Results: CDK8 protein levels were elevated in OC tissues, particularly in OCCC primary and metastatic lesions compared to benign tissue. While CDK8/19 inhibition showed limited effects on in vitro cell proliferation, SNX631-6 demonstrated significant antitumor and anti-metastatic activity in vivo. Notably, SNX631-6 enhanced the efficacy of cisplatin, substantially inhibiting tumor growth and extending overall survival. Conclusions: Therapeutically achievable doses of CDK8/19 inhibitors may provide clinical benefit for OCCC patients by inhibiting tumor growth and reversing platinum resistance, potentially addressing a critical treatment challenge in this rare ovarian cancer subtype. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology and Therapeutics)
Show Figures

Figure 1

23 pages, 6081 KiB  
Article
Exploring the Therapeutic Potential of the DOT1L Inhibitor EPZ004777 Using Bioinformatics and Molecular Docking Approaches in Acute Myeloid Leukemia
by Mehmet Kivrak, Ihsan Nalkiran and Hatice Sevim Nalkiran
Curr. Issues Mol. Biol. 2025, 47(3), 173; https://doi.org/10.3390/cimb47030173 - 4 Mar 2025
Cited by 1 | Viewed by 1160
Abstract
Background: Acute myeloid leukemia (AML) is a malignancy characterized by the clonal expansion of hematopoietic stem and progenitor cells, often associated with mutations such as NPM1. DOT1L inhibitors have shown potential as new therapeutic opportunities for NPM1-mutant AML. The aim of this study [...] Read more.
Background: Acute myeloid leukemia (AML) is a malignancy characterized by the clonal expansion of hematopoietic stem and progenitor cells, often associated with mutations such as NPM1. DOT1L inhibitors have shown potential as new therapeutic opportunities for NPM1-mutant AML. The aim of this study was to investigate potential alternative targets of the small-molecule inhibitor EPZ004777, in addition to its primary target, DOT1L, using RNA sequencing data from the NCBI-GEO database (GSE85107). Methods: Differentially expressed genes (DEGs) were identified through bioinformatic analysis, followed by pathway enrichment analysis to uncover the relevant biological pathways. Additionally, molecular docking analysis was conducted to assess the binding affinity of EPZ004777 with the proteins CT45A3, HOXA4, SNX19, TPBG, and ZNF185, which were identified as significantly DEGs. The protein structures were obtained from AlphaFold and the Protein Data Bank. Results: EPZ004777 significantly altered gene expression. Oncofetal genes (CT45A3, TPBG) and genes associated with oncogenic pathways (HOXA4, ZNF185, SNX19) were downregulated, while the pro-apoptotic gene BEX3 was upregulated. Pathway enrichment analysis revealed the suppression of the Rap1 signaling pathway and cell adhesion molecules, which may reduce the invasiveness of AML cells. Additionally, upregulation of immune-related pathways suggests enhanced anti-tumor immune responses. Molecular docking analysis demonstrated that EPZ004777 has strong binding potential with SNX19, TPBG, and ZNF185 proteins. Conclusions: EPZ004777 has been identified as a potent modulator of SNX19, TPBG, and ZNF185 associated with apoptosis and tumor progression in AML. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

28 pages, 3508 KiB  
Article
Exploring the Asymmetric Multifractal Dynamics of DeFi Markets
by Soufiane Benbachir, Karim Amzile and Mohamed Beraich
J. Risk Financial Manag. 2025, 18(3), 122; https://doi.org/10.3390/jrfm18030122 - 26 Feb 2025
Cited by 1 | Viewed by 752
Abstract
The rapid growth of decentralized finance (DeFi) has revolutionized the global financial landscape, providing decentralized alternatives to traditional financial services. This study investigates the asymmetric multifractal behavior of nine DeFi markets—AAVE, Pancake Swap (CAKE), Compound (COMP), Curve Finance (CRV), Maker DAO (MKR), Synthetix [...] Read more.
The rapid growth of decentralized finance (DeFi) has revolutionized the global financial landscape, providing decentralized alternatives to traditional financial services. This study investigates the asymmetric multifractal behavior of nine DeFi markets—AAVE, Pancake Swap (CAKE), Compound (COMP), Curve Finance (CRV), Maker DAO (MKR), Synthetix (SNX), Sushi Swap (SUSHI), UniSwap (UNis), and Yearn Finance (YFI)—using Asymmetrical Multifractal Detrended Fluctuation Analysis (A-MFDA). The use of generalized Hurst exponents, Rényi exponents, and singularity spectrum functions revealed that DeFi markets exhibit multifractal behaviors. The analysis uncovered clear differences between uptrend and downtrend fluctuation functions, highlighting asymmetric multifractal behavior. The asymmetry intensity was analyzed through excess differences in uptrend and downtrend generalized Hurst exponents. AAVE, COMP, SNX, UNis, SUSHI, and MKR exhibit negative asymmetry, with stronger correlations during negative trends. CAKE shifts from positive to negative asymmetry, showing sensitivity to both trends. CRV is more volatile in negative trends, while YFI consistently displays positive asymmetry across market fluctuations. The results also reveal that long-term correlations and heavy-tailed distributions contribute to the multifractality of DeFi assets. This study highlights the need for dynamic risk management in DeFi markets, urging investors to adopt adaptive strategies for volatile assets and prepare for sudden price fluctuations to safeguard investments. Full article
(This article belongs to the Special Issue Financial Technology (Fintech) and Sustainable Financing, 3rd Edition)
Show Figures

Figure 1

Back to TopTop