Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = SMN protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3888 KiB  
Article
Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods
by Amare Assefa Bogale, Zoltan Kende, István Balla, Péter Mikó, Boglárka Bozóki and Attila Percze
Agriculture 2025, 15(15), 1668; https://doi.org/10.3390/agriculture15151668 - 1 Aug 2025
Viewed by 211
Abstract
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the [...] Read more.
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the Hungarian University of Agriculture and Life Sciences in Gödöllő in the 2023 and 2024 growing seasons. The study aimed to assess the effects of foliar nutrient supply and soil tillage methods on the grain nutritional composition and mineral content of winter barley. Employing a split-plot design with three replications, the experiment included four nutrient treatments (control, bio-cereal, bio-algae, and MgSMnZn blend) and two soil tillage types (i.e., plowing and cultivator). The results indicated that while protein content was not influenced by the main effects of nutrients and tillage, the levels of β-glucan, starch, crude ash, and moisture content were significantly (p < 0.05) affected by the nutrient treatments and by growing year, treated as a random factor. Notably, bio-algae and bio-cereal nutrients, combined with cultivator tillage, enhanced β-glucan content. All applied nutrient treatments increased the level of starch compared to the control. With regard to grain mineral content, the iron and zinc content responded to the nutrient supply, tillage, and growing year. However, applying a multiple-nutrient composition-based treatment did not increase iron and zinc levels, suggesting that individual applications may be more effective for increasing the content of these minerals in grains. Cultivator tillage improved iron and zinc levels. Moreover, manganese (Mn) and copper (Cu) were predominantly affected by nutrient availability and by growing seasons as a random factor. Therefore, to improve grain quality, this study emphasizes the significance of proper nutrient and tillage methods by focusing on the intricate relationships between agronomic techniques and environmental factors that shape barley’s nutritional profile. Full article
Show Figures

Figure 1

21 pages, 2246 KiB  
Review
Potential Resistance Mechanisms Exhibited by Cystic Fibrosis Patients Against SARS-CoV-2
by Yasmin K. Elsharabassi, Nuha T. Swaidan and Mohamed M. Emara
Viruses 2025, 17(7), 919; https://doi.org/10.3390/v17070919 - 27 Jun 2025
Viewed by 384
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute respiratory distress syndrome, particularly in immunocompromised individuals such as those with cystic fibrosis (CF). CF is a life-threatening genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to impaired respiratory function and recurrent severe respiratory symptoms. Despite their potential vulnerability, CF patients have shown a lower incidence of severe COVID-19, suggesting protective factors against SARS-CoV-2. Differential expression of the ACE2 receptor, crucial for viral entry, and other host factors, such as TMPRSS2, may play a role in this resistance to SARS-CoV-2. Analyzing the genomics and transcriptomics profiles of CF patients could provide insights into potential resistance mechanisms. The potential resistance mechanisms include blood and extracellular ATP levels, a deleted/dysfunctional CFTR gene, ACE and ACE2 regulation and expression, ACE and ACE2 polymorphism effects, host proteins and SARS-CoV-2 interactions, and SMN1 and ACE/ACE2 interactions. This review discusses the underlying factors and potential resistance mechanisms contributing to CF patients’ responses to SARS-CoV-2 infection. The review provides an opportunity to further investigate future therapy and research through understanding the underlying potential resistance mechanisms exhibited by CF patients against SARS-CoV-2, including ACE and ACE2 polymorphisms. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

41 pages, 614 KiB  
Review
Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications
by Andrej Belančić, Tamara Janković, Elvira Meni Maria Gkrinia, Iva Kristić, Jelena Rajič Bumber, Valentino Rački, Kristina Pilipović, Dinko Vitezić and Jasenka Mršić-Pelčić
Neurol. Int. 2025, 17(3), 41; https://doi.org/10.3390/neurolint17030041 - 13 Mar 2025
Cited by 1 | Viewed by 1634
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial [...] Read more.
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells—astrocytes, microglia, oligodendrocytes, and Schwann cells—in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes. Full article
(This article belongs to the Special Issue Molecular Research of CNS Diseases and Neurological Disorders)
17 pages, 10535 KiB  
Article
Integrated Metabolomics and Transcriptomics Analyses Identify Key Amino Acid Metabolic Mechanisms in Lacticaseibacillus paracasei SMN-LBK
by Jie Shen, Yuyu Du, Yuechenfei Shen, Ning Kang, Zhexin Fan, Zhifeng Fang, Bo Yang, Jiancheng Wang and Baokun Li
Foods 2025, 14(5), 730; https://doi.org/10.3390/foods14050730 - 21 Feb 2025
Cited by 1 | Viewed by 975
Abstract
During lactobacillus fermentation, the types of proteins in the fermentation substrate significantly influence the characteristics of the fermented product. Proteins are composed of various amino acids. Consequently, investigating the metabolic mechanisms of key amino acids during lactic acid bacteria fermentation is important for [...] Read more.
During lactobacillus fermentation, the types of proteins in the fermentation substrate significantly influence the characteristics of the fermented product. Proteins are composed of various amino acids. Consequently, investigating the metabolic mechanisms of key amino acids during lactic acid bacteria fermentation is important for improving their application in the food industry. In this study, the growth of Lacticaseibacillus paracasei SMN-LBK was significantly inhibited following glutamate and arginine deficiency (p < 0.05). Genomic analysis and in vitro addition assays showed that α-ketoglutarate (OXO), as a precursor of glutamate, significantly eliminated growth inhibition of SMN-LBK (p < 0.05). Meanwhile, the inhibition of SMN-LBK growth following arginine deficiency may be linked to glutamate. Metabolomics analysis illustrated that glutamate and arginine deficiencies mainly affected the carbohydrate and amino acid metabolic pathways of SMN-LBK, especially the pentose phosphate pathway, alanine, glutamate and aspartate metabolism, and arginine metabolism. Transcriptomics analysis further identified glutamate and arginine deficiencies affecting carbohydrate and amino acid metabolism, specifically the glutamate metabolism, pentose phosphate pathway, and glycolysis/gluconeogenesis, involving key genes such as pfkA, gapA, ldh, argG, argE, and argH. Elucidating the molecular mechanisms of key amino acids in SMN-LBK will provide a theoretical foundation for understanding the differential fermentation of various proteins by lactic acid bacteria. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

32 pages, 15121 KiB  
Article
SMN Deficiency Induces an Early Non-Atrophic Myopathy with Alterations in the Contractile and Excitatory Coupling Machinery of Skeletal Myofibers in the SMN∆7 Mouse Model of Spinal Muscular Atrophy
by María T. Berciano, Alaó Gatius, Alba Puente-Bedia, Alexis Rufino-Gómez, Olga Tarabal, José C. Rodríguez-Rey, Jordi Calderó, Miguel Lafarga and Olga Tapia
Int. J. Mol. Sci. 2024, 25(22), 12415; https://doi.org/10.3390/ijms252212415 - 19 Nov 2024
Cited by 1 | Viewed by 1799
Abstract
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence [...] Read more.
Spinal muscular atrophy (SMA) is caused by a deficiency of the ubiquitously expressed survival motor neuron (SMN) protein. The main pathological hallmark of SMA is the degeneration of lower motor neurons (MNs) with subsequent denervation and atrophy of skeletal muscle. However, increasing evidence indicates that low SMN levels not only are detrimental to the central nervous system (CNS) but also directly affect other peripheral tissues and organs, including skeletal muscle. To better understand the potential primary impact of SMN deficiency in muscle, we explored the cellular, ultrastructural, and molecular basis of SMA myopathy in the SMNΔ7 mouse model of severe SMA at an early postnatal period (P0-7) prior to muscle denervation and MN loss (preneurodegenerative [PND] stage). This period contrasts with the neurodegenerative (ND) stage (P8-14), in which MN loss and muscle atrophy occur. At the PND stage, we found that SMN∆7 mice displayed early signs of motor dysfunction with overt myofiber alterations in the absence of atrophy. We provide essential new ultrastructural data on focal and segmental lesions in the myofibrillar contractile apparatus. These lesions were observed in association with specific myonuclear domains and included abnormal accumulations of actin-thin myofilaments, sarcomere disruption, and the formation of minisarcomeres. The sarcoplasmic reticulum and triads also exhibited ultrastructural alterations, suggesting decoupling during the excitation–contraction process. Finally, changes in intermyofibrillar mitochondrial organization and dynamics, indicative of mitochondrial biogenesis overactivation, were also found. Overall, our results demonstrated that SMN deficiency induces early and MN loss-independent alterations in myofibers that essentially contribute to SMA myopathy. This strongly supports the growing body of evidence indicating the existence of intrinsic alterations in the skeletal muscle in SMA and further reinforces the relevance of this peripheral tissue as a key therapeutic target for the disease. Full article
(This article belongs to the Special Issue Molecular Insight into Skeletal Muscle Atrophy and Regeneration)
Show Figures

Graphical abstract

16 pages, 1053 KiB  
Review
MicroRNAs as Biomarkers in Spinal Muscular Atrophy
by Maruša Barbo, Damjan Glavač, Gregor Jezernik and Metka Ravnik-Glavač
Biomedicines 2024, 12(11), 2428; https://doi.org/10.3390/biomedicines12112428 - 23 Oct 2024
Cited by 3 | Viewed by 1851
Abstract
Spinal muscular atrophy (SMA) is a severe neurodegenerative disease caused by the loss of the survival motor neuron (SMN) protein, leading to degeneration of anterior motor neurons and resulting in progressive muscle weakness and atrophy. Given that SMA has a single, well-defined genetic [...] Read more.
Spinal muscular atrophy (SMA) is a severe neurodegenerative disease caused by the loss of the survival motor neuron (SMN) protein, leading to degeneration of anterior motor neurons and resulting in progressive muscle weakness and atrophy. Given that SMA has a single, well-defined genetic cause, gene-targeted therapies have been developed, aiming to increase SMN production in SMA patients. The SMN protein is likely involved in the synthesis of microRNAs (miRNAs), and dysregulated miRNA expression is increasingly associated with the pathophysiology of SMA. Currently, there is a lack of reliable biomarkers to monitor SMA; therefore, the search for novel SMA biomarkers, including miRNAs, is crucial as reliable tools are needed to track disease progression, predict the response to therapy and understand the different clinical outcomes of available treatments. In this review, we compile data on miRNAs associated with SMA pathogenesis and their potential use as biomarkers. Based on current knowledge, the most frequently deregulated miRNAs between SMA patients and controls, as well as pre- and post-treatment in SMA patients, include miR-1-3p, miR-133a-3p, miR-133b, and miR-206. These findings offer promising possibilities for improving patient classification and monitoring disease progression and response to treatment. Additionally, these findings provide insights into the broader molecular mechanisms and networks of SMA that could inform the development of future therapeutic strategies. Full article
(This article belongs to the Special Issue Advanced Research on Muscle and Bone Diseases)
Show Figures

Figure 1

16 pages, 1992 KiB  
Article
Enhanced Age-Dependent Motor Impairment in Males of Drosophila melanogaster Modeling Spinocerebellar Ataxia Type 1 Is Linked to Dysregulation of a Matrix Metalloproteinase
by Emma M. Palmer, Caleb A. Snoddy, Peyton M. York, Sydney M. Davis, Madelyn F. Hunter and Natraj Krishnan
Biology 2024, 13(11), 854; https://doi.org/10.3390/biology13110854 - 23 Oct 2024
Viewed by 1354
Abstract
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. [...] Read more.
Over the past two decades, Drosophila melanogaster has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human Ataxin-1 with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1). Longevity and behavioral analysis of male flies expressing human Ataxin-1 revealed compromised lifespan and accelerated locomotor activity deficits both in diurnal activity and negative geotaxis response compared to control flies. Interestingly, this decline in motor response was coupled to an enhancement of matrix metalloproteinase 1 (dMMP1) expression together with declining expression of extracellular matrix (ECM) fibroblast growth factor (FGF) signaling by hedgehog (Hh) and branchless (bnl) and a significant decrease in expression of survival motor neuron gene (dsmn) in old (30 d) flies. Taken together, our results indicate a role for dysregulation of matrix metalloproteinase in polyQ disease with consequent impact on ECM signaling factors, as well as SMN at the neuromuscular junction causing overt physiological and behavioral deficits. Full article
(This article belongs to the Special Issue Animal Models for Disease Mechanisms)
Show Figures

Figure 1

16 pages, 331 KiB  
Review
In Search of Spinal Muscular Atrophy Disease Modifiers
by Daria Chudakova, Ludmila Kuzenkova, Andrey Fisenko and Kirill Savostyanov
Int. J. Mol. Sci. 2024, 25(20), 11210; https://doi.org/10.3390/ijms252011210 - 18 Oct 2024
Cited by 1 | Viewed by 1988
Abstract
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a [...] Read more.
The 5q Spinal Muscular Atrophy (SMA) is a hereditary autosomal recessive disease caused by defects in the survival motor neuron (SMN1) gene encoding survival motor neuron (SMN) protein. Currently, it is the leading cause of infantile mortality worldwide. SMA is a progressive neurodegenerative disease with “continuum of clinical severity”, which can be modulated by genetic and epigenetic factors known as disease modifiers (DMs). Individuals (even siblings) with the same defects in SMN1 gene might have strikingly different types of SMA, supposedly due to the impact of DMs. There are several therapeutic options for SMA, all of them focusing on the restoration of the SMN protein levels to normal. Determining DMs and the pathways in which they are involved might aid in enhancing existing curative approaches. Furthermore, DMs might become novel therapeutic targets or prognostic biomarkers of the disease. This narrative review provides a brief overview of the genetics and pathobiology of SMA, and its bona fide modifiers. We describe novel, emerging DMs, approaches and tools used to identify them, as well as their potential mechanisms of action and impact on disease severity. We also propose several disease-modifying molecular mechanisms which could provide a partial explanation of the staggering variability of SMA phenotypes. Full article
20 pages, 3455 KiB  
Review
Taldefgrobep Alfa and the Phase 3 RESILIENT Trial in Spinal Muscular Atrophy
by Laurent Servais, Lindsey Lee Lair, Anne M. Connolly, Barry J. Byrne, Karen S. Chen, Vlad Coric, Irfan Qureshi, Susan Durham, Daniel J. Campbell, Grant Maclaine, Jackie Marin and Clifford Bechtold
Int. J. Mol. Sci. 2024, 25(19), 10273; https://doi.org/10.3390/ijms251910273 - 24 Sep 2024
Cited by 5 | Viewed by 4790
Abstract
Spinal muscular atrophy (SMA) is a rare, genetic neurodegenerative disorder caused by insufficient production of survival motor neuron (SMN) protein. Diminished SMN protein levels lead to motor neuron loss, causing muscle atrophy and weakness that impairs daily functioning and reduces quality of life. [...] Read more.
Spinal muscular atrophy (SMA) is a rare, genetic neurodegenerative disorder caused by insufficient production of survival motor neuron (SMN) protein. Diminished SMN protein levels lead to motor neuron loss, causing muscle atrophy and weakness that impairs daily functioning and reduces quality of life. SMN upregulators offer clinical improvements and increased survival in SMA patients, although significant unmet needs remain. Myostatin, a TGF-β superfamily signaling molecule that binds to the activin II receptor, negatively regulates muscle growth; myostatin inhibition is a promising therapeutic strategy for enhancing muscle. Combining myostatin inhibition with SMN upregulation, a comprehensive therapeutic strategy targeting the whole motor unit, offers promise in SMA. Taldefgrobep alfa is a novel, fully human recombinant protein that selectively binds to myostatin and competitively inhibits other ligands that signal through the activin II receptor. Given a robust scientific and clinical rationale and the favorable safety profile of taldefgrobep in patients with neuromuscular disease, the RESILIENT phase 3, randomized, placebo-controlled trial is investigating taldefgrobep as an adjunct to SMN upregulators in SMA (NCT05337553). This manuscript reviews the role of myostatin in muscle, explores the preclinical and clinical development of taldefgrobep and introduces the phase 3 RESILIENT trial of taldefgrobep in SMA. Full article
(This article belongs to the Special Issue Molecular Study and Treatment of Motor Neuron Diseases)
Show Figures

Figure 1

23 pages, 3338 KiB  
Article
Understanding the Role of the SMN Complex Component GEMIN5 and Its Functional Relationship with Demethylase KDM6B in the Flunarizine-Mediated Neuroprotection of Motor Neuron Disease Spinal Muscular Atrophy
by Badih Salman, Emeline Bon, Perrine Delers, Steve Cottin, Elena Pasho, Sorana Ciura, Delphine Sapaly and Suzie Lefebvre
Int. J. Mol. Sci. 2024, 25(18), 10039; https://doi.org/10.3390/ijms251810039 - 18 Sep 2024
Cited by 2 | Viewed by 1651
Abstract
Dysregulated RNA metabolism caused by SMN deficiency leads to motor neuron disease spinal muscular atrophy (SMA). Current therapies improve patient outcomes but achieve no definite cure, prompting renewed efforts to better understand disease mechanisms. The calcium channel blocker flunarizine improves motor function in [...] Read more.
Dysregulated RNA metabolism caused by SMN deficiency leads to motor neuron disease spinal muscular atrophy (SMA). Current therapies improve patient outcomes but achieve no definite cure, prompting renewed efforts to better understand disease mechanisms. The calcium channel blocker flunarizine improves motor function in Smn-deficient mice and can help uncover neuroprotective pathways. Murine motor neuron-like NSC34 cells were used to study the molecular cell-autonomous mechanism. Following RNA and protein extraction, RT-qPCR and immunodetection experiments were performed. The relationship between flunarizine mRNA targets and RNA-binding protein GEMIN5 was explored by RNA-immunoprecipitation. Flunarizine increases demethylase Kdm6b transcripts across cell cultures and mouse models. It causes, in NSC34 cells, a temporal expression of GEMIN5 and KDM6B. GEMIN5 binds to flunarizine-modulated mRNAs, including Kdm6b transcripts. Gemin5 depletion reduces Kdm6b mRNA and protein levels and hampers responses to flunarizine, including neurite extension in NSC34 cells. Moreover, flunarizine increases the axonal extension of motor neurons derived from SMA patient-induced pluripotent stem cells. Finally, immunofluorescence studies of spinal cord motor neurons in Smn-deficient mice reveal that flunarizine modulates the expression of KDM6B and its target, the motor neuron-specific transcription factor HB9, driving motor neuron maturation. Our study reveals GEMIN5 regulates Kdm6b expression with implications for motor neuron diseases and therapy. Full article
(This article belongs to the Special Issue Protein–RNA Interactions: Function, Mechanism, and Identification)
Show Figures

Figure 1

21 pages, 3875 KiB  
Review
Ubiquitination Insight from Spinal Muscular Atrophy—From Pathogenesis to Therapy: A Muscle Perspective
by Alfonso Bolado-Carrancio, Olga Tapia and José C. Rodríguez-Rey
Int. J. Mol. Sci. 2024, 25(16), 8800; https://doi.org/10.3390/ijms25168800 - 13 Aug 2024
Viewed by 2217
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease’s molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor [...] Read more.
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease’s molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin–proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment. Full article
(This article belongs to the Special Issue Advances in Neurodevelopmental-Related Disorders)
Show Figures

Figure 1

18 pages, 2931 KiB  
Article
Physiological Features of the Neural Stem Cells Obtained from an Animal Model of Spinal Muscular Atrophy and Their Response to Antioxidant Curcumin
by Raffaella Adami, Matteo Pezzotta, Francesca Cadile, Beatrice Cuniolo, Gianenrico Rovati, Monica Canepari and Daniele Bottai
Int. J. Mol. Sci. 2024, 25(15), 8364; https://doi.org/10.3390/ijms25158364 - 31 Jul 2024
Viewed by 2299
Abstract
The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by [...] Read more.
The most prevalent rare genetic disease affecting young individuals is spinal muscular atrophy (SMA), which is caused by a loss-of-function mutation in the telomeric gene survival motor neuron (SMN) 1. The high heterogeneity of the SMA pathophysiology is determined by the number of copies of SMN2, a separate centromeric gene that can transcribe for the same protein, although it is expressed at a slower rate. SMA affects motor neurons. However, a variety of different tissues and organs may also be affected depending on the severity of the condition. Novel pharmacological treatments, such as Spinraza, Onasemnogene abeparvovec-xioi, and Evrysdi, are considered to be disease modifiers because their use can change the phenotypes of the patients. Since oxidative stress has been reported in SMA-affected cells, we studied the impact of antioxidant therapy on neural stem cells (NSCs) that have the potential to differentiate into motor neurons. Antioxidants can act through various pathways; for example, some of them exert their function through nuclear factor (erythroid-derived 2)-like 2 (NRF2). We found that curcumin is able to induce positive effects in healthy and SMA-affected NSCs by activating the nuclear translocation of NRF2, which may use a different mechanism than canonical redox regulation through the antioxidant-response elements and the production of antioxidant molecules. Full article
Show Figures

Graphical abstract

26 pages, 1492 KiB  
Review
Recent Progress in Gene-Targeting Therapies for Spinal Muscular Atrophy: Promises and Challenges
by Umme Sabrina Haque and Toshifumi Yokota
Genes 2024, 15(8), 999; https://doi.org/10.3390/genes15080999 - 30 Jul 2024
Cited by 8 | Viewed by 6648
Abstract
Spinal muscular atrophy (SMA) is a severe genetic disorder characterized by the loss of motor neurons, leading to progressive muscle weakness, loss of mobility, and respiratory complications. In its most severe forms, SMA can result in death within the first two years of [...] Read more.
Spinal muscular atrophy (SMA) is a severe genetic disorder characterized by the loss of motor neurons, leading to progressive muscle weakness, loss of mobility, and respiratory complications. In its most severe forms, SMA can result in death within the first two years of life if untreated. The condition arises from mutations in the SMN1 (survival of motor neuron 1) gene, causing a deficiency in the survival motor neuron (SMN) protein. Humans possess a near-identical gene, SMN2, which modifies disease severity and is a primary target for therapies. Recent therapeutic advancements include antisense oligonucleotides (ASOs), small molecules targeting SMN2, and virus-mediated gene replacement therapy delivering a functional copy of SMN1. Additionally, recognizing SMA’s broader phenotype involving multiple organs has led to the development of SMN-independent therapies. Evidence now indicates that SMA affects multiple organ systems, suggesting the need for SMN-independent treatments along with SMN-targeting therapies. No single therapy can cure SMA; thus, combination therapies may be essential for comprehensive treatment. This review addresses the SMA etiology, the role of SMN, and provides an overview of the rapidly evolving therapeutic landscape, highlighting current achievements and future directions. Full article
(This article belongs to the Special Issue Advances in Genetics of Motor Neuron Diseases)
Show Figures

Figure 1

16 pages, 997 KiB  
Review
Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA
by Jamie Leckie and Toshifumi Yokota
Molecules 2024, 29(11), 2658; https://doi.org/10.3390/molecules29112658 - 4 Jun 2024
Cited by 6 | Viewed by 4177
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept [...] Read more.
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood–brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency. Full article
(This article belongs to the Special Issue Cell-Penetrating Peptides: A Promising Tool for Drug Delivery)
Show Figures

Figure 1

24 pages, 4755 KiB  
Article
Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy
by Eleni Karafoulidou, Evangelia Kesidou, Paschalis Theotokis, Chrystalla Konstantinou, Maria-Konstantina Nella, Iliana Michailidou, Olga Touloumi, Eleni Polyzoidou, Ilias Salamotas, Ofira Einstein, Athanasios Chatzisotiriou, Marina-Kleopatra Boziki and Nikolaos Grigoriadis
Cells 2024, 13(9), 785; https://doi.org/10.3390/cells13090785 - 4 May 2024
Cited by 2 | Viewed by 2868
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation [...] Read more.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells’ reactive phenotype. Full article
(This article belongs to the Collection Feature Papers in 'Cells of the Nervous System' Section)
Show Figures

Graphical abstract

Back to TopTop