Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (840)

Search Parameters:
Keywords = SF-6D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 521 KiB  
Article
Examination of the Relationship Between Pain Intensity, Pain Perceptions, and Kinesiophobia in Patients with Non-Specific Chronic Musculoskeletal Pain
by Sofia Sgourda, Maria Loulla, Eirini Zisiopoulou, Krystalia Katsiou, Sofia Nikolaidi, Ioannis Kyrosis and Anna Christakou
Muscles 2025, 4(3), 27; https://doi.org/10.3390/muscles4030027 - 4 Aug 2025
Abstract
Chronic musculoskeletal pain negatively affects patients’ quality of life, and pain perceptions may significantly influence rehabilitation outcomes. This study investigated the relationships among pain intensity, pain perceptions, and kinesiophobia in individuals with chronic musculoskeletal pain. No previous studies have examined these variables in [...] Read more.
Chronic musculoskeletal pain negatively affects patients’ quality of life, and pain perceptions may significantly influence rehabilitation outcomes. This study investigated the relationships among pain intensity, pain perceptions, and kinesiophobia in individuals with chronic musculoskeletal pain. No previous studies have examined these variables in combination. A cross-sectional observational study was conducted with 37 participants with non-specific chronic musculoskeletal pain for at least 6 months, affecting the neck (n = 8), lower back (n = 18), upper limbs (n = 5), lower limbs (n = 5), or shoulder (n = 1). The following validated tools were used: (a) Pain Beliefs and Perceptions Inventory (PBPI), (b) the Tampa Scale for Kinesiophobia (TSK), and (c) the Short-Form McGill Pain Questionnaire (SF-MPQ). Spearman r correlation analyses were performed. Total kinesiophobia scores were positively correlated with (a) total pain intensity (McGill score) (r = 0.37, p = 0.022), (b) present pain intensity (PPI) (r = 0.52, p = 0.001), (c) pain duration (r = 0.51, p = 0.001), (d) the “mystery” factor of pain perception (r = 0.41, p = 0.013), and (e) the Visual Analogue Scale (VAS) (r = 0.42, p = 0.009). The total pain perception scores were positively associated with the “fear of injury” factor of kinesiophobia (r = 0.36, p = 0.028). The McGill pain scores were strongly correlated with both PPI (r = 0.63, p = 0.001) and VAS (r = 0.51, p = 0.001). There is a significant relationship between pain perception and kinesiophobia levels in patients with chronic musculoskeletal pain. Limitations of the study include a small and heterogeneous sample regarding pain localization. Further research is required using larger, more homogeneous populations to confirm the present findings. Full article
Show Figures

Figure 1

20 pages, 8231 KiB  
Article
Comparative Assessment Using Different Topographic Change Detection Algorithms for Gravity Erosion Quantification Based on Multi-Source Remote Sensing Data
by Jinfei Hu, Haoyong Fu, Pengfei Li, Jinbo Wang and Lu Yan
Water 2025, 17(15), 2309; https://doi.org/10.3390/w17152309 - 3 Aug 2025
Abstract
Gravity erosion is one of the main physical processes of soil erosion and sediment sources in catchments, and its spatiotemporal patterns and driving mechanisms are seriously understudied, mainly due to the the great difficulties in monitoring and quantifying. This study obtained gravity erosion [...] Read more.
Gravity erosion is one of the main physical processes of soil erosion and sediment sources in catchments, and its spatiotemporal patterns and driving mechanisms are seriously understudied, mainly due to the the great difficulties in monitoring and quantifying. This study obtained gravity erosion amounts by runoff scouring experiments on the field slope of the hilly–gully region of the Chinese Loess Plateau. The terrain point cloud before and after gravity erosion was obtained based on the TLS, SfM and the fusion of single-scan TLS and SfM, and then the gravity erosion was estimated by four terrain change detection algorithms (DoD, C2C, C2M and M3C2). Results showed that the M3C2 algorithm plus fused data had the highest quantization accuracy among all the algorithms and data sources, with a relative error of 14.71%. The fused data combined with M3C2 algorithm performed much better than other algorithms and data sources for the different gravity erosion magnitudes (mean relative error < 17.00%). The DoD algorithm plus TLS data were preferable for collapse areas, while the M3C2 algorithm plus TLS was suitable for the alcove area. This study provides a useful reference for the monitor and quantitative research of gravity erosion in complex topographic areas. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

13 pages, 1242 KiB  
Article
Radiotherapy-Induced Lung Cancer Risk in Breast Cancer Patients: A Retrospective Comparison of Hypofractionated and Standard Fractionated 3D-CRT Treatments
by Alessia D’Anna, Giuseppe Stella, Elisa Bonanno, Giuseppina Rita Borzì, Nina Cavalli, Andrea Girlando, Anna Maria Gueli, Martina Pace, Lucia Zirone and Carmelo Marino
Appl. Sci. 2025, 15(15), 8436; https://doi.org/10.3390/app15158436 - 29 Jul 2025
Viewed by 247
Abstract
Breast-conserving surgery followed by external beam Radiotherapy (RT) is a standard approach for early-stage Breast Cancer (BC). This retrospective study aims to determine the risk of RT-induced lung cancer for both standard and hypofractionated treatments. Fifty-eight Sicilian women treated at Humanitas Istituto Clinico [...] Read more.
Breast-conserving surgery followed by external beam Radiotherapy (RT) is a standard approach for early-stage Breast Cancer (BC). This retrospective study aims to determine the risk of RT-induced lung cancer for both standard and hypofractionated treatments. Fifty-eight Sicilian women treated at Humanitas Istituto Clinico Catanese (Misterbianco, Italy) between 2015 and 2021 with standard fractionated 3D-CRT (50 Gy in 2 Gy/fraction) were included. All treatment plans were designed using a hypofractionated schedule (42.56 Gy in 2.66 Gy/fraction). An Eclipse™ plug-in script was developed using the Eclipse Scripting Application Programming Interface (ESAPI) to extract patient and treatment data from the Treatment Planning System and compute Organ At Risk (OAR) volume, Organ Equivalent Dose (OED), Excess Absolute Risk (EAR), and Lifetime Attributable Risk (LAR) using the Schneider Mechanistic Model and reference data from regional populations, A-bomb survivors, and patients with Hodgkin’s Disease (HD). The OED distributions exhibited a statistically significant shift toward higher values in standard fractionated plans (p < 0.01, one-tailed paired Student’s t-test), leading to increased EAR and LAR. These results indicate that hypofractionated treatment may lower the risk of radiation-induced lung cancer. The feasibility of a priori risk estimation was evaluated by integrating the script into the TPS, allowing rapid comparison of SF and HF plans during planning. Full article
Show Figures

Figure 1

11 pages, 740 KiB  
Article
Quality-of-Life Trajectories and Perceived Stress in Women Treated for Uterine Cancer: A Six-Month Prospective Study
by Razvan Betea, Camelia Budisan, Livia Stanga, Maria Cezara Muresan, Zoran Laurentiu Popa, Cosmin Citu, Adrian Ratiu and Veronica Daniela Chiriac
Healthcare 2025, 13(15), 1787; https://doi.org/10.3390/healthcare13151787 - 23 Jul 2025
Viewed by 196
Abstract
Background and Objectives: Uterine cancer is the most common gynaecologic malignancy in developed countries, yet the psychosocial sequelae of treatment are incompletely described. This prospective, single-centre study quantified six-month changes in the quality of life (QoL) and perceived stress in women with [...] Read more.
Background and Objectives: Uterine cancer is the most common gynaecologic malignancy in developed countries, yet the psychosocial sequelae of treatment are incompletely described. This prospective, single-centre study quantified six-month changes in the quality of life (QoL) and perceived stress in women with newly diagnosed uterine cancer and explored clinical moderators of change. Methods: Participants completed four validated self-report questionnaires: the 36-item Short-Form Health Survey (SF-36), the 26-item World Health Organization Quality-of-Life-BREF (WHOQOL-BREF), the 30-item EORTC QLQ-C30 and the 10-item Perceived Stress Scale (PSS-10) before therapy and again six months after surgery ± adjuvant chemoradiation. Subgroup analyses were performed for stage (FIGO I–II vs. III–IV). Results: Mean SF-36 Physical Functioning improved from 58.7 ± 12.1 to 63.1 ± 12.6 (Δ = +4.4 ± 7.3; p = 0.000, d = 0.36). PSS declined from 24.1 ± 5.6 to 20.8 ± 5.4 (Δ = −3.3 ± 5.0; p < 0.001, d = 0.66). The WHOQOL-BREF Physical and Psychological domains rose by 4.4 ± 6.9 and 3.5 ± 7.3 points, respectively (both p < 0.01). EORTC QLQ-C30 Global Health increased 5.1 ± 7.6 points (p < 0.001) with parallel reductions in fatigue (−5.4 ± 9.0) and pain (−4.8 ± 8.6). Advanced-stage patients showed larger reductions in stress (ΔPSS −3.5 ± 2.5 vs. −2.3 ± 2.3; p = 0.036) but similar QoL gains. ΔPSS correlated inversely with ΔWHOQOL Psychological (r = −0.53) and ΔSF-36 Mental Health (r = −0.49) and positively with ΔEORTC Global Health (r = −0.42) (all p < 0.001). Conclusions: Over six months, multimodal uterine cancer treatment was associated with clinically meaningful QoL improvements and moderate stress reduction. Greater stress relief paralleled superior gains in psychological and global health indices, highlighting the importance of integrative survivorship care. Full article
Show Figures

Figure 1

22 pages, 3348 KiB  
Article
Comparison of NeRF- and SfM-Based Methods for Point Cloud Reconstruction for Small-Sized Archaeological Artifacts
by Miguel Ángel Maté-González, Roy Yali, Jesús Rodríguez-Hernández, Enrique González-González and Julián Aguirre de Mata
Remote Sens. 2025, 17(14), 2535; https://doi.org/10.3390/rs17142535 - 21 Jul 2025
Viewed by 337
Abstract
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 [...] Read more.
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 cm, characterized by complex geometries and reflective surfaces that pose challenges for conventional recording methods. To address the limitations of traditional methods without resorting to the high costs associated with laser scanning, this study explores NeRF and GS as cost-effective and efficient alternatives. A comprehensive experimental framework was established, incorporating ground-truth data obtained using a metrological articulated arm and a rigorous quantitative evaluation based on root mean square (RMS) error, Chamfer distance, and point cloud density. The results indicate that while NeRF outperforms GS in terms of geometric fidelity, both techniques still exhibit lower accuracy compared to SfM, particularly in preserving fine geometric details. Nonetheless, NeRF demonstrates strong potential for rapid, high-quality 3D documentation suitable for visualization and dissemination purposes in cultural heritage. These findings highlight both the current capabilities and limitations of neural rendering techniques for archaeological documentation and suggest promising future research directions combining AI-based models with traditional photogrammetric pipelines. Full article
Show Figures

Figure 1

18 pages, 735 KiB  
Article
Assessing the Impact of Potential Confounders on Health-Related Quality of Life and Physical Activity in Patients with Chronic Kidney Disease Treated with Dialysis: A Cross-Sectional Study
by Georgia Paraskeva, Vasiliki Michou, Nikolaos Koutlianos, Dimitra Mameletzi and Evangelia Kouidi
Healthcare 2025, 13(14), 1729; https://doi.org/10.3390/healthcare13141729 - 17 Jul 2025
Viewed by 321
Abstract
Background: Patients with chronic kidney disease (CKD) G5 treated with dialysis (G5D) often experience reduced physical activity levels and impaired health-related quality of life (HRQoL), which are associated with poor clinical outcomes. Understanding the factors that influence these outcomes is crucial for [...] Read more.
Background: Patients with chronic kidney disease (CKD) G5 treated with dialysis (G5D) often experience reduced physical activity levels and impaired health-related quality of life (HRQoL), which are associated with poor clinical outcomes. Understanding the factors that influence these outcomes is crucial for improving patient care. This study aimed to evaluate the levels of physical activity and HRQoL and investigate the influence of potential confounding factors on these outcomes in patients with CKD G5D. Methods: One hundred and twenty-five patients with CKD G5D and 129 healthy controls completed a template with their general demographic and clinical information, followed by the short version of the International Physical Activity Questionnaire (IPAQ). Moreover, for patients with CKD G5D, the kidney disease-targeted version (KDQOL-SF36) was employed, whereas the healthy controls completed the standard SF-36. Results: A total of 59.2% of patients with CKD G5D demonstrated low physical activity levels, with a mean IPAQ score of 1163.38 MET-min/week, which was significantly lower than that of healthy controls (p = 0.002). Spearman’s rho correlation analysis revealed significant associations between KDQOL subscales and variables including sex, age, Charlson Comorbidity Index (CCI), hemodialysis (HD) vintage, educational level, employment status, and IPAQ activity category (p-values < 0.05). In the regression analyses, physical component summary (PCS) scores were significantly predicted by sex (β = 0.180, p = 0.036), CCI (β = 0.239, p = 0.045), and IPAQ total score (β = 0.316, p < 0.001). IPAQ scores were predicted by age (β = –0.303, p = 0.003), HD vintage (β = 0.275, p = 0.012), and PCS (β = 0.343, p = 0.002). Conclusions: The findings demonstrated a statistically significant association between physical activity and HRQoL, underscoring the importance of promoting physical activity among patients with CKD G5D. Additionally, several underexplored sociodemographic and clinical confounders were identified as significant correlates of these outcome measures. Full article
Show Figures

Figure 1

24 pages, 14668 KiB  
Article
Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting
by Dario Billi, Gabriella Caroti and Andrea Piemonte
Sensors 2025, 25(14), 4410; https://doi.org/10.3390/s25144410 - 15 Jul 2025
Viewed by 658
Abstract
This research investigates the metric accuracy of 3D transparent object reconstruction, a task where conventional photogrammetry often fails. The topic is especially relevant in cultural heritage (CH), where accurate digital documentation of glass and transparent artifacts is important. The work proposes a practical [...] Read more.
This research investigates the metric accuracy of 3D transparent object reconstruction, a task where conventional photogrammetry often fails. The topic is especially relevant in cultural heritage (CH), where accurate digital documentation of glass and transparent artifacts is important. The work proposes a practical methodology using existing tools to verify metric accuracy standards. The study compares three methods, conventional photogrammetry, 3D Gaussian splatting (3DGS), and 2D Gaussian splatting (2DGS), to assess their ability to produce complete and metrically reliable 3D models suitable for measurement and geometric analysis. A transparent glass artifact serves as the case study. Results show that 2DGS captures fine surface and internal details with better geometric consistency than 3DGS and photogrammetry. Although 3DGS offers high visual quality, it introduces surface artifacts that affect metric reliability. Photogrammetry fails to reconstruct the object entirely. The study highlights that visual quality does not ensure geometric accuracy, which is critical for measurement applications. In this work, ground truth comparisons confirm that 2DGS offers the best trade-off between accuracy and appearance, despite higher computational demands. These findings suggest extending the experimentation to other sets of images featuring transparent objects, and possibly also reflective ones. Full article
Show Figures

Figure 1

17 pages, 610 KiB  
Review
Three-Dimensional Reconstruction Techniques and the Impact of Lighting Conditions on Reconstruction Quality: A Comprehensive Review
by Dimitar Rangelov, Sierd Waanders, Kars Waanders, Maurice van Keulen and Radoslav Miltchev
Lights 2025, 1(1), 1; https://doi.org/10.3390/lights1010001 - 14 Jul 2025
Viewed by 342
Abstract
Three-dimensional (3D) reconstruction has become a fundamental technology in applications ranging from cultural heritage preservation and robotics to forensics and virtual reality. As these applications grow in complexity and realism, the quality of the reconstructed models becomes increasingly critical. Among the many factors [...] Read more.
Three-dimensional (3D) reconstruction has become a fundamental technology in applications ranging from cultural heritage preservation and robotics to forensics and virtual reality. As these applications grow in complexity and realism, the quality of the reconstructed models becomes increasingly critical. Among the many factors that influence reconstruction accuracy, the lighting conditions at capture time remain one of the most influential, yet widely neglected, variables. This review provides a comprehensive survey of classical and modern 3D reconstruction techniques, including Structure from Motion (SfM), Multi-View Stereo (MVS), Photometric Stereo, and recent neural rendering approaches such as Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS), while critically evaluating their performance under varying illumination conditions. We describe how lighting-induced artifacts such as shadows, reflections, and exposure imbalances compromise the reconstruction quality and how different approaches attempt to mitigate these effects. Furthermore, we uncover fundamental gaps in current research, including the lack of standardized lighting-aware benchmarks and the limited robustness of state-of-the-art algorithms in uncontrolled environments. By synthesizing knowledge across fields, this review aims to gain a deeper understanding of the interplay between lighting and reconstruction and provides research directions for the future that emphasize the need for adaptive, lighting-robust solutions in 3D vision systems. Full article
Show Figures

Figure 1

21 pages, 1682 KiB  
Article
Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems
by Yadong Wang, Shuliang Jia, Mingze Guo, Yan Zhang and Yongjun Wang
Processes 2025, 13(7), 2214; https://doi.org/10.3390/pr13072214 - 10 Jul 2025
Viewed by 371
Abstract
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static [...] Read more.
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static empirical parameters and environmental interference. This study proposes an integrated methodology that combines multi-path airflow analysis with dynamic longitudinal dispersion coefficient correction to enhance the accuracy of air leakage detection. Utilizing sulfur hexafluoride (SF6) as the tracer gas, a phased release protocol with temporal isolation was implemented across five strategic points in a coal mine ventilation network. High-precision detectors (Bruel & Kiaer 1302) and the MIVENA system enabled synchronized data acquisition and 3D network modeling. Theoretical models were dynamically calibrated using field-measured airflow velocities and dispersion coefficients. The results revealed three deviation patterns between simulated and measured tracer peaks: Class A deviation showed 98.5% alignment in single-path scenarios, Class B deviation highlighted localized velocity anomalies from Venturi effects, and Class C deviation identified recirculation vortices due to abrupt cross-sectional changes. Simulation accuracy improved from 70% to over 95% after introducing wind speed and dispersion adjustment coefficients, resolving concealed leakage pathways between critical nodes and key nodes. The study demonstrates that the dynamic correction of dispersion coefficients and multi-path decomposition effectively mitigates errors caused by turbulence and geometric irregularities. This approach provides a robust framework for optimizing ventilation systems, reducing invalid airflow losses, and advancing intelligent ventilation management through real-time monitoring integration. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 1952 KiB  
Article
Feasibility and Safety of Early Cardiac Rehabilitation Using Remote Electrocardiogram Monitoring in Patients with Cardiac Surgery: A Pilot Study
by Yeon Mi Kim, Bo Ryun Kim, Sung Bom Pyun, Jae Seung Jung, Hee Jung Kim and Ho Sung Son
J. Clin. Med. 2025, 14(14), 4887; https://doi.org/10.3390/jcm14144887 - 10 Jul 2025
Viewed by 404
Abstract
Purpose: We aimed to evaluate the safety and feasibility of a remote electrocardiogram (ECG) monitoring-based cardiac rehabilitation (CR) program during an early postoperative period in patients who underwent cardiac surgery. Methods: Five days after cardiac surgery, patients were referred to a [...] Read more.
Purpose: We aimed to evaluate the safety and feasibility of a remote electrocardiogram (ECG) monitoring-based cardiac rehabilitation (CR) program during an early postoperative period in patients who underwent cardiac surgery. Methods: Five days after cardiac surgery, patients were referred to a CR department and participated in a low-intensity inpatient CR program while wearing an ECG monitoring device. Prior to discharge, the patients underwent a cardiopulmonary exercise test (CPET) and squat endurance test to determine the suitable intensity and target heart rate (HR) for home-based CR (HBCR). During 2 weeks of the HBCR period after discharge, patients participated in aerobic and resistance exercises. Electrocardiogram data were transmitted to a cloud, where researchers closely monitored them through a website and provided feedback to the patients via telephone calls. Grip strength (GS), 6 min walk distance (6 MWD), EuroQol-5 dimension (EQ-5D), short-form 36-item health survey (SF-36), and Korean Activity Scale/Index (KASI) were measured at three different time points: 5 d post-surgery (T1), pre-discharge (T2), and 2 weeks after discharge (T3). Squat endurance tests and CPET were performed only at T2 and T3. Result: Sixteen patients completed the study, seven (44%) of whom underwent coronary artery bypass graft surgery (CABG). During the study period between T2 and T3, peak VO2 improved from 12.39 ± 0.57 to 17.93 ± 1.25 mL/kg/min (p < 0.01). The squat endurance test improved from 16.69 ± 2.31 to 21.81 ± 2.31 (p < 0.01). In a comparison of values of time points between T1 and T3, the GS improved from 28.30 ± 1.66 to 30.40 ± 1.70 kg (p = 0.02) and 6 MWD increased from 249.33 ± 20.92 to 387.02 ± 22.77 m (p < 0.01). The EQ-5D and SF-36 improved from 0.59 ± 0.03 to 0.82 ± 0.03 (p < 0.01) and from 83.99 ± 3.40 to 122.82 ± 6.06 (p < 0.01), and KASI improved from 5.44 ± 0.58 to 26.11 ± 2.70 (p < 0.01). In a subgroup analysis, the CABG group demonstrated a greater increase in 6 MWD (102.29 m, p < 0.01) than the non-CABG group. At the end of the study, 75% of the patients expressed satisfaction with the early CR program guided by remote ECG monitoring. Conclusions: Our findings suggest that early remote ECG monitoring-based CR programs are safe and feasible for patients who have undergone cardiac surgery. Additionally, the program improved aerobic capacity, functional status, and quality of life. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

16 pages, 3927 KiB  
Article
DFT Exploration of a Pd-Doped InSe Monolayer as a Novel Gas Sensing Candidate upon SF6 Decomposition: SO2, SOF2, and SO2F2
by Xu Yang, Hao Cui, Zhongchao Liu and Yun Liu
Sensors 2025, 25(13), 4156; https://doi.org/10.3390/s25134156 - 3 Jul 2025
Viewed by 377
Abstract
Monitoring SF6 decomposition gases has emerged as a vital diagnostic technique for evaluating insulation conditions and identifying faults in SF6-based electrical equipment. This study comprehensively explores the adsorption properties and sensing capabilities of a Pd-doped InSe (Pd-InSe) monolayer for SF [...] Read more.
Monitoring SF6 decomposition gases has emerged as a vital diagnostic technique for evaluating insulation conditions and identifying faults in SF6-based electrical equipment. This study comprehensively explores the adsorption properties and sensing capabilities of a Pd-doped InSe (Pd-InSe) monolayer for SF6 decomposition gases, including SO2, SOF2, and SO2F2, through density functional theory calculations. The Pd-InSe monolayer is constructed by substituting one Se atom with a Pd atom in the pristine InSe structure. Then, the Pd doping effect on the InSe monolayer and the adsorption behaviors of the Pd-InSe monolayer for three gases are thoroughly examined. The adsorption configurations, charge density differences, and electron localization functions are scrutinized to elucidate the gas adsorption mechanisms of the Pd-InSe monolayer; and the band structures, along with the density of states, are analyzed to gain insights into the resistive gas sensing mechanisms for detecting these three gases. Finally, the temperature-dependent recovery characteristics are evaluated to assess the reusability of the monolayer. These findings not only underscore the potential of the Pd-InSe monolayer for sensing SF6 decomposition gases but also open new avenues for the development of next-generation 2D materials in gas sensing applications within the field of electrical engineering. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 6136 KiB  
Article
A ROS-Based Online System for 3D Gaussian Splatting Optimization: Flexible Frontend Integration and Real-Time Refinement
by Li’an Wang, Jian Xu, Xuan An, Yujie Ji, Yuxuan Wu and Zhaoyuan Ma
Sensors 2025, 25(13), 4151; https://doi.org/10.3390/s25134151 - 3 Jul 2025
Viewed by 553
Abstract
The 3D Gaussian splatting technique demonstrates significant efficiency advantages in real-time scene reconstruction. However, when its initialization process relies on traditional SfM methods (such as COLMAP), there are obvious bottlenecks, such as high computational resource consumption, as well as the decoupling problem between [...] Read more.
The 3D Gaussian splatting technique demonstrates significant efficiency advantages in real-time scene reconstruction. However, when its initialization process relies on traditional SfM methods (such as COLMAP), there are obvious bottlenecks, such as high computational resource consumption, as well as the decoupling problem between camera pose optimization and map construction. This paper proposes an online 3DGS optimization system based on ROS. Through the design of a loose-coupling architecture, it realizes real-time data interaction between the frontend SfM/SLAM module and backend 3DGS optimization. Using ROS as a middleware, this system can access the keyframe poses and point-cloud data generated by any frontend algorithms (such as ORB-SLAM, COLMAP, etc.). With the help of a dynamic sliding-window strategy and a rendering-quality loss function that combines L1 and SSIM, it achieves online optimization of the 3DGS map. The experimental data shows that compared with the traditional COLMAP-3DGS process, this system reduces the initialization time by 90% and achieves an average PSNR improvement of 1.9 dB on the TUM-RGBD, Tanks and Temples, and KITTI datasets. Full article
Show Figures

Figure 1

20 pages, 4400 KiB  
Article
Fast Intrinsic–Extrinsic Calibration for Pose-Only Structure-from-Motion
by Xiaoyang Tian, Yangbing Ge, Zhen Tan, Xieyuanli Chen, Ming Li and Dewen Hu
Remote Sens. 2025, 17(13), 2247; https://doi.org/10.3390/rs17132247 - 30 Jun 2025
Viewed by 404
Abstract
Structure-from-motion (SfM) is a foundational technology that facilitates 3D scene understanding and visual localization. However, bundle adjustment (BA)-based SfM is usually very time-consuming, especially when dealing with numerous unknown focal length cameras. To address these limitations, we proposed a novel SfM system based [...] Read more.
Structure-from-motion (SfM) is a foundational technology that facilitates 3D scene understanding and visual localization. However, bundle adjustment (BA)-based SfM is usually very time-consuming, especially when dealing with numerous unknown focal length cameras. To address these limitations, we proposed a novel SfM system based on pose-only adjustment (PA) for intrinsic and extrinsic joint optimization to accelerate computing. Firstly, we propose a base frame selection method based on depth uncertainty, which integrates the focal length and parallax angle under a multi-camera system to provide more stable depth estimation for subsequent optimization. We explicitly derive a global PA of joint intrinsic and extrinsic parameters to reduce the high dimensionality of the parameter space and deal with cameras with unknown focal lengths, improving the efficiency of optimization. Finally, a novel pose-only re-triangulation (PORT) mechanism is proposed for enhanced reconstruction completeness by recovering failed triangulations from incomplete point tracks. The proposed framework has been demonstrated to be both faster and comparable in accuracy to state-of-the-art SfM systems, as evidenced by public benchmarking and analysis of the visitor photo dataset. Full article
Show Figures

Figure 1

29 pages, 5173 KiB  
Article
A Quantitative Evaluation of UAV Flight Parameters for SfM-Based 3D Reconstruction of Buildings
by Inho Jo, Yunku Lee, Namhyuk Ham, Juhyung Kim and Jae-Jun Kim
Appl. Sci. 2025, 15(13), 7196; https://doi.org/10.3390/app15137196 - 26 Jun 2025
Viewed by 314
Abstract
This study aims to address the critical lack of standardized guidelines for unmanned aerial vehicle (UAV) image acquisition strategies utilizing structure-from-motion (SfM) by focusing on 3D building exterior modeling. A comprehensive experimental analysis was conducted to systematically investigate and quantitatively evaluate the effects [...] Read more.
This study aims to address the critical lack of standardized guidelines for unmanned aerial vehicle (UAV) image acquisition strategies utilizing structure-from-motion (SfM) by focusing on 3D building exterior modeling. A comprehensive experimental analysis was conducted to systematically investigate and quantitatively evaluate the effects of various shooting patterns and parameters on SfM reconstruction quality and processing efficiency. This study implemented a systematic experimental framework to test various UAV flight patterns, including circular, surface, and aerial configurations. Under controlled environmental conditions on representative building structures, key variables were manipulated, and all collected data were processed through a consistent SfM pipeline based on the SIFT algorithm. Quantitative evaluation results using various analytical methodologies (multiple regression analysis, Kruskal–Wallis test, random forest feature importance, principal component analysis including K-means clustering, response surface methodology (RSM), preference ranking technique based on similarity to the ideal solution (TOPSIS), and Pareto optimization) revealed that the basic shooting pattern ‘type’ has a significant and statistically significant influence on all major SfM performance metrics (reprojection error, final point count, computation time, reconstruction completeness; Kruskal–Wallis p < 0.001). Additionally, within the patterns, clear parameter sensitivity and complex nonlinear relationships were identified (e.g., overlapping variables play a decisive role in determining the point count and completeness of surface patterns, with an adjusted R2 ≈ 0.70; the results of circular patterns are strongly influenced by the interaction between radius and tilt angle on reprojection error and point count, with an adjusted R2 ≈ 0.80). Furthermore, composite pattern analysis using TOPSIS identified excellent combinations that balanced multiple criteria, and Pareto optimization explicitly quantified the inherent trade-offs between conflicting objectives (e.g., time vs. accuracy, number of points vs. completeness). In conclusion, this study clearly demonstrates that hierarchical strategic approaches are essential for optimizing UAV-SfM data collection. Additionally, it provides important empirical data, a validated methodological framework, and specific quantitative guidelines for standardizing UAV data collection workflows, thereby improving existing empirical or case-specific approaches. Full article
(This article belongs to the Special Issue Applications in Computer Vision and Image Processing)
Show Figures

Figure 1

13 pages, 218 KiB  
Article
Stories from the Margins: The Symbiotic Relationship Between Talent Development and Youth Development in Sport
by Meredith A. Whitley, Kevin Flores Garnelo, Denisse Gonzalez, Lizeth Velazquez and Jaime J. Oliveros
Youth 2025, 5(3), 63; https://doi.org/10.3390/youth5030063 - 25 Jun 2025
Viewed by 245
Abstract
All too often, the Sport for Development (SfD) field minimizes talent development and competition in lieu of youth development. In this article, we deconstruct assumptions about what is important for young people who are marginalized to learn and experience as they grow up, [...] Read more.
All too often, the Sport for Development (SfD) field minimizes talent development and competition in lieu of youth development. In this article, we deconstruct assumptions about what is important for young people who are marginalized to learn and experience as they grow up, along with the role of talent development and competition in an SfD intervention, by centering their stories. The young people featured in these stories experience marginalization because of their race, ethnicity, and parents’ country of origin (outside the United States), among other factors that play a role in their everyday lives, and yet their stories highlight the symbiotic relationship between talent development and youth development. Full article
(This article belongs to the Special Issue Critical Approaches to Youth Development through Sport)
Back to TopTop