Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = SERPINE1 gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1293 KiB  
Article
Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas
by Isidro Machado, Raquel López-Reig, Eduardo Giner, Antonio Fernández-Serra, Celia Requena, Beatriz Llombart, Francisco Giner, Julia Cruz, Victor Traves, Javier Lavernia, Antonio Llombart-Bosch and José Antonio López Guerrero
Cancers 2025, 17(15), 2551; https://doi.org/10.3390/cancers17152551 - 1 Aug 2025
Viewed by 185
Abstract
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related [...] Read more.
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related prognostic model—termed the AS score—using data from two independent sarcoma cohorts. Methods: A prognostic model was developed using a previously characterized cohort of 25 angiosarcoma samples. Candidate genes were identified via the Maxstat algorithm (Maxstat v0.7-25 for R), combined with log-rank testing. The AS score was then computed by weighing normalized gene expression levels according to Cox regression coefficients. For external validation, transcriptomic data from TCGA Sarcoma cohort (n = 253) were analyzed. The Immunoscore—which reflects the tumor immune microenvironment—was inferred using the ESTIMATE package (v1.0.13) in R. All statistical analyses were performed in RStudio (v 4.0.3). Results: Four genes—IGF1R, MAP2K1, SERPINE1, and TCF12—were ultimately selected to construct the prognostic model. The resulting AS score enabled the classification of angiosarcoma cases into two prognostically distinct groups (p = 0.00012). Cases with high AS score values, which included both cutaneous and non-cutaneous forms, exhibited significantly poorer outcomes, whereas cases with low AS scores were predominantly cutaneous. A significant association was observed between the AS score and the Immunoscore (p = 0.025), with higher Immunoscore values found in high-AS score tumors. Validation using TCGA sarcoma cohort confirmed the prognostic value of both the AS score (p = 0.0066) and the Immunoscore (p = 0.0029), with a strong correlation between their continuous values (p = 2.9 × 10−8). Further survival analysis, integrating categorized scores into four groups, demonstrated robust prognostic significance (p = 0.00021). Notably, in tumors with a low Immunoscore, AS score stratification was not prognostic. In contrast, among cases with a high Immunoscore, the AS score effectively distinguished outcomes (p < 0.0001), identifying a subgroup with poor prognosis but potential sensitivity to immunotherapy. Conclusions: This combined classification using the AS score and Immunoscore has prognostic relevance in sarcoma, suggesting that angiosarcomas with an immunologically active microenvironment (high Immunoscore) and poor prognosis (high AS score) may be prime candidates for immunotherapy and this approach warrants prospective validation. Full article
(This article belongs to the Special Issue Genomics and Transcriptomics in Sarcoma)
Show Figures

Figure 1

19 pages, 5038 KiB  
Article
A Novel Hypoxia-Immune Signature for Gastric Cancer Prognosis and Immunotherapy: Insights from Bulk and Single-Cell RNA-Seq
by Mai Hanh Nguyen, Hoang Dang Khoa Ta, Doan Phuong Quy Nguyen, Viet Huan Le and Nguyen Quoc Khanh Le
Curr. Issues Mol. Biol. 2025, 47(7), 552; https://doi.org/10.3390/cimb47070552 - 16 Jul 2025
Viewed by 376
Abstract
Background: Hypoxia and immune components significantly shape the tumor microenvironment and influence prognosis and immunotherapy response in gastric cancer (GC). This study aimed to develop hypoxia- and immune-related gene signatures for prognostic evaluation in GC. Methods: Transcriptomic data from TCGA-STAD were [...] Read more.
Background: Hypoxia and immune components significantly shape the tumor microenvironment and influence prognosis and immunotherapy response in gastric cancer (GC). This study aimed to develop hypoxia- and immune-related gene signatures for prognostic evaluation in GC. Methods: Transcriptomic data from TCGA-STAD were integrated with hypoxia- and immune-related genes from InnateDB and MSigDB. A prognostic gene signature was constructed using Cox regression analyses and validated on an independent GSE84437 cohort and single-cell RNA dataset. We further analyzed immune cell infiltration, molecular characteristics of different risk groups, and their association with immunotherapy response. Single-cell RNA-seq data from the TISCH database were used to explore gene expression patterns across cell types. Results: Five genes (TGFB3, INHA, SERPINE1, GPC3, SRPX) were identified. The risk score effectively stratified patients by prognosis, with the high-risk group showing lower overall survival and lower T-cell expression. The gene signature had an association with immune suppression, ARID1A mutation, EMT features, and poorer response to immunotherapy. Gene signature, especially SRPX was enriched in fibroblasts. Conclusions: We developed a robust hypoxia- and immune-related gene signature that predicts prognosis and may help guide immunotherapy strategies for GC patients. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era, 2nd Edition)
Show Figures

Figure 1

15 pages, 2731 KiB  
Article
Brain and CSF Alzheimer’s Biomarkers Are Associated with SERPINE1 Gene Expression
by Cynthia Picard, Henrik Zetterberg, Kaj Blennow, Sylvia Villeneuve, Judes Poirier and on behalf of the PREVENT-AD Research Group
Genes 2025, 16(7), 818; https://doi.org/10.3390/genes16070818 - 12 Jul 2025
Viewed by 438
Abstract
Background: SERPINE1, also known as plasminogen activator inhibitor (PAI), has been proposed as a potential blood biomarker for the early detection and diagnosis of Alzheimer’s disease (AD). Expanding on previous studies, this research contrasted SERPINE1 levels in CSF and brain tissue of AD [...] Read more.
Background: SERPINE1, also known as plasminogen activator inhibitor (PAI), has been proposed as a potential blood biomarker for the early detection and diagnosis of Alzheimer’s disease (AD). Expanding on previous studies, this research contrasted SERPINE1 levels in CSF and brain tissue of AD patients and those at risk for AD with established AD biomarkers. Methods: Utilizing OLINK and immunoassay methods, CSF SERPINE1 protein levels were quantified across two separate cohorts: PREVENT-AD and ADNI. Microarray and RNAseq were used to measure tissue SERPINE1 mRNA levels in two separate cohorts: the Douglas-Bell Canada Brain Bank and the Mayo Clinic Brain Bank. Results: At the pre-clinical stage, elevated CSF levels of pTau, tTau and synaptic markers, alongside reduced hippocampal volume, correlate with CSF SERPINE1 levels. Elevated cortical SERPINE1 mRNA levels in autopsy-confirmed AD show weak correlation with regional plaques and tangles densities, but strong correlation with Braak staging. Conclusions: CSF SERPINE1 levels can be used as an early biomarker for the detection of pathological changes associated with AD. Higher SERPINE1 levels correlate more strongly with tau pathology than with amyloid formation or deposition. Full article
(This article belongs to the Special Issue Genetics and Treatment in Neurodegenerative Diseases)
Show Figures

Figure 1

21 pages, 4714 KiB  
Article
Morphotype-Specific Antifungal Defense in Cacopsylla chinensis Arises from Metabolic and Immune Network Restructuring
by Jiayue Ji, Xin Gao, Zengli Hu, Ruiyan Ma and Longlong Zhao
Insects 2025, 16(5), 541; https://doi.org/10.3390/insects16050541 - 20 May 2025
Viewed by 810
Abstract
Pear psylla (Cacopsylla chinensis), a major pear tree pest widely distributed in China, is increasingly affecting the productivity of orchards. This species exhibits seasonal polyphenism with two distinct forms, namely, a summer form and a winter form. Through topically applying Beauveria [...] Read more.
Pear psylla (Cacopsylla chinensis), a major pear tree pest widely distributed in China, is increasingly affecting the productivity of orchards. This species exhibits seasonal polyphenism with two distinct forms, namely, a summer form and a winter form. Through topically applying Beauveria bassiana conidial suspensions to the abdominal cuticle of C. chinensis, we demonstrated that the entomopathogenic fungus B. bassiana exhibits significant yet phenotypically divergent virulence against these two forms. Using PacBio SMRT sequencing and Illumina RNA-seq, we analyzed transcriptomic changes post-infection, revealing form-specific immune responses, with 18,232 and 5027 differentially expressed genes identified in summer- and winter-form pear psylla, respectively, and a total of 3715 DEGs shared between the two seasonal phenotypes. In summer-form individuals, B. bassiana infection disrupted oxidative phosphorylation and downregulated immune recognition genes, cellular immune-related genes, and signaling genes, along with the upregulation of the immune inhibitor serpin, indicating immunosuppression. Conversely, in winter-form individuals, immune-related genes and glycolytic rate-limiting enzymes were upregulated after infection, suggesting that the winter-form immune system normally responds to B. bassiana infection and supports efficient defense through metabolic reprogramming to fuel energy-demanding defenses. These findings advance our understanding of C. chinensis/B. bassiana interactions, providing a basis for elucidating immune regulation in seasonally polymorphic insects. The results also inform strategies to optimize B. bassiana-based biocontrol, contributing to sustainable pear psylla management. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

11 pages, 193 KiB  
Article
Exploring the Potential Impact of SERPINE Gene Expression in Cumulus Cells During Fertility Treatments: A Single Center Study
by Sofoklis Stavros, Anastasios Potiris, Despoina Mavrogianni, Efthalia Moustakli, Kyriaki Tsiorou, Athanasios Zikopoulos, Nikolaos Kathopoulis, Charalampos Theofanakis, Dimitrios Loutradis, Ekaterini Domali and Peter Drakakis
Clin. Pract. 2025, 15(5), 83; https://doi.org/10.3390/clinpract15050083 - 23 Apr 2025
Viewed by 418
Abstract
Background/Objectives: Cumulus cells have been proposed to be indicators of oocyte quality. In this study, oocyte cumulus cells were analyzed for SERPINE gene expression. High SERPINE gene expression in cumulus cells is associated with reduced oocyte maturity. However, high mRNA levels in [...] Read more.
Background/Objectives: Cumulus cells have been proposed to be indicators of oocyte quality. In this study, oocyte cumulus cells were analyzed for SERPINE gene expression. High SERPINE gene expression in cumulus cells is associated with reduced oocyte maturity. However, high mRNA levels in granulosa cells are associated with follicles that result in pregnancy. This study aimed to evaluate SERPINE gene expression in cumulus cells across different ovarian stimulation protocols and its potential impact on follicle number, oocyte maturity, and embryo quality. Methods: The sample of the study consisted of 93 infertile women that underwent a five-day fixed antagonist protocol. Detection of SERPINE gene expression levels in cumulus cells was performed by extracting and isolating the total RNA produced in granulosa cells, and conducting cDNA synthesis and Real-Time Polymerase Chain Reaction. Results: The SERPINE gene expression in CCs was assessed in 71 samples. The SERPINE gene expression levels in CCs were categorized based on the ΔCp values. Most participants (65.9%) exhibited a high expression of the SERPINE gene, with ΔCp values greater than 2. Higher gene expression resulted in a higher number of follicles. However, no statistically significant results were observed regarding the number of follicles and the number of embryos. Conclusions: The study results provide insights into the expression patterns of the SERPINE gene in CCs and underscore the complexity of fertility-related biomarkers and the need for further investigation. SERPINE expression appears to be associated with follicle count, while its role in predicting oocyte quality and pregnancy success remains inconclusive. Full article
44 pages, 19008 KiB  
Article
Mitigating Diabetic Cardiomyopathy: The Synergistic Potential of Sea Buckthorn and Metformin Explored via Bioinformatics and Chemoinformatics
by Kamran Safavi, Navid Abedpoor, Fatemeh Hajibabaie and Elina Kaviani
Biology 2025, 14(4), 361; https://doi.org/10.3390/biology14040361 - 31 Mar 2025
Viewed by 1219
Abstract
Diabetic cardiomyopathy (DCM), a critical complication of type 2 diabetes mellitus (T2DM), is marked by metabolic dysfunction, oxidative stress, and chronic inflammation, ultimately progressing to heart failure. This study investigated the synergistic therapeutic potential of Hippophae rhamnoides L. (sea buckthorn, SBU) extract and [...] Read more.
Diabetic cardiomyopathy (DCM), a critical complication of type 2 diabetes mellitus (T2DM), is marked by metabolic dysfunction, oxidative stress, and chronic inflammation, ultimately progressing to heart failure. This study investigated the synergistic therapeutic potential of Hippophae rhamnoides L. (sea buckthorn, SBU) extract and metformin in a mouse model of T2DM-induced DCM. T2DM was induced using a 45% high-fat-AGEs-enriched diet, followed by treatment with SBU, metformin, or their combination. Treatment effects were monitored through bioinformatic analysis, chemoinformatic prediction, behavioral testing, biochemical assays, histopathological evaluations and gene expression profiles. Based on bioinformatic analysis, we identified key hub genes involved in the diabetic cardiomyopathy including SERPINE1, NRG1, MYH11, PTH, NR4A2, NRF2, PGC1α, GPX4, ATF1, ASCL2, NOX1, NLRP3, CCK8, COX2, CCL2, PTGS2, EGFR, and oncostatin, which are pivotal in modulating the ferroptosis pathway. Furthermore, the expression of long non-coding RNAs (lncRNAs) NEAT1 and MALAT1, critical regulators of inflammation and cell death, was effectively downregulated, correlating with decreased levels of the pro-inflammatory marker oncostatin. The combined therapy significantly improved glucose regulation, reduced systemic inflammation and protected the heart from oxidative damage. Histopathological analysis revealed notable reductions in cardiac necrosis and fibrosis. Particularly, the combination therapy of SBU and metformin demonstrated a synergistic effect, surpassing the benefits of individual treatments in preventing cardiac damage. These findings highlight the potential of integrating SBU with metformin as a novel therapeutic strategy for managing DCM by targeting both metabolic and ferroptosis-related pathways. This dual intervention opens promising avenues for future clinical applications in diabetic heart disease management, offering a comprehensive approach to mitigating the progression of DCM. Full article
(This article belongs to the Special Issue Ferroptosis: Mechanisms and Human Disease)
Show Figures

Figure 1

16 pages, 297 KiB  
Article
Genetic Variants in RASSF1 (rs2073498), SERPINE1 (rs1799889), and EFNA1 (rs12904) Are Associated with Susceptibility in Mexican Patients with Colorectal Cancer: Clinical Associations and Their Analysis In Silico
by César de Jesús Tovar-Jácome, Clara Ibet Juárez-Vázquez, Martha Patricia Gallegos-Arreola, José Elías García-Ortiz, María Eugenia Marín-Contreras, Tomás Daniel Pineda-Razo, Ignacio Mariscal-Ramírez, Oscar Durán-Anguiano, Aldo Antonio Alcaraz-Wong, Rubria Alicia González-Sánchez, Marina Lizbeth Mundaca-Rodríguez, Miriam Yadira Godínez-Rodríguez, Marlín Corona-Padilla and Mónica Alejandra Rosales-Reynoso
Genes 2025, 16(2), 223; https://doi.org/10.3390/genes16020223 - 15 Feb 2025
Viewed by 900
Abstract
Background/Objectives: Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Variants in genes that regulate processes such as apoptosis and angiogenesis play a significant role in CRC. The objective of this study is to investigate the possible association between RASSF1 [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Variants in genes that regulate processes such as apoptosis and angiogenesis play a significant role in CRC. The objective of this study is to investigate the possible association between RASSF1 (rs2073498), SERPINE1 (rs1799889), EFNA1 (rs12904), and RAD51 (rs1801320) variants and clinicopathological characteristics of Mexican patients with CRC. Methods: DNA of peripheral blood samples was obtained from 631 individuals (349 patients and 282 control individuals). The RASSF1 (rs2073498), SERPINE1 (rs1799889), EFNA1 (rs12904), and RAD51 (rs1801320) variants were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The association was calculated using the odds ratio (OR) test. p-values were adjusted by the Bonferroni test (0.0125). In silico analysis programs, including Combined Annotation Dependent Depletion (CADD), Polymorphism Phenotyping-2 (PolyPhen-2), and Gene Expression Profiling Interactive Analysis (GEPIA), were conducted to predict the functional impact of these variants. Results: Patients carrying the G/A genotype of the RASSF1 (rs2073498) variant showed an association with CRC characteristics, including TNM stages and tumor location (OR > 2.5, p = 0.001). Regarding the SERPINE1 (rs1799889) variant, patients carrying the 5G/4G genotype showed an association between TNM stages and tumor location in the rectum (OR > 1.5, p ≤ 0.05). Patients with the G/G genotype for the EFNA1 (rs12904) variant showed an association with TNM stages and rectal tumor location (OR > 2.0, p = 0.001). The RAD51 (rs1801320) variant had no association with colorectal cancer. Conclusions: RASSF1 (rs2073498), SERPINE1 (rs1799889), and EFNA1 (rs12904) variants significantly influence colorectal cancer risk. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
20 pages, 7221 KiB  
Article
Identification of Potential Therapeutic Targets Against Anthrax-Toxin-Induced Liver and Heart Damage
by Lihong Wu, Yanping Chen, Yongyong Yan, Haiyan Wang, Cynthia D. Guy, John Carney, Carla L. Moreno, Anaisa Quintanilla-Arteaga, Fernando Monsivais, Zhichao Zheng and Mingtao Zeng
Toxins 2025, 17(2), 54; https://doi.org/10.3390/toxins17020054 - 24 Jan 2025
Viewed by 1329
Abstract
Anthrax represents a disease resulting from infection by toxin-secreting bacteria, Bacillus anthracis. This research aimed to identify new therapeutic targets to combat anthrax. We performed assays to assess cell viability, apoptosis, glycogen consumption, and compound uptake and release in hepatocytes and cardiomyocytes [...] Read more.
Anthrax represents a disease resulting from infection by toxin-secreting bacteria, Bacillus anthracis. This research aimed to identify new therapeutic targets to combat anthrax. We performed assays to assess cell viability, apoptosis, glycogen consumption, and compound uptake and release in hepatocytes and cardiomyocytes responding to anthrax toxins. Microarray analysis was carried out to identify the genes potentially involved in toxin-induced toxicity. Knockdown experiments were performed to validate the contributions of the identified genes. Our study showed that anthrax edema toxin (EdTx) and lethal toxin (LeTx) induced lethal damage in mouse liver and heart, respectively. Microarray assays showed that 218 genes were potentially involved in EdTx-mediated toxicity, and 18 genes were potentially associated with LeTx-mediated toxicity. Among these genes, the knockdown of Rgs1, Hcar2, Fosl2, Hcar2, Cxcl2, and Cxcl3 protected primary hepatocytes from EdTx-induced cytotoxicity. Plasminogen activator inhibitor 1 (PAI-1)-encoding Serpine1 constituted the most significantly upregulated gene in response to LeTx treatment in mouse liver. PAI-1 knockout mouse models had a higher tolerance to LeTx compared with wild-type counterparts, suggesting that PAI-1 is essential for LeTx-induced toxicity and might represent a therapeutic target in LeTx-induced tissue damage. These results provide potential therapeutic targets for combating anthrax-toxin-induced liver and heart damage. Full article
Show Figures

Graphical abstract

20 pages, 3086 KiB  
Article
Molecular and Functional Analysis of TLR 1, 2 and 6 in Peripheral Blood Monocytes of Patients with Schizophrenia: A Pilot Study
by Carlo E. Sotelo-Ramírez, Marcela Valdés-Tovar, Julio Uriel Zaragoza-Hoyos, Leonardo Ortiz-López, Jesús Argueta, Mauricio Rosel-Vales, Roxana U. Miranda-Labra and Beatriz Camarena
Int. J. Mol. Sci. 2025, 26(3), 926; https://doi.org/10.3390/ijms26030926 - 23 Jan 2025
Viewed by 1063
Abstract
Schizophrenia (SZ) is a chronic disabling mental disorder with high heritability, and several immune-regulating genes have been implicated in its pathophysiology In this study, we investigated the expression of Toll-like receptors (TLRs) 1, 2, and 6 in peripheral blood monocytes from SZ patients [...] Read more.
Schizophrenia (SZ) is a chronic disabling mental disorder with high heritability, and several immune-regulating genes have been implicated in its pathophysiology In this study, we investigated the expression of Toll-like receptors (TLRs) 1, 2, and 6 in peripheral blood monocytes from SZ patients and healthy control subjects (HCSs) in the Mexican population, focusing on specific SZ-associated gene variants. Gene expressions were assessed by qPCR, and protein expression was measured using flow cytometry. The secretory profiles of MALP2-stimulated monocytes were evaluated through immunoproteomic arrays. Our results indicate that patients with SZ carrying the rs4833093/TLR1 GG genotype exhibited significantly lower TLR1 gene expression compared to TT carriers. Notably, HCSs with the TT genotype showed markedly higher TLR1 protein expression, while all patients with SZ exhibited significantly reduced protein levels regardless of genotype. Furthermore, monocytes from patients with SZ displayed altered secretion profiles upon TLR stimulation, with significant elevations in IL-18, uPAR, angiopoietin-2, and serpin E1, alongside reductions in MCP-1, IL-17A, IL-24, MIF, and myeloperoxidase compared to HCSs. These findings suggest a dysfunctional TLR-mediated innate immune response in SZ. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Schizophrenia and Novel Treatment Targets)
Show Figures

Figure 1

15 pages, 3424 KiB  
Article
Expressions of Immune Prophenoloxidase (proPO) System-Related Genes Under Oxidative Stress in the Gonads and Stomach of the Mud Crab (Macrophthalmus japonicus) Exposed to Endocrine-Disrupting Chemicals
by Ji-Hoon Kim, Kiyun Park, Won-Seok Kim and Ihn-Sil Kwak
Antioxidants 2024, 13(12), 1433; https://doi.org/10.3390/antiox13121433 - 21 Nov 2024
Cited by 1 | Viewed by 1483
Abstract
Endocrine-disrupting chemicals (EDCs) significantly damage biological systems related to reproductive, neurological, and metabolic functions. Approximately 1000 chemicals are known to possess endocrine-acting properties, including bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP). This study primarily focuses on the potential effects of EDCs on the [...] Read more.
Endocrine-disrupting chemicals (EDCs) significantly damage biological systems related to reproductive, neurological, and metabolic functions. Approximately 1000 chemicals are known to possess endocrine-acting properties, including bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP). This study primarily focuses on the potential effects of EDCs on the transcriptional levels of innate immune prophenoloxidase (proPO) system-related genes under oxidative stress in the gonads and stomach of the mud crab Macrophthalmus japonicus, an indicator species for assessing coastal benthic environments, when exposed to 1 µg L−1, 10 µg L−1, and 30 µg L−1 BPA or DEHP. After EDC exposure, the expression of lipopolysaccharide and β-1,3-glucan-binding protein (LGBP), a pattern recognition protein that activates the proPO system, was upregulated in the stomach of M. japonicus, whereas LGBP gene expression was downregulated in the gonads. In the gonads, which is a reproductive organ, EDC exposure mainly induced the transcriptional upregulation of trypsin-like serine protease (Tryp) at relatively low concentrations. In the stomach, which is a digestive organ, LGBP expression was upregulated at relatively low concentrations of EDCs over 7 days, whereas all proPO system-related genes (LGBP, Tryp, serine protease inhibitor (Serpin), and peroxinectin (PE)) responded to all concentrations of EDCs. These results suggest that the antioxidant and immune defense responses of the proPO system to EDC toxicity may vary, causing different degrees of damage depending on the tissue type in the mud crab. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Environmental Toxicity)
Show Figures

Figure 1

16 pages, 2423 KiB  
Article
Characterization of Serpin Family Genes in Three Rice Planthopper Species and Their Expression Profiles in Response to Metarhizium Infection
by Ruonan Zhang, Zichun Zhong, Liyan He, Hongxin Wu, Liuyan He, Yujing Guo, Haoming Wu, Xiaoxia Xu, Fengliang Jin and Rui Pang
Agronomy 2024, 14(11), 2630; https://doi.org/10.3390/agronomy14112630 - 7 Nov 2024
Viewed by 1268
Abstract
Rice planthoppers, including Nilaparvata lugens, Sogatella furcifera, and Laodelphax striatellus, are major agricultural pests. Serpins, which function as serine protease inhibitors, play a pivotal role in the immune systems of these insects, especially within the Toll signaling pathway and the [...] Read more.
Rice planthoppers, including Nilaparvata lugens, Sogatella furcifera, and Laodelphax striatellus, are major agricultural pests. Serpins, which function as serine protease inhibitors, play a pivotal role in the immune systems of these insects, especially within the Toll signaling pathway and the prophenoloxidase (PPO) cascade. This study presents a comparative analysis of serpin genes among these species, highlighting their roles in immunity and development. Utilizing genomic and bioinformatics approaches, we identified 11, 11, and 14 serpin genes in N. lugens, S. furcifera, and L. striatellus, respectively. Phylogenetic analysis revealed a close evolutionary relationship between these serpin genes and Bombyx mori BmSerpins, emphasizing the functional diversity of the serpin family. Structural analysis confirmed the presence of the reactive center loop (RCL) in all serpin proteins, with the Serpin7 subfamily showing a unique dual RCL configuration. Expression profiling showed species-specific serpin expression patterns across different life stages and adult tissues. Moreover, transcriptional analysis of serpin genes in the three planthoppers following Metarhizium infection uncovered distinct immune regulatory patterns two days post-infection. Notably, the expression of NlSerpin2-2/6, SfSerpin4/6/7-1, and LsSerpin4/5-2/6 was upregulated post-infection, potentially enhancing antifungal capabilities. In contrast, the expressions of NlSerpin1/7-1/9 and LsSerpin1/2/3/8/13 were downregulated, possibly suppressing immune responses. Moreover, Serpin6s, which share a conserved phylogenetic lineage, exhibited enhanced immune activity in response to fungal invasion. These insights into serpin-mediated immune regulation could contribute to the development of novel pest-control strategies. Full article
Show Figures

Figure 1

20 pages, 1417 KiB  
Review
Progress in Precision Medicine for Head and Neck Cancer
by Sanaz Vakili, Amir Barzegar Behrooz, Rachel Whichelo, Alexandra Fernandes, Abdul-Hamid Emwas, Mariusz Jaremko, Jarosław Markowski, Marek J. Los, Saeid Ghavami and Rui Vitorino
Cancers 2024, 16(21), 3716; https://doi.org/10.3390/cancers16213716 - 4 Nov 2024
Cited by 3 | Viewed by 3689
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic [...] Read more.
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care. Full article
(This article belongs to the Collection Advances in Diagnostics and Treatment of Head and Neck Cancer)
Show Figures

Figure 1

19 pages, 4309 KiB  
Article
High-Salt Diet Accelerates Neuron Loss and Anxiety in APP/PS1 Mice Through Serpina3n
by Kaige Ma, Chenglin Zhang, Hanyue Zhang, Chanyuan An, Ge Li, Lixue Cheng, Mai Li, Minghe Ren, Yudan Bai, Zichang Liu, Shengfeng Ji, Xiyue Liu, Jinman Gao, Zhichao Zhang, Xiaolin Wu and Xinlin Chen
Int. J. Mol. Sci. 2024, 25(21), 11731; https://doi.org/10.3390/ijms252111731 - 31 Oct 2024
Viewed by 1658
Abstract
High salt (HS) consumption is an independent risk factor for neurodegenerative diseases such as dementia, stroke, and cerebral small vessel disease related to cognitive decline. Recently, Alzheimer’s disease-like pathology changes have been reported as consequences of a HS diet in wild-type (wt) mice. [...] Read more.
High salt (HS) consumption is an independent risk factor for neurodegenerative diseases such as dementia, stroke, and cerebral small vessel disease related to cognitive decline. Recently, Alzheimer’s disease-like pathology changes have been reported as consequences of a HS diet in wild-type (wt) mice. However, it has not been revealed how HS diets accelerate the progress of Alzheimer’s disease (AD) in APP/PS1 mice. Here, we fed APP/PS1 mice a HS diet or normal diet (ND) for six months; the effects of the HS/ND on wt mice were also observed. The results of our behavior test reveal that the HS diet exacerbates anxiety, β-amyloid overload, neuron loss, and synapse damage in the hippocampi of APP/PS1 mice; this was not observed in HS-treated wt mice. RNA sequencing shows that nearly all serpin family members were increased in the hippocampus of HS-treated APP/PS1 mice. Gene function analysis showed that a HS diet induces neurodegeneration, including axon dysfunction and neuro-ligand-based dysfunction, and regulates serine protein inhibitor activities. The mRNA and protein levels of Serpina3n were dramatically increased. Upregulated Serpina3n may be the key for β-amyloid aggregation and neuronal loss in the hippocampus of HS-treated APP/PS1 mice. Serpina3n inhibition attenuated the anxiety and increased the number of neurons in the hippocampal CA1(cornu ammonis) region of APP/PS1 mice. Our study provides novel insights into the mechanisms by which excessive HS diet deteriorates anxiety in AD mice. Therefore, decreasing daily dietary salt consumption constitutes a pivotal public health intervention for mitigating the progression of neuropathology, especially for old patients and those with neurodegenerative disease. Full article
(This article belongs to the Special Issue Drug Design and Development for Neurological Diseases)
Show Figures

Figure 1

7 pages, 234 KiB  
Communication
Serpin Family B Member 2 Polymorphisms in Patients with Diabetic Kidney Disease: An Association Study
by Maria Tziastoudi, Georgios Pissas, Spyridon Golfinopoulos, Georgios Filippidis, Christina Poulianiti, Evangelia E. Tsironi, Efthimios Dardiotis, Theodoros Eleftheriadis and Ioannis Stefanidis
Int. J. Mol. Sci. 2024, 25(20), 10906; https://doi.org/10.3390/ijms252010906 - 10 Oct 2024
Cited by 3 | Viewed by 1136
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of type 2 diabetes mellitus (T2DM). Despite the numerous genetic loci that have been associated with the disease in T2DM, the genetic architecture of DKD remains unclear until today. In contrast to SERPINE1, [...] Read more.
Diabetic kidney disease (DKD) is a serious microvascular complication of type 2 diabetes mellitus (T2DM). Despite the numerous genetic loci that have been associated with the disease in T2DM, the genetic architecture of DKD remains unclear until today. In contrast to SERPINE1, the contribution of SERPINB2 has not been examined in DKD. Therefore, we conducted the first genetic association study of SERPINB2 to elucidate its role in DKD. In total, the study involved 197 patients with DKD, 155 patients with T2DM without microvascular complications (diabetic kidney disease, diabetic retinopathy, and diabetic neuropathy), and 246 healthy controls. The generalized odds ratio (ORG) was calculated to estimate the risk on DKD development. The present association study regarding SERPINB2 SNPs (rs4941230, rs3819335, rs13381217, rs6140) did not reveal any significant association between SERPINB2 variants and DKD. Additional studies in other populations are necessary to further investigate the role of this gene in the progression of diabetes mellitus and development of DKD. Full article
(This article belongs to the Special Issue Molecular Mechanism of Diabetic Kidney Disease (2nd Edition))
25 pages, 6943 KiB  
Article
RNA-Seq-Based Transcriptome Analysis of Chinese Cordyceps Aqueous Extracts Protective Effect against Adriamycin-Induced mpc5 Cell Injury
by Hailin Long, Mengzhen Liu, Zhongchen Rao, Shanyue Guan, Xiaotian Chen, Xiaoting Huang, Li Cao and Richou Han
Int. J. Mol. Sci. 2024, 25(19), 10352; https://doi.org/10.3390/ijms251910352 - 26 Sep 2024
Viewed by 1659
Abstract
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a [...] Read more.
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a systematic transcriptomic analysis. The phytochemicals of WCCs were analyzed via the “phenol–sulfuric acid method”, high-performance liquid chromatography (HPLC), and HPLC–mass spectrometry (MS). We analyzed the drug-reaction transcriptome profiles of mpc5 cell after treating them with WCCs. RNA-seq analysis revealed that WCCs alleviated ADM-induced mpc5 cell injury via restoring the expression of certain genes to normal level mainly in the one-carbon pool by the folate pathway, followed by the relaxin, apelin, PI3K-Akt, and nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway, enhancing DNA synthesis and repair, cell proliferation, fibrosis reduction, and immune regulation. Otherwise, WCCs also modulated the proliferation and survival of the mpc5 cell by regulating metabolic pathways, and partially restores the expression of genes related to human disease pathways. These findings provide an innovative understanding of the molecular mechanism of the protective effect of WCCs on ADM-induced mpc5 cell injury at the molecular transcription level, and Mthfd2, Dhfr, Atf4, Creb5, Apln, and Serpine1, etc., may be potential novel targets for treating nephrotic syndrome. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop