Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = SDN (software-defined networking)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3656 KB  
Article
DDoS Attacks Detection in SDN Through Network Traffic Feature Selection and Machine Learning Models
by Edith Paola Estupiñán Cuesta, Juan Carlos Martínez Quintero and Juan David Avilés Palma
Telecom 2025, 6(3), 69; https://doi.org/10.3390/telecom6030069 - 19 Sep 2025
Viewed by 390
Abstract
This research presents a methodology for the detection of distributed denial-of-service (DDoS) attacks in software-defined networks (SDNs). An SDN was configured using the Mininet simulator, the Open Daylight controller, and a web server, which acted as the target to execute a DDoS attack [...] Read more.
This research presents a methodology for the detection of distributed denial-of-service (DDoS) attacks in software-defined networks (SDNs). An SDN was configured using the Mininet simulator, the Open Daylight controller, and a web server, which acted as the target to execute a DDoS attack on the HTTP protocol. The attack tools GoldenEye, Slowloris, HULK, Slowhttptest, and XerXes were used, and two datasets were built using the CICFlowMeter and NTLFlowLyzer flow and feature generation tools, with 424,922 and 731,589 flows, respectively, as well as two independent test datasets. These tools were used to compare their functionalities and efficiency in generating flows and features. Finally, the XGBoost and Random Forest models were evaluated with each dataset, with the objective of identifying the model that provides the best classification result in the detection of malicious traffic. For the XGBoost model, the accuracy results were 99.48% and 97.61%, while for the Random Forest model, better results were obtained with 99.97% and 99.99% using the CIC-Dataset and NTL-Dataset, respectively, in both cases. This allows determining that the Random Forest model outperformed XGBoost in classification, as it achieved the lowest false negative rate of 0.00001 using the NTL-Dataset. Full article
Show Figures

Figure 1

29 pages, 466 KB  
Review
From Counters to Telemetry: A Survey of Programmable Network-Wide Monitoring
by Nofel Yaseen
Network 2025, 5(3), 38; https://doi.org/10.3390/network5030038 - 16 Sep 2025
Viewed by 472
Abstract
Network monitoring is becoming increasingly challenging as networks grow in scale, speed, and complexity. The evolution of monitoring approaches reflects a shift from device-centric, localized techniques toward network-wide observability enabled by modern networking paradigms. Early methods like SNMP polling and NetFlow provided basic [...] Read more.
Network monitoring is becoming increasingly challenging as networks grow in scale, speed, and complexity. The evolution of monitoring approaches reflects a shift from device-centric, localized techniques toward network-wide observability enabled by modern networking paradigms. Early methods like SNMP polling and NetFlow provided basic insights but struggled with real-time visibility in large, dynamic environments. The emergence of Software-Defined Networking (SDN) introduced centralized control and a global view of network state, opening the door to more coordinated and programmable measurement strategies. More recently, programmable data planes (e.g., P4-based switches) and in-band telemetry frameworks have allowed fine grained, line rate data collection directly from traffic, reducing overhead and latency compared to traditional polling. These developments mark a move away from single point or per flow analysis toward holistic monitoring woven throughout the network fabric. In this survey, we systematically review the state of the art in network-wide monitoring. We define key concepts (topologies, flows, telemetry, observability) and trace the progression of monitoring architectures from traditional networks to SDN to fully programmable networks. We introduce a taxonomy spanning local device measures, path level techniques, global network-wide methods, and hybrid approaches. Finally, we summarize open research challenges and future directions, highlighting that modern networks demand monitoring frameworks that are not only scalable and real-time but also tightly integrated with network control and automation. Full article
Show Figures

Figure 1

28 pages, 3252 KB  
Article
Toward Secure SDN Infrastructure in Smart Cities: Kafka-Enabled Machine Learning Framework for Anomaly Detection
by Gayathri Karthick, Glenford Mapp and Jon Crowcroft
Future Internet 2025, 17(9), 415; https://doi.org/10.3390/fi17090415 - 11 Sep 2025
Viewed by 325
Abstract
As smart cities evolve, the demand for real-time, secure, and adaptive network monitoring, continues to grow. Software-Defined Networking (SDN) offers a centralized approach to managing network flows; However, anomaly detection within SDN environments remains a significant challenge, particularly at the intelligent edge. This [...] Read more.
As smart cities evolve, the demand for real-time, secure, and adaptive network monitoring, continues to grow. Software-Defined Networking (SDN) offers a centralized approach to managing network flows; However, anomaly detection within SDN environments remains a significant challenge, particularly at the intelligent edge. This paper presents a conceptual Kafka-enabled ML framework for scalable, real-time analytics in SDN environments, supported by offline evaluation and a prototype streaming demonstration. A range of supervised ML models covering traditional methods and ensemble approaches (Random Forest, Linear Regression & XGBoost) were trained and validated using the InSDN intrusion detection dataset. These models were tested against multiple cyber threats, including botnets, dos, ddos, network reconnaissance, brute force, and web attacks, achieving up to 99% accuracy for ensemble classifiers under offline conditions. A Dockerized prototype demonstrates Kafka’s role in offline data ingestion, processing, and visualization through PostgreSQL and Grafana. While full ML pipeline integration into Kafka remains part of future work, the proposed architecture establishes a foundation for secure and intelligent Software-Defined Vehicular Networking (SDVN) infrastructure in smart cities. Full article
Show Figures

Figure 1

6 pages, 505 KB  
Proceeding Paper
Building Application for Software-Defined Network
by Delyan Genkov, Tsvetan Raykov and Miroslav Slavov
Eng. Proc. 2025, 104(1), 92; https://doi.org/10.3390/engproc2025104092 - 11 Sep 2025
Viewed by 234
Abstract
Software-defined networks are a modern approach to computer networks. With this concept, network devices can be monitored and configured centrally. While the lower layers of a software-defined network—devices and controllers—are relatively well known and standardized, the upper layers consist of APIs and software [...] Read more.
Software-defined networks are a modern approach to computer networks. With this concept, network devices can be monitored and configured centrally. While the lower layers of a software-defined network—devices and controllers—are relatively well known and standardized, the upper layers consist of APIs and software applications and are not standard. This article aims to propose one possible way to interact with a software-defined network and to build applications for monitoring and configuring such networks. Full article
Show Figures

Figure 1

38 pages, 3071 KB  
Article
A Hybrid Framework for the Sensitivity Analysis of Software-Defined Networking Performance Metrics Using Design of Experiments and Machine Learning Techniques
by Chekwube Ezechi, Mobayode O. Akinsolu, Wilson Sakpere, Abimbola O. Sangodoyin, Uyoata E. Uyoata, Isaac Owusu-Nyarko and Folahanmi T. Akinsolu
Information 2025, 16(9), 783; https://doi.org/10.3390/info16090783 - 9 Sep 2025
Viewed by 416
Abstract
Software-defined networking (SDN) is a transformative approach for managing modern network architectures, particularly in Internet-of-Things (IoT) applications. However, ensuring the optimal SDN performance and security often needs a robust sensitivity analysis (SA). To complement existing SA methods, this study proposes a new SA [...] Read more.
Software-defined networking (SDN) is a transformative approach for managing modern network architectures, particularly in Internet-of-Things (IoT) applications. However, ensuring the optimal SDN performance and security often needs a robust sensitivity analysis (SA). To complement existing SA methods, this study proposes a new SA framework that integrates design of experiments (DOE) and machine-learning (ML) techniques. Although existing SA methods have been shown to be effective and scalable, most of these methods have yet to hybridize anomaly detection and classification (ADC) and data augmentation into a single, unified framework. To fill this gap, a targeted application of well-established existing techniques is proposed. This is achieved by hybridizing these existing techniques to undertake a more robust SA of a typified SDN-reliant IoT network. The proposed hybrid framework combines Latin hypercube sampling (LHS)-based DOE and generative adversarial network (GAN)-driven data augmentation to improve SA and support ADC in SDN-reliant IoT networks. Hence, it is called DOE-GAN-SA. In DOE-GAN-SA, LHS is used to ensure uniform parameter sampling, while GAN is used to generate synthetic data to augment data derived from typified real-world SDN-reliant IoT network scenarios. DOE-GAN-SA also employs a classification and regression tree (CART) to validate the GAN-generated synthetic dataset. Through the proposed framework, ADC is implemented, and an artificial neural network (ANN)-driven SA on an SDN-reliant IoT network is carried out. The performance of the SDN-reliant IoT network is analyzed under two conditions: namely, a normal operating scenario and a distributed-denial-of-service (DDoS) flooding attack scenario, using throughput, jitter, and response time as performance metrics. To statistically validate the experimental findings, hypothesis tests are conducted to confirm the significance of all the inferences. The results demonstrate that integrating LHS and GAN significantly enhances SA, enabling the identification of critical SDN parameters affecting the modeled SDN-reliant IoT network performance. Additionally, ADC is also better supported, achieving higher DDoS flooding attack detection accuracy through the incorporation of synthetic network observations that emulate real-time traffic. Overall, this work highlights the potential of hybridizing LHS-based DOE, GAN-driven data augmentation, and ANN-assisted SA for robust network behavioral analysis and characterization in a new hybrid framework. Full article
(This article belongs to the Special Issue Data Privacy Protection in the Internet of Things)
Show Figures

Graphical abstract

27 pages, 2027 KB  
Article
Comparative Analysis of SDN and Blockchain Integration in P2P Streaming Networks for Secure and Reliable Communication
by Aisha Mohmmed Alshiky, Maher Ali Khemakhem, Fathy Eassa and Ahmed Alzahrani
Electronics 2025, 14(17), 3558; https://doi.org/10.3390/electronics14173558 - 7 Sep 2025
Viewed by 498
Abstract
Rapid advancements in peer-to-peer (P2P) streaming technologies have significantly impacted digital communication, enabling scalable, decentralized, and real-time content distribution. Despite these advancements, challenges persist, including dynamic topology management, high latency, security vulnerabilities, and unfair resource sharing (e.g., free rider). While software-defined networking (SDN) [...] Read more.
Rapid advancements in peer-to-peer (P2P) streaming technologies have significantly impacted digital communication, enabling scalable, decentralized, and real-time content distribution. Despite these advancements, challenges persist, including dynamic topology management, high latency, security vulnerabilities, and unfair resource sharing (e.g., free rider). While software-defined networking (SDN) and blockchain individually address aspects of these limitations, their combined potential for comprehensive optimization remains underexplored. This study proposes a distributed SDN (DSDN) architecture enhanced with blockchain support to provide secure, scalable, and reliable P2P video streaming. We identified research gaps through critical analysis of the literature. We systematically compared traditional P2P, SDN-enhanced, and hybrid architectures across six performance metrics: latency, throughput, packet loss, authentication accuracy, packet delivery ratio, and control overhead. Simulations with 200 peers demonstrate that the proposed hybrid SDN–blockchain framework achieves a latency of 140 ms, a throughput of 340 Mbps, an authentication accuracy of 98%, a packet delivery ratio of 97.8%, a packet loss ratio of 2.2%, and a control overhead of 9.3%, outperforming state-of-the-art solutions such as NodeMaps, the reinforcement learning-based routing framework (RL-RF), and content delivery networks-P2P networks (CDN-P2P). This work establishes a scalable and attack-resilient foundation for next-generation P2P streaming. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Graphical abstract

20 pages, 3143 KB  
Article
RS-MADDPG: Routing Strategy Based on Multi-Agent Deep Deterministic Policy Gradient for Differentiated QoS Services
by Shi Kuang, Jinyu Zheng, Shilin Liang, Yingying Li, Siyuan Liang and Wanwei Huang
Future Internet 2025, 17(9), 393; https://doi.org/10.3390/fi17090393 - 29 Aug 2025
Viewed by 399
Abstract
As network environments become increasingly dynamic and users’ Quality of Service (QoS) demands grow more diverse, efficient and adaptive routing strategies are urgently needed. However, traditional routing strategies suffer from limitations such as poor adaptability to fluctuating traffic, lack of differentiated service handling, [...] Read more.
As network environments become increasingly dynamic and users’ Quality of Service (QoS) demands grow more diverse, efficient and adaptive routing strategies are urgently needed. However, traditional routing strategies suffer from limitations such as poor adaptability to fluctuating traffic, lack of differentiated service handling, and slow convergence in complex network scenarios. To this end, we propose a routing strategy based on multi-agent deep deterministic policy gradient for differentiated QoS services (RS-MADDPG) in a software-defined networking (SDN) environment. First, network state information is collected in real time and transmitted to the control layer for processing. Then, the processed information is forwarded to the intelligent layer. In this layer, multiple agents cooperate during training to learn routing policies that adapt to dynamic network conditions. Finally, the learned policies enable agents to perform adaptive routing decisions that explicitly address differentiated QoS requirements by incorporating a custom reward structure that dynamically balances throughput, delay, and packet loss according to traffic type. Simulation results demonstrate that RS-MADDPG achieves convergence approximately 30 training cycles earlier than baseline methods, while improving average throughput by 3%, reducing latency by 7%, and lowering packet loss rate by 2%. Full article
Show Figures

Figure 1

37 pages, 1545 KB  
Article
BFL-SDWANTrust: Blockchain Federated-Learning-Enabled Trust Framework for Secure East–West Communication in Multi-Controller SD-WANs
by Muddassar Mushtaq and Kashif Kifayat
Sensors 2025, 25(16), 5188; https://doi.org/10.3390/s25165188 - 21 Aug 2025
Viewed by 867
Abstract
Software-Defined Wide-Area Networks (SD-WAN) efficiently manage and route traffic across multiple WAN connections, enhancing the reliability of modern enterprise networks. However, the performance of SD-WANs is largely affected due to malicious activities of unauthorized and faulty nodes. To solve these issues, many machine-learning-based [...] Read more.
Software-Defined Wide-Area Networks (SD-WAN) efficiently manage and route traffic across multiple WAN connections, enhancing the reliability of modern enterprise networks. However, the performance of SD-WANs is largely affected due to malicious activities of unauthorized and faulty nodes. To solve these issues, many machine-learning-based malicious-node-detection techniques have been proposed. However, these techniques are vulnerable to various issues such as low classification accuracy and privacy leakage of network entities. Furthermore, most operations of traditional SD-WANs are dependent on a third-party or a centralized party, which leads to issues such single point of failure, large computational overheads, and performance bottlenecks. To solve the aforementioned issues, we propose a Blockchain Federated-Learning-Enabled Trust Framework for Secure East–West Communication in Multi-Controller SD-WANs (BFL-SDWANTrust). The proposed model ensures local model learning at the edge nodes while utilizing the capabilities of federated learning. In the proposed model, we ensure distributed training without requiring central data aggregation, which preserves the privacy of network entities while simultaneously improving generalization across heterogeneous SD-WAN environments. We also propose a blockchain-based network that validates all network communication and malicious node-detection transactions without the involvement of any third party. We evaluate the performance of our proposed BFL-SDWANTrust on the InSDN dataset and compare its performance with various benchmark malicious-node-detection models. The simulation results show that BFL-SDWANTrust outperforms all benchmark models across various metrics and achieves the highest accuracy (98.8%), precision (98.0%), recall (97.0%), and F1-score (97.7%). Furthermore, our proposed model has the shortest training and testing times of 12 s and 3.1 s, respectively. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
Show Figures

Figure 1

35 pages, 4321 KB  
Review
An Overview of SDN Issues—A Case Study and Performance Evaluation of a Secure OpenFlow Protocol Implementation
by Hugo Riggs, Asadullah Khalid and Arif I. Sarwat
Electronics 2025, 14(16), 3244; https://doi.org/10.3390/electronics14163244 - 15 Aug 2025
Viewed by 1275
Abstract
Software-Defined Networking (SDN) is a network architecture that decouples the control plane from the data plane, enabling centralized, programmable management of network traffic. SDN introduces centralized control and programmability to modern networks, improving flexibility while also exposing new security vulnerabilities across the application, [...] Read more.
Software-Defined Networking (SDN) is a network architecture that decouples the control plane from the data plane, enabling centralized, programmable management of network traffic. SDN introduces centralized control and programmability to modern networks, improving flexibility while also exposing new security vulnerabilities across the application, control, and data planes. This paper provides a comprehensive overview of SDN security threats and defenses, covering recent developments in controller hardening, trust management, route optimization, and anomaly detection. Based on these findings, we present a comparative analysis of SDN controllers in terms of performance, scalability, and deployment complexity. This culminates in the introduction of the Cloud-to-Edge Layer Two (CELT)-Secure switch, a virtual OpenFlow-based data-plane security mechanism. CELT-Secure detects and blocks Internet Control Message Protocol flooding attacks in approximately two seconds and actively disconnects hosts engaging in Address Resolution Protocol-based man-in-the-middle attacks. In comparative testing, it achieved detection performance 10.82 times faster than related approaches. Full article
Show Figures

Figure 1

29 pages, 919 KB  
Article
DDoS Defense Strategy Based on Blockchain and Unsupervised Learning Techniques in SDN
by Shengmin Peng, Jialin Tian, Xiangyu Zheng, Shuwu Chen and Zhaogang Shu
Future Internet 2025, 17(8), 367; https://doi.org/10.3390/fi17080367 - 13 Aug 2025
Viewed by 625
Abstract
With the rapid development of technologies such as cloud computing, big data, and the Internet of Things (IoT), Software-Defined Networking (SDN) is emerging as a new network architecture for the modern Internet. SDN separates the control plane from the data plane, allowing a [...] Read more.
With the rapid development of technologies such as cloud computing, big data, and the Internet of Things (IoT), Software-Defined Networking (SDN) is emerging as a new network architecture for the modern Internet. SDN separates the control plane from the data plane, allowing a central controller, the SDN controller, to quickly direct the routing devices within the topology to forward data packets, thus providing flexible traffic management for communication between information sources. However, traditional Distributed Denial of Service (DDoS) attacks still significantly impact SDN systems. This paper proposes a novel dual-layer strategy capable of detecting and mitigating DDoS attacks in an SDN network environment. The first layer of the strategy enhances security by using blockchain technology to replace the SDN flow table storage container in the northbound interface of the SDN controller. Smart contracts are then used to process the stored flow table information. We employ the time window algorithm and the token bucket algorithm to construct the first layer strategy to defend against obvious DDoS attacks. To detect and mitigate less obvious DDoS attacks, we design a second-layer strategy that uses a composite data feature correlation coefficient calculation method and the Isolation Forest algorithm from unsupervised learning techniques to perform binary classification, thereby identifying abnormal traffic. We conduct experimental validation using the publicly available DDoS dataset CIC-DDoS2019. The results show that using this strategy in the SDN network reduces the average deviation of round-trip time (RTT) by approximately 38.86% compared with the original SDN network without this strategy. Furthermore, the accuracy of DDoS attack detection reaches 97.66% and an F1 score of 92.2%. Compared with other similar methods, under comparable detection accuracy, the deployment of our strategy in small-scale SDN network topologies provides faster detection speeds for DDoS attacks and exhibits less fluctuation in detection time. This indicates that implementing this strategy can effectively identify DDoS attacks without affecting the stability of data transmission in the SDN network environment. Full article
(This article belongs to the Special Issue DDoS Attack Detection for Cyber–Physical Systems)
Show Figures

Figure 1

24 pages, 3366 KB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Viewed by 506
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
Show Figures

Figure 1

31 pages, 2736 KB  
Article
Unseen Attack Detection in Software-Defined Networking Using a BERT-Based Large Language Model
by Mohammed N. Swileh and Shengli Zhang
AI 2025, 6(7), 154; https://doi.org/10.3390/ai6070154 - 11 Jul 2025
Cited by 1 | Viewed by 1084
Abstract
Software-defined networking (SDN) represents a transformative shift in network architecture by decoupling the control plane from the data plane, enabling centralized and flexible management of network resources. However, this architectural shift introduces significant security challenges, as SDN’s centralized control becomes an attractive target [...] Read more.
Software-defined networking (SDN) represents a transformative shift in network architecture by decoupling the control plane from the data plane, enabling centralized and flexible management of network resources. However, this architectural shift introduces significant security challenges, as SDN’s centralized control becomes an attractive target for various types of attacks. While the body of current research on attack detection in SDN has yielded important results, several critical gaps remain that require further exploration. Addressing challenges in feature selection, broadening the scope beyond Distributed Denial of Service (DDoS) attacks, strengthening attack decisions based on multi-flow analysis, and building models capable of detecting unseen attacks that they have not been explicitly trained on are essential steps toward advancing security measures in SDN environments. In this paper, we introduce a novel approach that leverages Natural Language Processing (NLP) and the pre-trained Bidirectional Encoder Representations from Transformers (BERT)-base-uncased model to enhance the detection of attacks in SDN environments. Our approach transforms network flow data into a format interpretable by language models, allowing BERT-base-uncased to capture intricate patterns and relationships within network traffic. By utilizing Random Forest for feature selection, we optimize model performance and reduce computational overhead, ensuring efficient and accurate detection. Attack decisions are made based on several flows, providing stronger and more reliable detection of malicious traffic. Furthermore, our proposed method is specifically designed to detect previously unseen attacks, offering a solution for identifying threats that the model was not explicitly trained on. To rigorously evaluate our approach, we conducted experiments in two scenarios: one focused on detecting known attacks, achieving an accuracy, precision, recall, and F1-score of 99.96%, and another on detecting previously unseen attacks, where our model achieved 99.96% in all metrics, demonstrating the robustness and precision of our framework in detecting evolving threats, and reinforcing its potential to improve the security and resilience of SDN networks. Full article
(This article belongs to the Special Issue Artificial Intelligence for Network Management)
Show Figures

Figure 1

17 pages, 2103 KB  
Article
Optimizing Time-Sensitive Traffic Scheduling in Low-Earth-Orbit Satellite Networks
by Wei Liu, Nan Xiao, Bo Liu, Yuxian Zhang and Taoyong Li
Sensors 2025, 25(14), 4327; https://doi.org/10.3390/s25144327 - 10 Jul 2025
Viewed by 653
Abstract
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and [...] Read more.
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and bandwidth competition contribute to the instability of these links. As a result, providing reliable quality of service (QoS) for time-sensitive flows (TSFs) in LEO satellite networks becomes a challenging task. Traditional terrestrial time-sensitive networking methods, which depend on fixed paths and static priority scheduling, are ill-equipped to handle the dynamic nature and resource constraints typical of satellite environments. This often leads to congestion, packet loss, and excessive latency, especially for high-priority TSFs. This study addresses the primary challenges faced by time-sensitive satellite networks and introduces a management framework based on software-defined networking (SDN) tailored for LEO satellites. An advanced queue management and scheduling system, influenced by terrestrial time-sensitive networking approaches, is developed. By incorporating differentiated forwarding strategies and priority-based classification, the proposed method improves the efficiency of transmitting time-sensitive traffic at multiple levels. To assess the scheme’s performance, simulations under various workloads are conducted, and the results reveal that it significantly boosts network throughput, reduces packet loss, and maintains low latency, thus optimizing the performance of time-sensitive traffic in LEO satellite networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

11 pages, 1015 KB  
Article
An OpenFlow-Based Elephant-Flow Monitoring and Scheduling Strategy in SDN
by Qinghui Chen, Mingyang Chen, Hong Wen and Yazhi Shi
Electronics 2025, 14(13), 2663; https://doi.org/10.3390/electronics14132663 - 30 Jun 2025
Viewed by 554
Abstract
This paper introduces a novel monitoring and scheduling strategy based on software-defined networking (SDN) to address the challenges of elephant flow scheduling and localization in conventional networks. The plan involves collecting and analyzing switch data, effectively monitoring elephant flows, and enhancing the traditional [...] Read more.
This paper introduces a novel monitoring and scheduling strategy based on software-defined networking (SDN) to address the challenges of elephant flow scheduling and localization in conventional networks. The plan involves collecting and analyzing switch data, effectively monitoring elephant flows, and enhancing the traditional distributed solution. Meanwhile, elephant flow scenarios are simulated by the iperf tool, and Fat-Tree and Leaf-Spine topologies are simulated in Mininet. Experimental results demonstrate significant network stability and resource utilization improvements with the proposed strategy. Specifically, in the Leaf-Spine topology, the network throughput stabilized around 8 Mbps with minimal fluctuation and no congestion over a 120-s test, compared to multiple throughput drops to 0 Mbps under the Fat-Tree topology. In addition, the proposed scheduling approach takes advantage of monitoring and scheduling for elephant flow, a promising scheme to enhance traffic management efficiency in large-scale network environments. Full article
Show Figures

Figure 1

20 pages, 2579 KB  
Article
ERA-MADDPG: An Elastic Routing Algorithm Based on Multi-Agent Deep Deterministic Policy Gradient in SDN
by Wanwei Huang, Hongchang Liu, Yingying Li and Linlin Ma
Future Internet 2025, 17(7), 291; https://doi.org/10.3390/fi17070291 - 29 Jun 2025
Cited by 2 | Viewed by 813
Abstract
To address the fact that changes in network topology can have an impact on the performance of routing, this paper proposes an Elastic Routing Algorithm based on Multi-Agent Deep Deterministic Policy Gradient (ERA-MADDPG), which is implemented within the framework of Multi-Agent Deep Deterministic [...] Read more.
To address the fact that changes in network topology can have an impact on the performance of routing, this paper proposes an Elastic Routing Algorithm based on Multi-Agent Deep Deterministic Policy Gradient (ERA-MADDPG), which is implemented within the framework of Multi-Agent Deep Deterministic Policy Gradient (MADDPG) in deep reinforcement learning. The algorithm first builds a three-layer architecture based on Software-Defined Networking (SDN). The top-down layers are the multi-agent layer, the controller layer, and the data layer. The architecture’s processing flow, including real-time data layer information collection and dynamic policy generation, enables the ERA-MADDPG algorithm to exhibit strong elasticity by quickly adjusting routing decisions in response to topology changes. The actor-critic framework combined with Convolutional Neural Networks (CNN) to implement the ERA-MADDPG routing algorithm effectively improves training efficiency, enhances learning stability, facilitates collaboration, and improves algorithm generalization and applicability. Finally, simulation experiments demonstrate that the convergence speed of the ERA-MADDPG routing algorithm outperforms that of the Multi-Agent Deep Q-Network (MADQN) algorithm and the Smart Routing based on Deep Reinforcement Learning (SR-DRL) algorithm, and the training speed in the initial phase is improved by approximately 20.9% and 39.1% compared to the MADQN algorithm and SR-DRL algorithm, respectively. The elasticity performance of ERA-MADDPG is quantified by re-convergence speed: under 5–15% topology node/link changes, its re-convergence speed is over 25% faster than that of MADQN and SR-DRL, demonstrating superior capability to maintain routing efficiency in dynamic environments. Full article
Show Figures

Figure 1

Back to TopTop