Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = SCRAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1053 KB  
Systematic Review
Clinical Management of Synthetic-Cannabinoid-Induced Psychosis: A Systematic Review of Treatment Strategies and Outcomes
by Alessio Mosca, Stefania Chiappini, Andrea Miuli, Clara Cavallotto, Mauro Pettorruso, Giovanni Martinotti and Fabrizio Schifano
Brain Sci. 2025, 15(9), 1006; https://doi.org/10.3390/brainsci15091006 - 17 Sep 2025
Viewed by 3224
Abstract
Background: Synthetic cannabinoid receptor agonists (SCRAs, commercially known as “Spice”) have become a leading cause of substance-induced psychosis worldwide. These compounds show strong associations not only with acute psychotic episodes but also, in a subset of patients, with persistent or relapsing psychotic disorders, [...] Read more.
Background: Synthetic cannabinoid receptor agonists (SCRAs, commercially known as “Spice”) have become a leading cause of substance-induced psychosis worldwide. These compounds show strong associations not only with acute psychotic episodes but also, in a subset of patients, with persistent or relapsing psychotic disorders, patterns that raise concern about progression to schizophrenia. Yet clinicians still lack clear, evidence-based guidance, and the optimal management of SCRA-induced psychosis remains inadequately defined. Methods: We carried out a systematic search of PubMed, Scopus, and Web of Science on 2 April 2025, identifying 35 primary studies that together describe roughly 4600 clinical presentations (≈77% male; mean age: 24.7 years). Results: Across diverse settings a convergent three-step pharmacological strategy emerged. First, rapid tranquillization with parenteral benzodiazepines consistently controlled severe agitation and autonomic instability. Second, when florid psychosis persisted beyond 30–60 min, clinicians introduced a second-generation antipsychotic—most commonly olanzapine, risperidone, or aripiprazole—often at doses exceeding those used for primary psychoses. Third, for the minority of refractory or relapse-prone cases, escalation to long-acting injectable formulations or low-dose clozapine achieved symptom control, even at plasma levels below those required in treatment-resistant schizophrenia. Although the evidence base consists largely of uncontrolled clinical descriptions, across studies, a recurrent clinical pattern was observed: initial benzodiazepines for agitation, followed by antipsychotics when psychosis persisted and escalation to clozapine or long-acting injectables in refractory cases. This approach appears to be associated with symptom improvement, although the certainty of the evidence is low to very low. Conclusions. Prospective, comparative studies are urgently needed to refine dosing, directly compare antipsychotic classes, and evaluate emerging cannabinoid-modulating interventions. Full article
(This article belongs to the Special Issue Drug Development for Schizophrenia)
Show Figures

Figure 1

33 pages, 7764 KB  
Article
Interaction of Synthetic Cannabinoid Receptor Agonists with Cannabinoid Receptor I: Insights into Activation Molecular Mechanism
by Sergei Gavryushov, Anton Bashilov, Konstantin V. Cherashev-Tumanov, Nikolay N. Kuzmich, Tatyana I. Burykina and Boris N. Izotov
Int. J. Mol. Sci. 2023, 24(19), 14874; https://doi.org/10.3390/ijms241914874 - 3 Oct 2023
Cited by 3 | Viewed by 2218
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) have become a wide group of new psychoactive substances since the 2010s. For the last few years, the X-ray structures of the complexes of cannabinoid receptor I (CB1) with SCRAs as well as the complexes of [...] Read more.
Synthetic cannabinoid receptor agonists (SCRAs) have become a wide group of new psychoactive substances since the 2010s. For the last few years, the X-ray structures of the complexes of cannabinoid receptor I (CB1) with SCRAs as well as the complexes of CB1 with its antagonist have been published. Based on those data, SCRA–CB1 interactions are analyzed in detail, using molecular modeling and molecular dynamics simulations. The molecular mechanism of the conformational transformation of the transmembrane domain of CB1 caused by its interaction with SCRA is studied. These conformational changes allosterically modulate the CB1–Gi complex, providing activation of the Gi protein. Based on the X-ray-determined structures of the CB1–ligand complexes, a stable apo conformation of inactive CB1 with a relatively low potential barrier of receptor activation was modeled. For that model, molecular dynamic simulations of SCRA binding to CB1 led to the active state of CB1, which allowed us to explore the key features of this activation and the molecular mechanism of the receptor’s structural transformation. The simulated CB1 activation is in accordance with the previously published experimental data for the activation at protein mutations or structural changes of ligands. The key feature of the suggested activation mechanism is the determination of the stiff core of the CB1 transmembrane domain and the statement that the entire conformational transformation of the receptor to the active state is caused by a shift of alpha helix TM7 relative to this core. The shift itself is caused by protein–ligand interactions. It was verified via steered molecular dynamics simulations of the X-ray-determined structures of the inactive receptor, which resulted in the active conformation of CB1 irrespective of the placement of agonist ligand in the receptor’s active site. Full article
Show Figures

Figure 1

10 pages, 1092 KB  
Case Report
Fatal Overdose with the Cannabinoid Receptor Agonists MDMB-4en-PINACA and 4F-ABUTINACA: A Case Report and Review of the Literature
by Gábor Simon, Mónika Kuzma, Mátyás Mayer, Karola Petrus and Dénes Tóth
Toxics 2023, 11(8), 673; https://doi.org/10.3390/toxics11080673 - 5 Aug 2023
Cited by 15 | Viewed by 5295
Abstract
A case of a 26-year-old male who died from consuming synthetic cannabinoid receptor agonists MDMB-4en-PINACA and 4F-ABUTINACA is reported. MDMB-4en-PINACA and 4F-ABUTINACA are potent synthetic cannabinoid receptor agonists (SCRAs). This is the first detailed reporting of MDMB-4-en-PINACA and 4F-ABUTINACA associated fatality, which can [...] Read more.
A case of a 26-year-old male who died from consuming synthetic cannabinoid receptor agonists MDMB-4en-PINACA and 4F-ABUTINACA is reported. MDMB-4en-PINACA and 4F-ABUTINACA are potent synthetic cannabinoid receptor agonists (SCRAs). This is the first detailed reporting of MDMB-4-en-PINACA and 4F-ABUTINACA associated fatality, which can help the routine forensic work. The scientific literature on the symptoms associated with these substances are evaluated, along with the pharmacological properties and possible mechanism of death. A forensic autopsy was performed according to Recommendation No. R (99)3 of the Council of Europe on medico-legal autopsies. Histological samples were stained with hematoxylin and eosin (HE). Complement component C9 immunohistochemistry was applied to all heart samples. Toxicological analyses were carried out by supercritical fluid chromatography coupled with tandem mass spectrometry (SFC-MS/MS) and headspace gas chromatography with a flame ionization detector (HS-GC-FID). The literature was reviewed to identify reported cases of MDMB-4en-PINACA and 4F-ABUTINACA use. Autopsy findings included brain edema, internal congestion, petechial bleeding, pleural ecchymoses, and blood fluidity. Toxicological analyses determined 7.2 ng/mL of MDMB-4en-PINACA and 9.1 ng/mL of 4F-ABUTINACA in the peripheral blood. MDMB-4en-PINACA and 4F-ABUTINACA are strong, potentially lethal SCRA, and their exact effects and outcome are unpredictable. Full article
(This article belongs to the Special Issue Clinical and Post-Mortem Toxicology)
Show Figures

Figure 1

22 pages, 3625 KB  
Article
Genome Characteristics of Two Ranavirus Isolates from Mandarin Fish and Largemouth Bass
by Xue-Dong Yu, Fei Ke, Qi-Ya Zhang and Jian-Fang Gui
Pathogens 2023, 12(5), 730; https://doi.org/10.3390/pathogens12050730 - 17 May 2023
Cited by 16 | Viewed by 3014
Abstract
Ranaviruses are promiscuous pathogens that threaten lower vertebrates globally. In the present study, two ranaviruses (SCRaV and MSRaV) were isolated from two fishes of the order Perciformes: mandarin fish (Siniperca chuatsi) and largemouth bass (Micropterus salmoides). The two ranaviruses [...] Read more.
Ranaviruses are promiscuous pathogens that threaten lower vertebrates globally. In the present study, two ranaviruses (SCRaV and MSRaV) were isolated from two fishes of the order Perciformes: mandarin fish (Siniperca chuatsi) and largemouth bass (Micropterus salmoides). The two ranaviruses both induced cytopathic effects in cultured cells from fish and amphibians and have the typical morphologic characteristics of ranaviruses. Complete genomes of the two ranaviruses were then sequenced and analyzed. Genomes of SCRaV and MSRaV have a length of 99, 405, and 99, 171 bp, respectively, and both contain 105 predicted open reading frames (ORFs). Eleven of the predicted proteins have differences between SCRaV and MSRaV, in which only one (79L) possessed a relatively large difference. A comparison of the sequenced six ranaviruses from the two fish species worldwide revealed that sequence identities of the six proteins (11R, 19R, 34L, 68L, 77L, and 103R) were related to the place where the virus was isolated. However, there were obvious differences in protein sequence identities between the two viruses and iridoviruses from other hosts, with more than half lower than 55%. Especially, 12 proteins of the two isolates had no homologs in viruses from other hosts. Phylogenetic analysis revealed that ranaviruses from the two fishes clustered in one clade. Further genome alignment showed five groups of genome arrangements of ranaviruses based on the locally collinear blocks, in which the ranaviruses, including SCRaV and MSRaV, constitute the fifth group. These results provide new information on the ranaviruses infecting fishes of Perciformes and also are useful for further research of functional genomics of the type of ranaviruses. Full article
Show Figures

Figure 1

13 pages, 23355 KB  
Technical Note
Reducing Actuators in Soft Continuum Robots and Manipulators
by Mohamed Shoani, Mohamed Najib Ribuan, Ahmad Athif Mohd Faudzi and Shahrol Mohamaddan
Appl. Sci. 2023, 13(1), 462; https://doi.org/10.3390/app13010462 - 29 Dec 2022
Cited by 2 | Viewed by 2434
Abstract
Soft continuum robots and manipulators (SCRaMs) are elongated structures that can be used in many applications, such as exploration, inspection, and minimally invasive surgery. Multi-segment SCRaMs employ numerous actuators to perform their tasks. The large number of actuators increases the cost and complexity [...] Read more.
Soft continuum robots and manipulators (SCRaMs) are elongated structures that can be used in many applications, such as exploration, inspection, and minimally invasive surgery. Multi-segment SCRaMs employ numerous actuators to perform their tasks. The large number of actuators increases the cost and complexity of a SCRaM and reduces its reliability. In this paper, a methodology is presented to reduce the number of actuators employed by SCRaMs while maintaining their volumetric workspace. The method presents a new design approach involving one rotary and two linear actuators, providing three degrees of freedom (DOF) and a volumetric workspace. The result of applying the transformation is a 50–86% reduction in the total number of actuators typically employed by multi-segment SCRaMs. The application of this methodology reduces the cost and complexity of conventional multi-segment SCRaMs while improving their efficiency and reliability. Full article
(This article belongs to the Special Issue Design, Optimization and Performance Analysis of Soft Robots)
Show Figures

Figure 1

13 pages, 1129 KB  
Article
Development of Cross-Reactive Antibodies for the Identification and Treatment of Synthetic Cannabinoid Receptor Agonist Toxicity
by Adam Worob and Cody J. Wenthur
Vaccines 2022, 10(8), 1253; https://doi.org/10.3390/vaccines10081253 - 4 Aug 2022
Cited by 3 | Viewed by 3931
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are compounds that mimic the pharmacology of the psychoactive components in cannabis. These compounds are structurally diverse, inexpensive, commercially available, and difficult to identify with modern analytical methods, making them highly accessible for recreational use. Suspected SCRA toxicity, [...] Read more.
Synthetic cannabinoid receptor agonists (SCRAs) are compounds that mimic the pharmacology of the psychoactive components in cannabis. These compounds are structurally diverse, inexpensive, commercially available, and difficult to identify with modern analytical methods, making them highly accessible for recreational use. Suspected SCRA toxicity, which can present with a breadth of cardiovascular, gastrointestinal, and neurological disturbances, is currently addressed through symptom management followed by a toxicological screening that often occurs long after patient discharge. Here, we report the development of four cross-reactive anti-SCRA bioconjugate vaccines as a platform for developing improved diagnostic and therapeutic interventions against SCRA intoxication, using SCRA-resembling small molecule haptens that combine common subregional motifs occurring within and across different generations of SCRA molecules. Using a combination of multiplexed competitive ELISA screening and chemoinformatic analyses, it was found that the antibodies resulting from vaccination with these bioconjugates demonstrated their ability to detect multiple SCRAs with a Tanimoto minimum common structure score of 0.6 or greater, at concentrations below 8 ng/mL. The scope of SCRAs detectable using these haptens was found to include both bioisosteric and non-bioisosteric variants within the core and tail subregions, as well as SCRAs bearing valine-like head subregions, which are not addressed by commercially available ELISA screening approaches. Vaccination with these bioconjugates was also found to prevent the changes in locomotion and body temperature that were induced by a panel of SCRAs at doses of 1 and 3 mg/kg. Further refinement of this genericized hapten design and cross-reactivity-prioritizing approach may enable the rapid detection of otherwise cryptic SCRAs that arise during overdose outbreaks, and could ultimately lead to identification of monoclonal antibody species applicable for overdose reversal. Full article
(This article belongs to the Special Issue Vaccines against Drugs of Abuse)
Show Figures

Figure 1

12 pages, 875 KB  
Review
Recent Advances in Directed Yeast Genome Evolution
by Zhen Yao, Qinhong Wang and Zongjie Dai
J. Fungi 2022, 8(6), 635; https://doi.org/10.3390/jof8060635 - 15 Jun 2022
Cited by 11 | Viewed by 4058
Abstract
Saccharomyces cerevisiae, as a Generally Recognized as Safe (GRAS) fungus, has become one of the most widely used chassis cells for industrial applications and basic research. However, owing to its complex genetic background and intertwined metabolic networks, there are still many obstacles [...] Read more.
Saccharomyces cerevisiae, as a Generally Recognized as Safe (GRAS) fungus, has become one of the most widely used chassis cells for industrial applications and basic research. However, owing to its complex genetic background and intertwined metabolic networks, there are still many obstacles that need to be overcome in order to improve desired traits and to successfully link genotypes to phenotypes. In this context, genome editing and evolutionary technology have rapidly progressed over the last few decades to facilitate the rapid generation of tailor-made properties as well as for the precise determination of relevant gene targets that regulate physiological functions, including stress resistance, metabolic-pathway optimization and organismal adaptation. Directed genome evolution has emerged as a versatile tool to enable researchers to access desired traits and to study increasingly complicated phenomena. Here, the development of directed genome evolutions in S. cerevisiae is reviewed, with a focus on different techniques driving evolutionary engineering. Full article
(This article belongs to the Special Issue New Opportunities in Fungal Biotechnology)
Show Figures

Figure 1

14 pages, 3236 KB  
Article
In Vitro Metabolic Fate of the Synthetic Cannabinoid Receptor Agonists QMPSB and QMPCB (SGT-11) Including Isozyme Mapping and Esterase Activity
by Matthias J. Richter, Lea Wagmann, Tanja M. Gampfer, Simon D. Brandt and Markus R. Meyer
Metabolites 2021, 11(8), 509; https://doi.org/10.3390/metabo11080509 - 3 Aug 2021
Cited by 8 | Viewed by 3190
Abstract
Quinolin-8-yl 4-methyl-3-(piperidine-1-sulfonyl)benzoate (QMPSB) and quinolin-8-yl 4-methyl-3-(piperidine-1-carbonyl)benzoate (QMPCB, SGT-11) are synthetic cannabinoid receptor agonists (SCRAs). Knowing their metabolic fate is crucial for the identification of toxicological screening targets and to predict possible drug interactions. The presented study aimed to identify the in vitro phase [...] Read more.
Quinolin-8-yl 4-methyl-3-(piperidine-1-sulfonyl)benzoate (QMPSB) and quinolin-8-yl 4-methyl-3-(piperidine-1-carbonyl)benzoate (QMPCB, SGT-11) are synthetic cannabinoid receptor agonists (SCRAs). Knowing their metabolic fate is crucial for the identification of toxicological screening targets and to predict possible drug interactions. The presented study aimed to identify the in vitro phase I/II metabolites of QMPSB and QMPCB and to study the contribution of different monooxygenases and human carboxylesterases by using pooled human liver S9 fraction (pHLS9), recombinant human monooxygenases, three recombinant human carboxylesterases, and pooled human liver microsomes. Analyses were carried out by liquid chromatography high-resolution tandem mass spectrometry. QMPSB and QMPCB showed ester hydrolysis, and hydroxy and carboxylic acid products were detected in both cases. Mono/dihydroxy metabolites were formed, as were corresponding glucuronides and sulfates. Most of the metabolites could be detected in positive ionization mode with the exception of some QMPSB metabolites, which could only be found in negative mode. Monooxygenase activity screening revealed that CYP2B6/CYP2C8/CYP2C9/CYP2C19/CYP3A4/CYP3A5 were involved in hydroxylations. Esterase screening showed the involvement of all investigated isoforms. Additionally, extensive non-enzymatic ester hydrolysis was observed. Considering the results of the in vitro experiments, inclusion of the ester hydrolysis products and their glucuronides and monohydroxy metabolites into toxicological screening procedures is recommended. Full article
(This article belongs to the Special Issue Metabolite Analysis in Forensic Toxicology)
Show Figures

Figure 1

25 pages, 1435 KB  
Article
Phase I In Vitro Metabolic Profiling of the Synthetic Cannabinoid Receptor Agonists CUMYL-THPINACA and ADAMANTYL-THPINACA
by Manuela Carla Monti, Eva Scheurer and Katja Mercer-Chalmers-Bender
Metabolites 2021, 11(8), 470; https://doi.org/10.3390/metabo11080470 - 21 Jul 2021
Cited by 3 | Viewed by 3983
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain popular drugs of abuse. As many SCRAs are known to be mostly metabolized, in vitro phase I metabolic profiling was conducted of the two indazole-3-carboxamide SCRAs: CUMYL-THPINACA and ADAMANTYL-THPINACA. Both compounds were incubated using pooled human liver [...] Read more.
Synthetic cannabinoid receptor agonists (SCRAs) remain popular drugs of abuse. As many SCRAs are known to be mostly metabolized, in vitro phase I metabolic profiling was conducted of the two indazole-3-carboxamide SCRAs: CUMYL-THPINACA and ADAMANTYL-THPINACA. Both compounds were incubated using pooled human liver microsomes. The sample clean-up consisted of solid phase extraction, followed by analysis using liquid chromatography coupled to a high resolution mass spectrometer. In silico-assisted metabolite identification and structure elucidation with the data-mining software Compound Discoverer was applied. Overall, 28 metabolites were detected for CUMYL-THPINACA and 13 metabolites for ADAMATYL-THPINACA. Various mono-, di-, and tri-hydroxylated metabolites were detected. For each SCRA, an abundant and characteristic di-hydroxylated metabolite was identified as a possible in vivo biomarker for screening methods. Metabolizing cytochrome P450 isoenzymes were investigated via incubation of relevant recombinant liver enzymes. The involvement of mainly CYP3A4 and CYP3A5 in the metabolism of both substances were noted, and for CUMYL-THPINACA the additional involvement (to a lesser extent) of CYP2C8, CYP2C9, and CYP2C19 was observed. The results suggest that ADAMANTYL-THPINACA might be more prone to metabolic drug−drug interactions than CUMYL-THPINACA, when co-administrated with strong CYP3A4 inhibitors. Full article
(This article belongs to the Special Issue Metabolite Analysis in Forensic Toxicology)
Show Figures

Figure 1

16 pages, 1372 KB  
Article
Dental Education during the COVID-19 Pandemic in a German Dental Hospital
by Julia Winter, Roland Frankenberger, Frank Günther and Matthias Johannes Roggendorf
Int. J. Environ. Res. Public Health 2021, 18(13), 6905; https://doi.org/10.3390/ijerph18136905 - 27 Jun 2021
Viewed by 3071
Abstract
Due to the SARS-CoV-2 pandemic, dental treatment performed by undergraduate students at the University of Marburg/Germany was immediately stopped in spring 2020 and stepwise reinstalled under a new hygiene concept until full recovery in winter 2020/21. Patient treatment in the student courses was [...] Read more.
Due to the SARS-CoV-2 pandemic, dental treatment performed by undergraduate students at the University of Marburg/Germany was immediately stopped in spring 2020 and stepwise reinstalled under a new hygiene concept until full recovery in winter 2020/21. Patient treatment in the student courses was evaluated based on three aspects: (1) Testing of patients with a SARS-CoV-2 Rapid Antigen (SCRA) Test applied by student assistants (SA); (2) Improved hygiene regimen, with separated treatment units, cross-ventilation, pre-operative mouth rinse and rubber dam application wherever possible; (3) Recruitment of patients: 735 patients were pre-registered for the two courses; 384 patients were treated and a total of 699 tests with the SCRA test were performed by SAs. While half of the patients treated in the course were healthy, over 40% of the patients that were pre-registered but not treated in the course revealed a disease being relevant to COVID (p < 0.001). 46 patients had concerns to visit the dental hospital due to the increase of COVID incidence levels, 14 persons refused to be tested. The presented concept was suitable to enable patient treatment in the student course during the SARS-CoV-2 pandemic. Full article
(This article belongs to the Special Issue COVID-19 Pandemics: Impact on Health Care and Health Care Professions)
Show Figures

Figure 1

15 pages, 4397 KB  
Article
SCRaMbLE: A Study of Its Robustness and Challenges through Enhancement of Hygromycin B Resistance in a Semi-Synthetic Yeast
by Jun Yang Ong, Reem Swidah, Marco Monti, Daniel Schindler, Junbiao Dai and Yizhi Cai
Bioengineering 2021, 8(3), 42; https://doi.org/10.3390/bioengineering8030042 - 23 Mar 2021
Cited by 13 | Viewed by 8657
Abstract
Recent advances in synthetic genomics launched the ambitious goal of generating the first synthetic designer eukaryote, based on the model organism Saccharomyces cerevisiae (Sc2.0). Excitingly, the Sc2.0 project is now nearing its completion and SCRaMbLE, an accelerated evolution tool implemented by the integration [...] Read more.
Recent advances in synthetic genomics launched the ambitious goal of generating the first synthetic designer eukaryote, based on the model organism Saccharomyces cerevisiae (Sc2.0). Excitingly, the Sc2.0 project is now nearing its completion and SCRaMbLE, an accelerated evolution tool implemented by the integration of symmetrical loxP sites (loxPSym) downstream of almost every non-essential gene, is arguably the most applicable synthetic genome-wide alteration to date. The SCRaMbLE system offers the capability to perform rapid genome diversification, providing huge potential for targeted strain improvement. Here we describe how SCRaMbLE can evolve a semi-synthetic yeast strain housing the synthetic chromosome II (synII) to generate hygromycin B resistant genotypes. Exploiting long-read nanopore sequencing, we show that all structural variations are due to recombination between loxP sites, with no off-target effects. We also highlight a phenomenon imposed on SCRaMbLE termed “essential raft”, where a fragment flanked by a pair of loxPSym sites can move within the genome but cannot be removed due to essentiality restrictions. Despite this, SCRaMbLE was able to explore the genomic space and produce alternative structural compositions that resulted in an increased hygromycin B resistance in the synII strain. We show that among the rearrangements generated via SCRaMbLE, deletions of YBR219C and YBR220C contribute to hygromycin B resistance phenotypes. However, the hygromycin B resistance provided by SCRaMbLEd genomes showed significant improvement when compared to corresponding single deletions, demonstrating the importance of the complex structural variations generated by SCRaMbLE to improve hygromycin B resistance. We anticipate that SCRaMbLE and its successors will be an invaluable tool to predict and evaluate the emergence of antibiotic resistance in yeast. Full article
(This article belongs to the Special Issue From Yeast to Biotechnology)
Show Figures

Figure 1

26 pages, 1992 KB  
Article
A Systematic Study of the In Vitro Pharmacokinetics and Estimated Human In Vivo Clearance of Indole and Indazole-3-Carboxamide Synthetic Cannabinoid Receptor Agonists Detected on the Illicit Drug Market
by Andrew M. Brandon, Lysbeth H. Antonides, Jennifer Riley, Ola Epemolu, Denise A. McKeown, Kevin D. Read and Craig McKenzie
Molecules 2021, 26(5), 1396; https://doi.org/10.3390/molecules26051396 - 5 Mar 2021
Cited by 26 | Viewed by 7431
Abstract
In vitro pharmacokinetic studies were conducted on enantiomer pairs of twelve valinate or tert-leucinate indole and indazole-3-carboxamide synthetic cannabinoid receptor agonists (SCRAs) detected on the illicit drug market to investigate their physicochemical parameters and structure-metabolism relationships (SMRs). Experimentally derived Log D7.4 [...] Read more.
In vitro pharmacokinetic studies were conducted on enantiomer pairs of twelve valinate or tert-leucinate indole and indazole-3-carboxamide synthetic cannabinoid receptor agonists (SCRAs) detected on the illicit drug market to investigate their physicochemical parameters and structure-metabolism relationships (SMRs). Experimentally derived Log D7.4 ranged from 2.81 (AB-FUBINACA) to 4.95 (MDMB-4en-PINACA) and all SCRAs tested were highly protein bound, ranging from 88.9 ± 0.49% ((R)-4F-MDMB-BINACA) to 99.5 ± 0.08% ((S)-MDMB-FUBINACA). Most tested SCRAs were cleared rapidly in vitro in pooled human liver microsomes (pHLM) and pooled cryopreserved human hepatocytes (pHHeps). Intrinsic clearance (CLint) ranged from 13.7 ± 4.06 ((R)-AB-FUBINACA) to 2944 ± 95.9 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHLM, and from 110 ± 34.5 ((S)-AB-FUBINACA) to 3216 ± 607 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHHeps. Predicted Human in vivo hepatic clearance (CLH) ranged from 0.34 ± 0.09 ((S)-AB-FUBINACA) to 17.79 ± 0.20 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHLM and 1.39 ± 0.27 ((S)-MDMB-FUBINACA) to 18.25 ± 0.12 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHHeps. Valinate and tert-leucinate indole and indazole-3-carboxamide SCRAs are often rapidly metabolised in vitro but are highly protein bound in vivo and therefore predicted in vivo CLH is much slower than CLint. This is likely to give rise to longer detection windows of these substances and their metabolites in urine, possibly as a result of accumulation of parent drug in lipid-rich tissues, with redistribution into the circulatory system and subsequent metabolism. Full article
Show Figures

Figure 1

13 pages, 2345 KB  
Article
Systematical Engineering of Synthetic Yeast for Enhanced Production of Lycopene
by Yu Zhang, Tsan-Yu Chiu, Jin-Tao Zhang, Shu-Jie Wang, Shu-Wen Wang, Long-Ying Liu, Zhi Ping, Yong Wang, Ao Chen, Wen-Wei Zhang, Tai Chen, Yun Wang and Yue Shen
Bioengineering 2021, 8(1), 14; https://doi.org/10.3390/bioengineering8010014 - 19 Jan 2021
Cited by 16 | Viewed by 5522
Abstract
Synthetic biology allows the re-engineering of biological systems and promotes the development of bioengineering to a whole new level, showing great potential in biomanufacturing. Here, in order to make the heterologous lycopene biosynthesis pathway compatible with the host strain YSy 200, we evolved [...] Read more.
Synthetic biology allows the re-engineering of biological systems and promotes the development of bioengineering to a whole new level, showing great potential in biomanufacturing. Here, in order to make the heterologous lycopene biosynthesis pathway compatible with the host strain YSy 200, we evolved YSy200 using a unique Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system that is built in the Sc2.0 synthetic yeast. By inducing SCRaMbLE, we successfully identified a host strain YSy201 that can be served as a suitable host to maintain the heterologous lycopene biosynthesis pathway. Then, we optimized the lycopene biosynthesis pathway and further integrated into the rDNA arrays of YSy201 to increase its copy number. In combination with culturing condition optimization, we successfully screened out the final yeast strain YSy222, which showed a 129.5-fold increase of lycopene yield in comparison with its parental strain. Our work shows that, the strategy of combining the engineering efforts on both the lycopene biosynthesis pathway and the host strain can improve the compatibility between the heterologous pathway and the host strain, which can further effectively increase the yield of the target product. Full article
(This article belongs to the Special Issue From Yeast to Biotechnology)
Show Figures

Figure 1

18 pages, 3546 KB  
Article
Rapid Colorimetric Detection of Genome Evolution in SCRaMbLEd Synthetic Saccharomyces cerevisiae Strains
by Elizabeth L. I. Wightman, Heinrich Kroukamp, Isak S. Pretorius, Ian T. Paulsen and Helena K. M. Nevalainen
Microorganisms 2020, 8(12), 1914; https://doi.org/10.3390/microorganisms8121914 - 1 Dec 2020
Cited by 6 | Viewed by 4484
Abstract
Genome-scale engineering and custom synthetic genomes are reshaping the next generation of industrial yeast strains. The Cre-recombinase-mediated chromosomal rearrangement mechanism of designer synthetic Saccharomyces cerevisiae chromosomes, known as SCRaMbLE, is a powerful tool which allows rapid genome evolution upon command. This system is [...] Read more.
Genome-scale engineering and custom synthetic genomes are reshaping the next generation of industrial yeast strains. The Cre-recombinase-mediated chromosomal rearrangement mechanism of designer synthetic Saccharomyces cerevisiae chromosomes, known as SCRaMbLE, is a powerful tool which allows rapid genome evolution upon command. This system is able to generate millions of novel genomes with potential valuable phenotypes, but the excessive loss of essential genes often results in poor growth or even the death of cells with useful phenotypes. In this study we expanded the versatility of SCRaMbLE to industrial strains, and evaluated different control measures to optimize genomic rearrangement, whilst limiting cell death. To achieve this, we have developed RED (rapid evolution detection), a simple colorimetric plate-assay procedure to rapidly quantify the degree of genomic rearrangements within a post-SCRaMbLE yeast population. RED-enabled semi-synthetic strains were mated with the haploid progeny of industrial yeast strains to produce stress-tolerant heterozygous diploid strains. Analysis of these heterozygous strains with the RED-assay, genome sequencing and custom bioinformatics scripts demonstrated a correlation between RED-assay frequencies and physical genomic rearrangements. Here we show that RED is a fast and effective method to evaluate the optimal SCRaMbLE induction times of different Cre-recombinase expression systems for the development of industrial strains. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Graphical abstract

27 pages, 3475 KB  
Article
Diverse Horizontally-Acquired Gene Clusters Confer Sucrose Utilization to Different Lineages of the Marine Pathogen Photobacterium damselae subsp. damselae
by Saqr Abushattal, Ana Vences, Alba V. Barca and Carlos R. Osorio
Genes 2020, 11(11), 1244; https://doi.org/10.3390/genes11111244 - 22 Oct 2020
Cited by 7 | Viewed by 4744
Abstract
The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr). Previous studies [...] Read more.
The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr). Previous studies have reported sucrose-utilizing isolates (Scr+), but the genetic basis of this variable phenotype remains uncharacterized. Here, we carried out the genome sequencing of five Scr+ and two ScrPdd isolates and conducted a comparative genomics analysis with sixteen additional Pdd genomes sequenced in previous studies. We identified two different versions of a four-gene cluster (scr cluster) exclusive of Scr+ isolates encoding a PTS system sucrose-specific IIBC component (scrA), a fructokinase (scrK), a sucrose-6-phosphate hydrolase (scrB), and a sucrose operon repressor (scrR). A scrA deletion mutant did not ferment sucrose and was impaired for growth with sucrose as carbon source. Comparative genomics analyses suggested that scr clusters were acquired by horizontal transfer by different lineages of Pdd and were inserted into a recombination hot-spot in the Pdd genome. The incongruence of phylogenies based on housekeeping genes and on scr genes revealed that phylogenetically diverse gene clusters for sucrose utilization have undergone extensive horizontal transfer among species of Vibrio and Photobacterium. Full article
(This article belongs to the Special Issue Genes at Ten)
Show Figures

Figure 1

Back to TopTop