Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = SCCOHT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3032 KiB  
Article
MYC Regulates a DNA Repair Gene Expression Program in Small Cell Carcinoma of the Ovary, Hypercalcemic Type
by James R. Evans, Jing Wang, Cinthia N. Reed, Joy H. Creighton, Kaylee B. Garrison, Abigail N. Robertson, Ashley Lira-Rivera, Diondre’ D. Baisden, William P. Tansey, Rafet Al-Tobasei, Jessica D. Lang, Qi Liu and April M. Weissmiller
Cancers 2025, 17(13), 2255; https://doi.org/10.3390/cancers17132255 - 7 Jul 2025
Viewed by 433
Abstract
Background/Objectives: SCCOHT is an aggressive and often fatal cancer that belongs to the ~20% of cancers defined by mutations to subunits of the SWI/SNF chromatin remodeling complex. In SCCOHT, mutations to the SMARCA4 gene, which encodes the SWI/SNF ATPase BRG1, are sufficient to [...] Read more.
Background/Objectives: SCCOHT is an aggressive and often fatal cancer that belongs to the ~20% of cancers defined by mutations to subunits of the SWI/SNF chromatin remodeling complex. In SCCOHT, mutations to the SMARCA4 gene, which encodes the SWI/SNF ATPase BRG1, are sufficient to impair SWI/SNF function. This single genetic lesion leads to a cascade of events that promote tumorigenesis, some of which may involve the intersection of SWI/SNF with oncogenic pathways such as those regulated by the MYC oncogene. In SCCOHT tumors and other cancers marked by SWI/SNF subunit mutation, MYC target genes are recurrently activated, pointing to a relationship between SWI/SNF and MYC that has yet to be fully explored. Methods: In this study, we investigate the contribution of MYC to SCCOHT biology by performing a combination of chromatin binding and transcriptome assays in genetically engineered SCCOHT cell lines, with subsequent validation using patient tumor expression data. Results: We find that MYC binds to thousands of active promoters in the BIN-67 SCCOHT cell line and that the depletion of MYC results in a broad range of gene expression changes with a notable effect on the expression of genes related to DNA repair. We uncover an MYC-regulated DNA repair gene expression program in BIN-67 cells that is antagonized by BRG1 reintroduction. Finally, we identify a DNA repair gene signature that is upregulated in SCCOHT tumors and in tumors defined by loss of the SWI/SNF subunit SNF5. Conclusions: Collectively, these data implicate MYC as a robust regulator of DNA repair gene expression in SCCOHT and lay a foundation for future studies focused on interrogating the relationship between BRG1 and MYC. Full article
(This article belongs to the Special Issue Chromatin-Remodeling Factors in Cancer Cells)
Show Figures

Figure 1

19 pages, 19454 KiB  
Article
mTOR Inhibitor Everolimus Modulates Tumor Growth in Small-Cell Carcinoma of the Ovary, Hypercalcemic Type and Augments the Drug Sensitivity of Cancer Cells to Cisplatin
by Kewei Zheng, Yi Gao, Jing Xu, Mingyi Kang, Ranran Chai, Guanqin Jin and Yu Kang
Biomedicines 2025, 13(1), 1; https://doi.org/10.3390/biomedicines13010001 - 24 Dec 2024
Cited by 1 | Viewed by 1616
Abstract
Background: Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare and aggressive cancer with a poor prognosis and limited treatment options. Current chemotherapy regimens are predominantly platinum-based; however, the development of platinum resistance during treatment significantly worsens patient outcomes. Everolimus, [...] Read more.
Background: Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare and aggressive cancer with a poor prognosis and limited treatment options. Current chemotherapy regimens are predominantly platinum-based; however, the development of platinum resistance during treatment significantly worsens patient outcomes. Everolimus, an mTOR inhibitor, has been widely used in combination cancer therapies and has successfully enhanced the efficacy of platinum-based treatments. Method: In this study, we investigated the combined effects of everolimus and cisplatin on SCCOHT through both in vitro and in vivo experiments, complemented by RNA sequencing (RNA-seq) analyses to further elucidate the therapeutic impact. Result: Our findings revealed that everolimus significantly inhibits the proliferation of SCCOHT cells, induces cell cycle arrest, and accelerates apoptosis. When combined with cisplatin, everolimus notably enhances the therapeutic efficacy without increasing the toxicity typically associated with platinum-based drugs. RNA-seq analysis uncovered alterations in the expression of apoptosis-related genes, suggesting that the underlying mechanism involves autophagy regulation. Conclusions: Despite the current challenges in treating SCCOHT and the suboptimal efficacy of platinum-based therapies, the addition of everolimus significantly suppresses tumor growth. This indicates that everolimus enhances cisplatin efficacy by disrupting survival-promoting signaling cascades and inducing cell cycle arrest. Furthermore, it points to potential biomarkers for predicting therapeutic response. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

22 pages, 3450 KiB  
Article
Characterization of Epithelial–Mesenchymal and Neuroendocrine Differentiation States in Pancreatic and Small Cell Ovarian Tumor Cells and Their Modulation by TGF-β1 and BMP-7
by Hendrik Ungefroren, Juliane von der Ohe, Rüdiger Braun, Yola Gätje, Olha Lapshyna, Jörg Schrader, Hendrik Lehnert, Jens-Uwe Marquardt, Björn Konukiewitz and Ralf Hass
Cells 2024, 13(23), 2010; https://doi.org/10.3390/cells13232010 - 5 Dec 2024
Cited by 1 | Viewed by 1772
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.e., chromogranin A (CHGA), synaptophysin (SYP), somatostatin receptor 2 (SSTR2), and SSTR5 in PANC-1 and MIA PaCa-2 cells. By means of immunohistochemistry, the expressions of CHGA, SYP, SSTR2, and the EMT markers cytokeratin 7 (CK7) and vimentin could be allocated to the neoplastic ductal epithelial cells of pancreatic ducts in surgically resected tissues from patients with PDAC. In HPDE6c7 normal pancreatic duct epithelial cells and in epithelial subtype BxPC-3 PDAC cells, the expression of CHGA, SYP, and neuron-specific enolase 2 (NSE) was either undetectable or much lower than in PANC-1 and MIA PaCa-2 cells. Parental cultures of PANC-1 cells exhibit EM plasticity (EMP) and harbor clonal subpopulations with both M- and E-phenotypes. Of note, M-type clones were found to display more pronounced NED than E-type clones. Inducing EMT in parental cultures of PANC-1 cells by treatment with transforming growth factor-β1 (TGF-β1) repressed epithelial genes and co-induced mesenchymal and NED genes, except for SSTR5. Surprisingly, treatment with bone morphogenetic protein (BMP)-7 differentially affected gene expressions in PANC-1, MIA PaCa-2, BxPC-3, and HPDE cells. It synergized with TGF-β1 in the induction of vimentin, SNAIL, SSTR2, and NSE but antagonized it in the regulation of CHGA and SSTR5. Phospho-immunoblotting in M- and E-type PANC-1 clones revealed that both TGF-β1 and, surprisingly, also BMP-7 activated SMAD2 and SMAD3 and that in M- but not E-type clones BMP-7 was able to dramatically enhance the activation of SMAD3. From these data, we conclude that in EMT of PDAC cells mesenchymal and NED markers are co-regulated, and that mesenchymal–epithelial transition (MET) is associated with a loss of both the mesenchymal and NED phenotypes. Analyzing NED in another tumor type, small cell carcinoma of the ovary hypercalcemic type (SCCOHT), revealed that two model cell lines of this disease (SCCOHT-1, BIN-67) do express CDH1, SNAI1, VIM, CHGA, SYP, ENO2, and SSTR2, but that in contrast to BMP-7, none of these genes was transcriptionally regulated by TGF-β1. Likewise, in BIN-67 cells, BMP-7 was able to reduce proliferation, while in SCCOHT-1 cells this occurred only upon combined treatment with TGF-β and BMP-7. We conclude that in PDAC-derived tumor cells, NED is closely linked to EMT and TGF-β signaling, which may have implications for the therapeutic use of TGF-β inhibitors in PDAC management. Full article
(This article belongs to the Special Issue New Insights of TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

25 pages, 1386 KiB  
Review
Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies—Therapeutic Vulnerabilities in Treatment-Resistant Subtypes
by Yue Ma, Natisha R. Field, Tao Xie, Sarina Briscas, Emily G. Kokinogoulis, Tali S. Skipper, Amani Alghalayini, Farhana A. Sarker, Nham Tran, Nikola A. Bowden, Kristie-Ann Dickson and Deborah J. Marsh
Cancers 2024, 16(17), 3068; https://doi.org/10.3390/cancers16173068 - 3 Sep 2024
Cited by 3 | Viewed by 3635
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations [...] Read more.
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42–67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69–100% of SCCOHT cases and SMARCA2 silencing seen 86–100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade. Full article
(This article belongs to the Special Issue Rare Gynecological Cancers)
Show Figures

Graphical abstract

14 pages, 577 KiB  
Systematic Review
Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT): Patient Characteristics, Treatment, and Outcome—A Systematic Review
by Francis S. P. L. Wens, Caroline C. C. Hulsker, Marta Fiocco, József Zsiros, Stephanie E. Smetsers, Ronald R. de Krijger, Alida F. W. van der Steeg, Ronald P. Zweemer, Inge O. Baas, Eva Maria Roes, Leendert H. J. Looijenga, Cornelis G. Gerestein and Annelies M. C. Mavinkurve-Groothuis
Cancers 2023, 15(15), 3794; https://doi.org/10.3390/cancers15153794 - 26 Jul 2023
Cited by 20 | Viewed by 3526
Abstract
Background: Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare aggressive ovarian malignancy mainly affecting children, adolescents, and young adults. Since the discovery of mutations in the SMARCA4 gene in 2014, SCCOHT has become the subject of extensive investigation. However, international [...] Read more.
Background: Small-cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare aggressive ovarian malignancy mainly affecting children, adolescents, and young adults. Since the discovery of mutations in the SMARCA4 gene in 2014, SCCOHT has become the subject of extensive investigation. However, international uniform treatment guidelines for SCCOHT are lacking and the outcome remains poor. The aim of this systematic review is to generate an overview of all reported patients with SCCOHT from 1990 onwards, describing the clinical presentation, genetic characteristics, treatment, and outcome. Methods: A systematic search was performed in the databases Embase, Medline, Web of Science, and Cochrane for studies that focus on SCCOHT. Patient characteristics and treatment data were extracted from the included studies. Survival was estimated using Kaplan–Meier’s methodology. To assess the difference between survival, the log-rank test was used. To quantify the effect of the FIGO stage, the Cox proportional hazard regression model was estimated. The chi-squared test was used to study the association between the FIGO stage and the surgical procedures. Results: Sixty-seven studies describing a total of 306 patients were included. The median patient age was 25 years (range 1–60 years). The patients mostly presented with non-specific symptoms such as abdominal pain and sometimes showed hypercalcemia and elevated CA-125. A great diversity in the diagnostic work-up and therapeutic approaches was reported. The chemotherapy regimens were very diverse, all containing a platinum-based (cisplatin or carboplatin) backbone. Survival was strongly associated with the FIGO stage at diagnosis. Conclusions: SCCOHT is a rare and aggressive ovarian cancer, with a poor prognosis, and information on adequate treatment for this cancer is lacking. The testing of mutations in SMARCA4 is crucial for an accurate diagnosis and may lead to new treatment options. Harmonization and international collaboration to obtain high-quality data on diagnostic investigations, treatment, and outcome are warranted to be able to develop international treatment guidelines to improve the survival chances of young women with SCCOHT. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Figure 1

21 pages, 637 KiB  
Review
The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer
by Ieva Vaicekauskaitė, Rasa Sabaliauskaitė, Juozas Rimantas Lazutka and Sonata Jarmalaitė
Int. J. Mol. Sci. 2022, 23(22), 13670; https://doi.org/10.3390/ijms232213670 - 8 Nov 2022
Cited by 17 | Viewed by 4633
Abstract
Ovarian cancer (OC) is the fifth leading cause of women’s death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, [...] Read more.
Ovarian cancer (OC) is the fifth leading cause of women’s death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs’ involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC. Full article
(This article belongs to the Special Issue Epigenetic Mechanisms and Human Pathology)
Show Figures

Figure 1

17 pages, 9273 KiB  
Article
In Vitro Effects of Mitochondria-Targeted Antioxidants in a Small-Cell Carcinoma of the Ovary of Hypercalcemic Type and in Type 1 and Type 2 Endometrial Cancer
by Mariana Castelôa, Beatriz Moreira-Pinto, Sofia Benfeito, Fernanda Borges, Bruno M. Fonseca and Irene Rebelo
Biomedicines 2022, 10(4), 800; https://doi.org/10.3390/biomedicines10040800 - 29 Mar 2022
Cited by 3 | Viewed by 2521
Abstract
Small-cell carcinoma of the ovary of hypercalcemic type (SCCOHT) and endometrial cancer from type 1 and type 2 are gynecological tumors that affect women worldwide. The treatment encompasses the use of cytotoxic drugs that are nonspecific and inefficient. “Mitocans”, a family of drugs [...] Read more.
Small-cell carcinoma of the ovary of hypercalcemic type (SCCOHT) and endometrial cancer from type 1 and type 2 are gynecological tumors that affect women worldwide. The treatment encompasses the use of cytotoxic drugs that are nonspecific and inefficient. “Mitocans”, a family of drugs that specifically target tumor cells’ mitochondria, might be a solution, as they conjugate compounds, such as antioxidants, with carriers, such as lipophilic cations, that direct them to the mitochondria. In this study, caffeic acid was conjugated with triphenylphosphonium (TPP), 4-picolinium, or isoquinolinium, forming 3 new compounds (Mito6_TPP, Mito6_picol., and Mito6_isoq.) that were tested on ovarian (COV434) and endometrial (Hec50co and Ishikawa) cancer cells. The results of MTT and neutral red assays suggested a time- and concentration-dependent decrease in cell viability in all tumor cell lines. The presence of apoptosis was indicated by the Giemsa and Höechst staining and by the decrease in mitochondrial membrane potential. The measurement of intracellular reactive oxygen species demonstrated the antioxidant properties of these compounds, which might be related to cell death. Generally, Mito6_TPP was more active at lower concentrations than Mito6_picol. or Mito6_isoq., but was accompanied by more cytotoxic effects, as shown by the lactate dehydrogenase release. Non-tumorous cells (HFF-1) showed no changes after treatment. This study assessed the potential of these compounds as anticancer agents, although further investigation is needed. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

12 pages, 6967 KiB  
Case Report
Case Report of Small Cell Carcinoma of the Ovary, Hypercalcemic Type (Ovarian Rhabdoid Tumor) with SMARCB1 Mutation: A Literature Review of a Rare and Aggressive Condition
by Maria Fernanda Evangelista Simões, Alexandre André Balieiro Anastácio da Costa, Tullio Novaes Silva, Lizieux Fernandes, Graziele Bovolim, Giovana Tardin Torrezan, Dirce Maria Carraro, Glauco Baiocchi, Ademir Narcizo Oliveira Menezes, Elizabeth Santana Dos Santos and Louise De Brot
Curr. Oncol. 2022, 29(2), 411-422; https://doi.org/10.3390/curroncol29020037 - 18 Jan 2022
Cited by 14 | Viewed by 5358
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive condition that is associated with the SMARCA4 mutation and has a dismal prognosis. It is generally diagnosed in young women. Here, we report a case of a young woman [...] Read more.
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive condition that is associated with the SMARCA4 mutation and has a dismal prognosis. It is generally diagnosed in young women. Here, we report a case of a young woman with SCCOHT harboring a rare molecular finding with a highly aggressive biological behavior. The patient had a somatic SMARCB1 mutation instead of an expected SMARCA4 alteration. Even though the patient was treated with high-dose chemotherapy followed by stem cell transplantation, she evolved with disease progression and died 11 months after her first symptoms appeared. We present a literature review of this rare disease and discuss the findings in the present patient in comparison to expected molecular alterations and options for SCCOHT treatment. Full article
(This article belongs to the Special Issue Next Gen Sequencing: Clinical Molecular Genetics Findings)
Show Figures

Figure 1

17 pages, 5045 KiB  
Article
Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT) beyond SMARCA4 Mutations: A Comprehensive Genomic Analysis
by Aurélie Auguste, Félix Blanc-Durand, Marc Deloger, Audrey Le Formal, Rohan Bareja, David C. Wilkes, Catherine Richon, Béatrice Brunn, Olivier Caron, Mojgan Devouassoux-Shisheboran, Sébastien Gouy, Philippe Morice, Enrica Bentivegna, Andrea Sboner, Olivier Elemento, Mark A. Rubin, Patricia Pautier, Catherine Genestie, Joanna Cyrta and Alexandra Leary
Cells 2020, 9(6), 1496; https://doi.org/10.3390/cells9061496 - 19 Jun 2020
Cited by 36 | Viewed by 6358
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is an aggressive malignancy that occurs in young women, is characterized by recurrent loss-of-function mutations in the SMARCA4 gene, and for which effective treatments options are lacking. The aim of this study was to [...] Read more.
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is an aggressive malignancy that occurs in young women, is characterized by recurrent loss-of-function mutations in the SMARCA4 gene, and for which effective treatments options are lacking. The aim of this study was to broaden the knowledge on this rare malignancy by reporting a comprehensive molecular analysis of an independent cohort of SCCOHT cases. We conducted Whole Exome Sequencing in six SCCOHT, and RNA-sequencing and array comparative genomic hybridization in eight SCCOHT. Additional immunohistochemical, Sanger sequencing and functional data are also provided. SCCOHTs showed remarkable genomic stability, with diploid profiles and low mutation load (mean, 5.43 mutations/Mb), including in the three chemotherapy-exposed tumors. All but one SCCOHT cases exhibited 19p13.2-3 copy-neutral LOH. SMARCA4 deleterious mutations were recurrent and accompanied by loss of expression of the SMARCA2 paralog. Variants in a few other genes located in 19p13.2-3 (e.g., PLK5) were detected. Putative therapeutic targets, including MAGEA4, AURKB and CLDN6, were found to be overexpressed in SCCOHT by RNA-seq as compared to benign ovarian tissue. Lastly, we provide additional evidence for sensitivity of SCCOHT to HDAC, DNMT and EZH2 inhibitors. Despite their aggressive clinical course, SCCOHT show remarkable inter-tumor homogeneity and display genomic stability, low mutation burden and few somatic copy number alterations. These findings and preliminary functional data support further exploration of epigenetic therapies in this lethal disease. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Ovarian Cancer)
Show Figures

Figure 1

Back to TopTop