Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = SARS-CoV-2 epitopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 604 KiB  
Review
Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae
by Lais Alves do-Nascimento, Nicolle Rakanidis Machado, Isabella Siuffi Bergamasco, João Vitor da Silva Borges, Fabio da Ressureição Sgnotto and Jefferson Russo Victor
COVID 2025, 5(8), 121; https://doi.org/10.3390/covid5080121 - 30 Jul 2025
Viewed by 246
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly known as long-COVID—can persist for months. Recent studies have identified the emergence of diverse autoantibodies in COVID-19, including those targeting nuclear antigens, phospholipids, type I interferons, cytokines, endothelial components, and G-protein-coupled receptors. These autoantibodies are more frequently detected in patients with moderate to severe disease and have been implicated in immune dysregulation, vascular injury, and persistent symptoms. This review examines the underlying immunological mechanisms driving autoantibody production during SARS-CoV-2 infection—including molecular mimicry, epitope spreading, and bystander activation—and discusses their functional roles in acute and post-acute disease. We further explore the relevance of autoantibodies in maternal–fetal immunity and comorbid conditions such as autoimmunity and cancer, and we summarize current and emerging therapeutic strategies. A comprehensive understanding of SARS-CoV-2-induced autoantibodies may improve risk stratification, inform clinical management, and guide the development of targeted immunomodulatory therapies. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Epitope Profiling of SARS-CoV-2 Spike Antigen Provides a Novel Strategy for Developing ELISAs Specific for Different Spike Protein Variants in Bivalent Vaccine Formulations
by Luciano Ettorre, Trevor Williams, Camille Houy, Shaolong Zhu, Michael Kishko, Ali Azizi, Andrew D. James, Beata Gajewska and Jason Szeto
Vaccines 2025, 13(8), 794; https://doi.org/10.3390/vaccines13080794 - 26 Jul 2025
Viewed by 363
Abstract
Background/Objectives: An initial COVID-19 candidate vaccine containing a purified ancestral SARS-CoV-2 spike antigen was characterized with an ELISA using recombinant monoclonal antibodies (mAbs) generated against this variant. Upon the emergence of a new Beta (B.1.351) spike variant early in the pandemic, the assessment [...] Read more.
Background/Objectives: An initial COVID-19 candidate vaccine containing a purified ancestral SARS-CoV-2 spike antigen was characterized with an ELISA using recombinant monoclonal antibodies (mAbs) generated against this variant. Upon the emergence of a new Beta (B.1.351) spike variant early in the pandemic, the assessment of a bivalent vaccine containing ancestral and Beta spike antigens began. Due to accelerated project timelines, mAbs generated specifically against the Beta spike antigen were not available at the time to address assay development and vaccine testing requirements. Methods: Using only the initial mAb panel raised against the ancestral spike antigen, an epitope-blocking ELISA strategy was developed to independently measure Beta spike antigen in bivalent vaccine formulations. To facilitate this, epitope profiling of spike antigens from both ancestral and Beta variants was performed with biolayer interferometry and hydrogen–deuterium exchange mass spectrometry using the original panel of mAbs. Results: The resulting blocking ELISA was precise and specific for the Beta spike antigen and detected the expected amount of this antigen in bivalent vaccine formulations. The specific amount of ancestral spike protein in the bivalent vaccine was also confirmed using the original ELISA developed at the onset of the pandemic. Conclusions: This epitope-blocking strategy helped to overcome key reagent availability issues and could be applied to other projects involving related proteins. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

28 pages, 5780 KiB  
Article
Multiscale Modeling and Dynamic Mutational Profiling of Binding Energetics and Immune Escape for Class I Antibodies with SARS-CoV-2 Spike Protein: Dissecting Mechanisms of High Resistance to Viral Escape Against Emerging Variants
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(8), 1029; https://doi.org/10.3390/v17081029 - 23 Jul 2025
Viewed by 498
Abstract
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding [...] Read more.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior—effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface—which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions. Full article
Show Figures

Graphical abstract

23 pages, 680 KiB  
Review
Immunological Strategies for Enhancing Viral Neutralization and Protection in Antibody-Guided Vaccine Design
by Dimitrina Miteva, Maria Kokudeva, Latchesar Tomov, Hristiana Batselova and Tsvetelina Velikova
Biologics 2025, 5(3), 21; https://doi.org/10.3390/biologics5030021 - 23 Jul 2025
Viewed by 408
Abstract
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of [...] Read more.
Background: Immunological strategies for antibody-guided vaccine design intend to enhance viral neutralization and protection and increase efficacy. Here, we discuss advances in antibody-guided vaccine design and current antibody-guided strategies, including epitope-based, nanoparticle-based, and scaffold-based vaccine approaches. We review the challenges and limitations of vaccines against different pathogens, such as influenza A virus, HIV-1 virus, single-celled malaria parasite, respiratory syncytial virus, and SARS-CoV-2. We summarize the available literature guidance, including emerging techniques in immunological vaccine design, to help understand and improve antibody-based immunity. The search strategy we applied is a comprehensive literature review of major databases, with specific search terms related to antibody-mediated vaccine design, viral neutralization, and immune protection. We discuss the how future directions for next-generation vaccine platforms and personalized vaccines based on immunogenetics will help improve vaccine design for increased specificity and potency of antibodies that neutralize pathogens, offering more precise and effective immune responses and, therefore, protection. Full article
(This article belongs to the Special Issue Progress in Antibody-Guided Vaccine Design for Viruses)
Show Figures

Figure 1

12 pages, 4562 KiB  
Article
Human Gliomedin and Ryanodine 3 Type Receptor Is the Key to Explain the Guillain Barre Syndrome in SARS-CoV-2 and Others Bacterial Related to SARS-CoV-2 Postinfection? A Molecular Mimicry Point of View
by Gustavo Alberto Obando-Pereda and Luis Alberto Ponce-Soto
Immuno 2025, 5(3), 28; https://doi.org/10.3390/immuno5030028 - 17 Jul 2025
Viewed by 341
Abstract
Guillain-Barre syndrome is an autoimmune disease that provokes neural illness causing acute paralysis neuropathy. This syndrome appears after some bacterial infections produced by Campylobacter jejuni, Streptococcus pyogenes, S. pneumoniae, Haemophilus influenciae, E. coli and current studies showed the appears [...] Read more.
Guillain-Barre syndrome is an autoimmune disease that provokes neural illness causing acute paralysis neuropathy. This syndrome appears after some bacterial infections produced by Campylobacter jejuni, Streptococcus pyogenes, S. pneumoniae, Haemophilus influenciae, E. coli and current studies showed the appears of this syndrome after SARS-CoV-2 infection. In this study, a in silico analysis was carry out in which to determinate bacterial epitopes than produce the molecule mimicry phenomena and that can produce the immune system activation against this epitope. A conserved amino acid sequence has been encountered with the highest probability to activate the immune system against this bacterial epitope, human gliomedin and ryanodine 3 type receptor. More studies needed to demonstrate in vivo the molecular mimicry in Guillain-Barre syndrome patients. Full article
(This article belongs to the Section Immunopathology and Immunohistology)
Show Figures

Graphical abstract

22 pages, 498 KiB  
Review
The XEC Variant: Genomic Evolution, Immune Evasion, and Public Health Implications
by Alaa A. A. Aljabali, Kenneth Lundstrom, Altijana Hromić-Jahjefendić, Nawal Abd El-Baky, Debaleena Nawn, Sk. Sarif Hassan, Alberto Rubio-Casillas, Elrashdy M. Redwan and Vladimir N. Uversky
Viruses 2025, 17(7), 985; https://doi.org/10.3390/v17070985 - 15 Jul 2025
Viewed by 794
Abstract
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official [...] Read more.
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official surveillance data from 2023 to early 2025, prioritizing virological, clinical, and immunological reports related to XEC and its parent lineages. Defined by the distinctive spike protein mutations, T22N and Q493E, XEC exhibits modest reductions in neutralization in vitro, although current evidence suggests that mRNA booster vaccines, including those targeting JN.1 and KP.2, retain cross-protective efficacy against symptomatic and severe disease. The XEC strain of SARS-CoV-2 has drawn particular attention due to its increasing prevalence in multiple regions and its potential to displace other Omicron subvariants, although direct evidence of enhanced replicative fitness is currently lacking. Preliminary analyses also indicated that glycosylation changes at the N-terminal domain enhance infectivity and immunological evasion, which is expected to underpin the increasing prevalence of XEC. The XEC variant, while still emerging, is marked by a unique recombination pattern and a set of spike protein mutations (T22N and Q493E) that collectively demonstrate increased immune evasion potential and epidemiological expansion across Europe and North America. Current evidence does not conclusively associate XEC with greater disease severity, although additional research is required to determine its clinical relevance. Key knowledge gaps include the precise role of recombination events in XEC evolution and the duration of cross-protective T-cell responses. New research priorities include genomic surveillance in undersampled regions, updated vaccine formulations against novel spike epitopes, and long-term longitudinal studies to monitor post-acute sequelae. These efforts can be augmented by computational modeling and the One Health approach, which combines human and veterinary sciences. Recent computational findings (GISAID, 2024) point to the potential of XEC for further mutations in under-surveilled reservoirs, enhancing containment challenges and risks. Addressing the potential risks associated with the XEC variant is expected to benefit from interdisciplinary coordination, particularly in regions where genomic surveillance indicates a measurable increase in prevalence. Full article
(This article belongs to the Special Issue Translational Research in Virology)
Show Figures

Figure 1

18 pages, 3172 KiB  
Article
Characterization of the Binding and Inhibition Mechanisms of a Novel Neutralizing Monoclonal Antibody Targeting the Stem Helix Region in the S2 Subunit of the Spike Protein of SARS-CoV-2
by Selene Si Ern Tan, Ee Hong Tam, Kah Man Lai, Yanjun Wu, Tianshu Xiao and Yee-Joo Tan
Vaccines 2025, 13(7), 688; https://doi.org/10.3390/vaccines13070688 - 26 Jun 2025
Viewed by 650
Abstract
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as [...] Read more.
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved to give rise to Variant of Concerns (VOCs) but the S2 domain has limited changes. In particular, the stem helix in S2 did not change significantly and it is fairly well-conserved across multiple beta-CoVs. In this study, we generated a murine mAb 7B2 binding to the stem helix of SARS-CoV-2. Methods: MAb 7B2 was isolated from immunized mouse and its neutralization activity was evaluated using microneutralization, plaque reduction and cell–cell fusion assays. Bio-layer interferometry was used to measure binding affinity and AlphaFold3 was used to model the antibody–antigen interface. Results: MAb 7B2 has lower virus neutralizing and membrane block activities when compared to a previously reported stem helix-binding human mAb S2P6. Alanine scanning and AlphaFold3 modeling reveals that residues K1149 and D1153 in S form a network of polar interactions with the heavy chain of 7B2. Conversely, S2P6 binding to S is not affected by alanine substitution at K1149 and D1153 as indicated by the high ipTM scores in the predicted S2P6-stem helix structure. Conclusions: Our detailed characterization of the mechanism of inhibition of 7B2 reveals its distinctive binding model from S2P6 and yields insights on multiple neutralizing and highly conserved epitopes in the S2 domain which could be key components for pan-CoV vaccine development. Full article
Show Figures

Figure 1

26 pages, 1297 KiB  
Review
Research Progress on the Application of Neutralizing Nanobodies in the Prevention and Treatment of Viral Infections
by Qingling Duan, Tong Ai, Yingying Ma, Ruoyu Li, Hanlin Jin, Xingyi Chen, Rui Zhang, Kunlu Bao and Qi Chen
Microorganisms 2025, 13(6), 1352; https://doi.org/10.3390/microorganisms13061352 - 11 Jun 2025
Viewed by 723
Abstract
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and [...] Read more.
Public health crises triggered by viral infections pose severe threats to individual health and disrupt global socioeconomic systems. Against the backdrop of global pandemics caused by highly infectious diseases such as COVID-19 and Ebola virus disease (EVD), the development of innovative prevention and treatment strategies has become a strategic priority in the field of biomedicine. Neutralizing antibodies, as biological agents, are increasingly recognized for their potential in infectious disease control. Among these, nanobodies (Nbs) derived from camelid heavy-chain antibodies exhibit remarkable technical advantages due to their unique structural features. Compared to traditional neutralizing antibodies, nanobodies offer significant cost-effectiveness in production and enable versatile administration routes (e.g., subcutaneous injection, oral delivery, or aerosol inhalation), making them particularly suitable for respiratory infection control and resource-limited settings. Furthermore, engineered modification strategies—including multivalent constructs, multi-epitope recognition designs, and fragment crystallizable (Fc) domain fusion—effectively enhance their neutralizing activity and suppress viral immune escape mechanisms. Breakthroughs have been achieved in combating pathogens such as the Ebola virus and SARS-CoV-2, with mechanisms involving the blockade of virus–host interactions, induction of viral particle disintegration, and enhancement of immune responses. This review comprehensively discusses the structural characteristics, high-throughput screening technologies, and engineering strategies of nanobodies, providing theoretical foundations for the development of novel antiviral therapeutics. These advances hold strategic significance for addressing emerging and re-emerging infectious diseases. Full article
Show Figures

Figure 1

15 pages, 23341 KiB  
Article
Discovery of Synergistic Broadly Neutralizing Antibodies Targeting Non-Dominant Epitopes on SARS-CoV-2 RBD and NTD
by Hualong Feng, Zuowei Wang, Ling Li, Yunjian Li, Maosheng Lu, Xixian Chen, Lin Hu, Yi Sun, Ruiping Du, Rongrong Qin, Xuanyi Chen, Liwei Jiang and Teng Zuo
Vaccines 2025, 13(6), 592; https://doi.org/10.3390/vaccines13060592 - 30 May 2025
Viewed by 650
Abstract
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal [...] Read more.
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal antibodies (mAbs) were isolated from a donor who experienced a BA.5 or BF.7 breakthrough infection after three doses of inactivated vaccines. Their binding and neutralizing capacities were measured with ELISA and a pseudovirus-based neutralization assay, respectively. Their epitopes were mapped by competition ELISA and site-directed mutation. Results: Among a total of 67 spike-specific mAbs cloned from the donor, four mAbs (KXD643, KXD652, KXD681, and KXD686) can neutralize all tested SARS-CoV-2 variants from wild-type to KP.3. Moreover, KXD643, KXD652, and KXD681 belong to a clonotype encoded by IGHV5-51 and IGKV1-13 and recognize the cryptic and conserved RBD-8 epitope on the receptor-binding domain (RBD). In contrast, KXD686 is encoded by IGHV1-69 and IGKV3-20 and targets a conserved epitope (NTD Site iv) outside the antigenic supersite (NTD Site i) of the N-terminal domain (NTD). Notably, antibody cocktails containing these two groups of mAbs can neutralize SARS-CoV-2 more potently due to synergistic effects. In addition, bispecific antibodies derived from KXD643 and KXD686 demonstrate further improved neutralizing potency compared to antibody cocktails. Conclusions: These four mAbs can be developed as candidates of pan-SARS-CoV-2 antibody therapeutics through further antibody engineering. On the other hand, vaccines designed to simultaneously elicit neutralizing antibodies towards RBD-8 and NTD Site iv have the potential to provide pan-SARS-CoV-2 protection. Full article
Show Figures

Figure 1

17 pages, 3121 KiB  
Article
Bio-Inspired Mamba for Antibody–Antigen Interaction Prediction
by Xuan Liu, Haitao Fu, Yuqing Yang and Jian Zhang
Biomolecules 2025, 15(6), 764; https://doi.org/10.3390/biom15060764 - 26 May 2025
Viewed by 858
Abstract
Antibody lead discovery, crucial for immunotherapy development, requires identifying candidates with potent binding affinities to target antigens. Recent advances in protein language models have opened promising avenues to tackle this challenge by predicting antibody–antigen interactions (AAIs). Despite their appeals, precisely detecting binding sites [...] Read more.
Antibody lead discovery, crucial for immunotherapy development, requires identifying candidates with potent binding affinities to target antigens. Recent advances in protein language models have opened promising avenues to tackle this challenge by predicting antibody–antigen interactions (AAIs). Despite their appeals, precisely detecting binding sites (i.e., paratopes and epitopes) within the complex landscape of long-sequence biomolecules remains challenging. Herein, we propose MambaAAI, a bio-inspired model built upon the Mamba architecture, designed to predict AAIs and identify binding sites through selective attention mechanisms. Technically, we employ ESM-2, a pre-trained protein language model to extract evolutionarily enriched representations from input antigen and antibody sequences, which are modeled as residue-level interaction matrixes. Subsequently, a dual-view Mamba encoder is devised to capture important binding patterns, by dynamically learning embeddings of interaction matrixes from both antibody and antigen perspectives. Finally, the learned embeddings are decoded using a multilayer perceptron to output interaction probabilities. MambaAAI provides a unique advantage, relative to prior techniques, in dynamically selecting bio-enhancing residue sites that contribute to AAI prediction. We evaluate MambaAAI on two large-scale antibody–antigen neutralization datasets, and in silico results demonstrate that our method marginally outperforms the state-of-the-art baselines in terms of prediction accuracy, while maintaining robust generalization to unseen antibodies and antigens. In further analysis of the selective attention mechanism, we found that MambaAAI successfully uncovers critical epitope and paratope regions in the SARS-CoV-2 antibody examples. It is believed that MambaAAI holds great potential to discover lead candidates targeting specific antigens at a lower burden. Full article
Show Figures

Figure 1

19 pages, 6920 KiB  
Article
Covalent Functionalization of Layered Double Hydroxides to Generate Peptide-Based SARS-CoV-2 Nanovaccine
by Alejandra E. Liñán-González, Sayma A. Rodríguez-Montelongo, Mariano J. García-Soto, Daniela Gómez-Zarandona, Susan Farfán-Castro, Gabriela Palestino, Raúl Ocampo-Pérez, Erika Padilla-Ortega, Omar González-Ortega and Sergio Rosales-Mendoza
Materials 2025, 18(11), 2449; https://doi.org/10.3390/ma18112449 - 23 May 2025
Viewed by 511
Abstract
Nanoclays have gained attention in biological applications due to their biocompatibility, low toxicity, and cost-effectiveness. Layered double hydroxides (LDHs) are synthetic nanoclays that have been used as adjuvants and antigen carriers in nanovaccines developed through passive bioconjugation. However, performing active bioconjugation to bind [...] Read more.
Nanoclays have gained attention in biological applications due to their biocompatibility, low toxicity, and cost-effectiveness. Layered double hydroxides (LDHs) are synthetic nanoclays that have been used as adjuvants and antigen carriers in nanovaccines developed through passive bioconjugation. However, performing active bioconjugation to bind antigens covalently and generate subunit nanovaccines remains unexplored. In this study, we investigated the synthesis, functionalization, and active conjugation of LDH nanoparticles to produce subunit nanovaccines with peptides from SARS-CoV-2. The synthesis of Mg-Al LDHs via a coprecipitation and hydrothermal treatment rendered monodisperse particles averaging 100 nm. Their functionalization with (3-aminopropyl)triethoxysilane was better than it was with other organosilanes. Glutaraldehyde was used as a linker to bind lysine as a model biomolecule to establish the best conditions for reductive amination. Finally, two peptides, P2 and P5 (epitopes of the SARS-CoV-2 spike protein), were bound on the surface of the LDH to produce two subunit vaccine candidates, reaching peptide concentrations of 125 and 270 µg/mL, respectively. The particles were characterized using DLS, TEM, XRD, TGA, DSC, and FTIR. The cytotoxicity studies revealed that the conjugate with P2 was non-toxic up to 250 µg/mL, while the immunogenicity studies showed that this conjugate induced similar IgG titers to those reached when aluminum hydroxide was used as an adjuvant. Full article
Show Figures

Figure 1

13 pages, 2348 KiB  
Article
Strategy for the Construction of SARS-CoV-2 S and N Recombinant Proteins and Their Immunogenicity Evaluation
by Paulo Henrique Guilherme Borges, Barbara Gregio, Helena Tiemi Suzukawa, Gislaine Silva-Rodrigues, Emanuella de Castro Andreassa, Isabela Madeira de Castro, Guilherme Bartolomeu-Gonçalves, Emerson José Venancio, Phileno Pinge-Filho, Viviane Monteiro Góes, Celso Vataru Nakamura, Eliandro Reis Tavares, Tatiana de Arruda Campos Brasil de Souza, Sueli Fumie Yamada-Ogatta and Lucy Megumi Yamauchi
BioTech 2025, 14(2), 38; https://doi.org/10.3390/biotech14020038 - 23 May 2025
Viewed by 1167
Abstract
This study reports the construction, expression, and purification of synthetic SARS-CoV-2 spike (S) and nucleoprotein (N) containing immunodominant epitopes. The pET28aS_epit construct included epitopes 287–317, 402, 507, 524–598, and 601–640, while the pET28aN_epit construct included residues 42–62, 153–172, and 355–401. Commercial sequences of [...] Read more.
This study reports the construction, expression, and purification of synthetic SARS-CoV-2 spike (S) and nucleoprotein (N) containing immunodominant epitopes. The pET28aS_epit construct included epitopes 287–317, 402, 507, 524–598, and 601–640, while the pET28aN_epit construct included residues 42–62, 153–172, and 355–401. Commercial sequences of both proteins were used as controls. The four constructs were expressed using the Escherichia coli BL21(DE3) star strain at 37 °C. The results show that the S protein constructs were insoluble, unlike the N protein constructs. Both recombinant proteins induced immune responses in mice and were recognized by antibodies present in sera from COVID-19-positive and/or SARS-CoV-2-vaccinated humans. No significant differences in immune recognition were observed between our constructs and the commercially available proteins. In conclusion, S_epit and N_epit could be promising starting points for the development of new strategies based on immunological reactions for the control of SARS-CoV-2 infections. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

29 pages, 3956 KiB  
Article
Integrative Computational Modeling of Distinct Binding Mechanisms for Broadly Neutralizing Antibodies Targeting SARS-CoV-2 Spike Omicron Variants: Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(6), 741; https://doi.org/10.3390/v17060741 - 22 May 2025
Viewed by 802
Abstract
In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies—S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and [...] Read more.
In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies—S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving the broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation, which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309 as well as T385 and K386 for S304, underscoring their roles as evolutionary “weak spots” that balance viral fitness and immune evasion. The results of the energetic analysis demonstrate a good agreement between the predicted binding hotspots, reveal distinct energetic mechanisms of binding, and highlight the importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Full article
Show Figures

Graphical abstract

16 pages, 3254 KiB  
Article
Low Antibody-Dependent Enhancement of Viral Entry Activity Supports the Safety of Inactivated SARS-CoV-2 Vaccines
by Xiaofang Peng, Yuru Han, Song Xue, Yunjiao Zhou, Weiyu Jiang, Anqi Xia, Wei Wu, Yidan Gao, Fan Wu and Qiao Wang
Vaccines 2025, 13(4), 425; https://doi.org/10.3390/vaccines13040425 - 18 Apr 2025
Viewed by 678
Abstract
Background/Objectives: The antibody-dependent enhancement (ADE) of viral entry has been documented for SARS-CoV-2 infection both in vitro and in vivo. However, the potential for the SARS-CoV-2 vaccination to elicit similar ADE effects remains unclear. Methods: In this study, we assessed the in vitro [...] Read more.
Background/Objectives: The antibody-dependent enhancement (ADE) of viral entry has been documented for SARS-CoV-2 infection both in vitro and in vivo. However, the potential for the SARS-CoV-2 vaccination to elicit similar ADE effects remains unclear. Methods: In this study, we assessed the in vitro ADE potential of monoclonal antibodies (mAbs) derived from individuals vaccinated with the inactivated SARS-CoV-2 vaccine and compared them to those from one convalescent donor. Results: Our analysis revealed no significant difference in binding affinity or neutralizing capacity between the vaccinated and convalescent mAbs. However, the inactivated SARS-CoV-2 vaccination induced fewer ADE-inducing mAbs, particularly those targeting the Class III epitope on the receptor-binding domain (RBD) compared to those from the convalescent individual. Moreover, no significant in vitro ADE was detected in either vaccinated or convalescent sera, indicating low levels of ADE-inducing antibodies in the sera. Conclusions: An inactivated SARS-CoV-2 vaccination induces fewer ADE-inducing antibodies compared to natural infection, further emphasizing the safety of inactivated SARS-CoV-2 vaccines. Full article
Show Figures

Figure 1

22 pages, 3349 KiB  
Hypothesis
Does SARS-CoV-2 Possess “Allergen-Like” Epitopes?
by Alberto Rubio-Casillas, David Cowley, Vladimir N. Uversky, Elrashdy M. Redwan, Carlo Brogna and Marina Piscopo
COVID 2025, 5(4), 55; https://doi.org/10.3390/covid5040055 - 16 Apr 2025
Viewed by 1682
Abstract
An increase in immunoglobulin G4 (IgG4) levels is typically associated with immunological tolerance states and develops after prolonged exposure to antigens. Accordingly, IgG4 is considered an anti-inflammatory antibody with a limited ability to trigger efficient immune responses. Additionally, IgG4 reduces allergic reactions by [...] Read more.
An increase in immunoglobulin G4 (IgG4) levels is typically associated with immunological tolerance states and develops after prolonged exposure to antigens. Accordingly, IgG4 is considered an anti-inflammatory antibody with a limited ability to trigger efficient immune responses. Additionally, IgG4 reduces allergic reactions by blocking immunoglobulin E (IgE) activity. In the case of COVID-19, it has been reported that the repeated administration of some vaccines induces high IgG4 levels. The latest research data have revealed a surprising IgE anti-receptor binding domain response after both natural infection and several SARS-CoV-2 vaccines. The presence of IgG4 and IgE in COVID-19 disease suggests that the virus may induce an “allergic-like” response to evade immune surveillance, leading to a shift from T helper 1 (Th1) to T helper 2 (Th2) cells, which promotes tolerance to the virus and potentially contributes to chronic infection. The spike protein from vaccines could also induce such a response. Interestingly, “allergen-like” epitopes and IgE responses have been reported for other viruses, such as influenza, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV). The impact of this viral-induced tolerance will be discussed, concerning long COVID and the protective efficacy of vaccines. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

Back to TopTop