Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = SAR vegetation index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3301 KB  
Article
The Dual Role of Bacillus sp. KKU-RE-018 Isolated from Medicinal Plants in Controlling Anthracnose Disease and Enhancing the Growth of Chili Plants
by Thanawan Gateta, Wasan Seemakram, Thanapat Suebrasri, Saranya Chantawong, Chaiya Klinsukon, Jindarat Ekprasert and Sophon Boonlue
Plants 2025, 14(19), 3010; https://doi.org/10.3390/plants14193010 - 29 Sep 2025
Viewed by 414
Abstract
Chili (Capsicum annuum L.) is a herbaceous vegetable grown and consumed worldwide. In Thailand, chili plants are severely hampered by anthracnose disease, leading to severe yield losses. This study aimed to investigate endophytic bacteria (EPB) for their potential as a biocontrol agent [...] Read more.
Chili (Capsicum annuum L.) is a herbaceous vegetable grown and consumed worldwide. In Thailand, chili plants are severely hampered by anthracnose disease, leading to severe yield losses. This study aimed to investigate endophytic bacteria (EPB) for their potential as a biocontrol agent and plant growth promoter (PGP). Among a total of 108 isolates, strain KKU-RE-018 was identified by partial 16S rRNA gene sequencing as belonging to the genus Bacillus. This isolate exhibited strong antifungal activity against Colletotrichum capsici; its activity occurred through the production of hydrolytic enzymes, including chitinase and β-1,3-glucanase, and exhibited PGP properties. This endophytic bacterium significantly reduced anthracnose severity compared with the control, achieving a disease reduction index (DRI) of over 60%. Moreover, chili plants treated with the bacterium showed higher plant growth parameters under greenhouse conditions. The levels of phenolic compounds and salicylic acid in plants treated with Bacillus sp. KKU-RE-018 could activate systemic acquired resistance (SAR). Taken together, these findings demonstrate that Bacillus sp. KKU-RE-018 plays a multifaceted role, capable of suppressing anthracnose and simultaneously promoting chili growth. Full article
Show Figures

Figure 1

26 pages, 30091 KB  
Article
Crop Mapping Using kNDVI-Enhanced Features from Sentinel Imagery and Hierarchical Feature Optimization Approach in GEE
by Yanan Liu, Ai Zhang, Xingtao Zhao, Yichen Wang, Yuetong Hao and Pingbo Hu
Remote Sens. 2025, 17(17), 3003; https://doi.org/10.3390/rs17173003 - 29 Aug 2025
Viewed by 744
Abstract
Accurate crop mapping is vital for monitoring agricultural resources, food security, and ecosystem sustainability. Advances in high-resolution sensing technologies now enable precise, large-scale crop mapping, improving agricultural management and decision-making. However, in scenarios where balancing precision and computational resources is important, obtaining the [...] Read more.
Accurate crop mapping is vital for monitoring agricultural resources, food security, and ecosystem sustainability. Advances in high-resolution sensing technologies now enable precise, large-scale crop mapping, improving agricultural management and decision-making. However, in scenarios where balancing precision and computational resources is important, obtaining the optimal feature combination (especially newly proposed features) and strategies from the rich feature sets contained in multi-source remote sensing imagery remains one of the challenges. In this paper, we propose a hierarchical feature optimization method, incorporating a newly reported vegetation feature, for mapping crop types by combining the Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical imagery within the Google Earth Engine (GEE) platform. The method first calculates spectral features, texture features, polarization features, vegetation index features, and crop phenological features, with a particular focus on infrared band features and the newly developed Kernel Normalized Difference Vegetation Index (kNDVI). These 126 features are then selected to construct 15 crop type mapping models based on different feature combinations and a random forest (RF) classifier. Feature selection was performed using the feature correlation analysis and random forest recursive feature elimination (RF-RFE) to identify the optimal subset. The experiment was conducted in the Linhe region, covering an area of 2333 km2. The resulting 10 m crop map, generated by the optimal model (Model 15) with 34 key features, demonstrated that integrating multi-source features significantly enhances mapping accuracy. The model achieved an overall accuracy of 90.10% across five crop types (corn, wheat, sunflower, soybean, and beet), outperforming other representative feature optimization methods, Relief-F (87.50%) and CFS (89.60%). The study underscores the importance of feature optimization and reduction of redundant features while also showcasing the effectiveness of red edge and infrared features, as well as the kNDVI, in mapping crop type. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Graphical abstract

22 pages, 3460 KB  
Article
Investigating the Earliest Identifiable Timing of Sugarcane at Early Season Based on Optical and SAR Time-Series Data
by Yingpin Yang, Jiajun Zou, Yu Huang, Zhifeng Wu, Ting Fang, Jia Xue, Dakang Wang, Yibo Wang, Jinnian Wang, Xiankun Yang and Qiting Huang
Remote Sens. 2025, 17(16), 2773; https://doi.org/10.3390/rs17162773 - 10 Aug 2025
Cited by 1 | Viewed by 2021
Abstract
Early-season sugarcane identification plays a pivotal role in precision agriculture, enabling timely yield forecasting and informed policy-making. Compared to post-season crop identification, early-season identification faces unique challenges, including incomplete temporal observations and spectral ambiguity among crop types in early seasons. Previous studies have [...] Read more.
Early-season sugarcane identification plays a pivotal role in precision agriculture, enabling timely yield forecasting and informed policy-making. Compared to post-season crop identification, early-season identification faces unique challenges, including incomplete temporal observations and spectral ambiguity among crop types in early seasons. Previous studies have not systematically investigated the capability of optical and synthetic aperture radar (SAR) data for early-season sugarcane identification, which may result in suboptimal accuracy and delayed identification timelines. Both the timing for reliable identification (≥90% accuracy) and the earliest achievable timepoint matching post-season level remain undetermined, and which features are effective in the early-season identification is still unknown. To address these questions, this study integrated Sentinel-1 and Sentinel-2 data, extracted 10 spectral indices and 8 SAR features, and employed a random forest classifier for early-season sugarcane identification by means of progressive temporal analysis. It was found that LSWI (Land Surface Water Index) performed best among 18 individual features. Through the feature set accumulation, the seven-dimensional feature set (LSWI, IRECI (Inverted Red-Edge Chlorophyll Index), EVI (Enhanced Vegetation Index), PSSRa (Pigment Specific Simple Ratio a), NDVI (Normalized Difference Vegetation Index), VH backscatter coefficient, and REIP (Red-Edge Inflection Point Index)) achieved the earliest attainment of 90% accuracy by 30 June (early-elongation stage), with peak accuracy (92.80% F1-score) comparable to post-season accuracy reached by 19 August (mid-elongation stage). The early-season sugarcane maps demonstrated high agreement with post-season maps. The 30 June map achieved 88.01% field-level and 90.22% area-level consistency, while the 19 August map reached 91.58% and 93.11%, respectively. The results demonstrate that sugarcane can be reliably identified with accuracy comparable to post-season mapping as early as six months prior to harvest through the integration of optical and SAR data. This study develops a robust approach for early-season sugarcane identification, which could fundamentally enhance precision agriculture operations through timely crop status assessment. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Crop Monitoring and Food Security)
Show Figures

Figure 1

22 pages, 28581 KB  
Article
Remote Sensing Interpretation of Geological Elements via a Synergistic Neural Framework with Multi-Source Data and Prior Knowledge
by Kang He, Ruyi Feng, Zhijun Zhang and Yusen Dong
Remote Sens. 2025, 17(16), 2772; https://doi.org/10.3390/rs17162772 - 10 Aug 2025
Viewed by 709
Abstract
Geological elements are fundamental components of the Earth’s ecosystem, and accurately identifying their spatial distribution is essential for analyzing environmental processes, guiding land-use planning, and promoting sustainable development. Remote sensing technologies, combined with artificial intelligence algorithms, offer new opportunities for the efficient interpretation [...] Read more.
Geological elements are fundamental components of the Earth’s ecosystem, and accurately identifying their spatial distribution is essential for analyzing environmental processes, guiding land-use planning, and promoting sustainable development. Remote sensing technologies, combined with artificial intelligence algorithms, offer new opportunities for the efficient interpretation of geological features. However, in areas with dense vegetation coverage, the information directly extracted from single-source optical imagery is limited, thereby constraining interpretation accuracy. Supplementary inputs such as synthetic aperture radar (SAR), topographic features, and texture information—collectively referred to as sensitive features and prior knowledge—can improve interpretation, but their effectiveness varies significantly across time and space. This variability often leads to inconsistent performance in general-purpose models, thus limiting their practical applicability. To address these challenges, we construct a geological element interpretation dataset for Northwest China by incorporating multi-source data, including Sentinel-1 SAR imagery, Sentinel-2 multispectral imagery, sensitive features (such as the digital elevation model (DEM), texture features based on the gray-level co-occurrence matrix (GLCM), geological maps (GMs), and the normalized difference vegetation index (NDVI)), as well as prior knowledge (such as base geological maps). Using five mainstream deep learning models, we systematically evaluate the performance improvement brought by various sensitive features and prior knowledge in remote sensing-based geological interpretation. To handle disparities in spatial resolution, temporal acquisition, and noise characteristics across sensors, we further develop a multi-source complement-driven network (MCDNet) that integrates an improved feature rectification module (IFRM) and an attention-enhanced fusion module (AFM) to achieve effective cross-modal alignment and noise suppression. Experimental results demonstrate that the integration of multi-source sensitive features and prior knowledge leads to a 2.32–6.69% improvement in mIoU for geological elements interpretation, with base geological maps and topographic features contributing most significantly to accuracy gains. Full article
(This article belongs to the Special Issue Multimodal Remote Sensing Data Fusion, Analysis and Application)
Show Figures

Figure 1

20 pages, 11966 KB  
Article
Improved Photosynthetic Accumulation Models for Biomass Estimation of Soybean and Cotton Using Vegetation Indices and Canopy Height
by Jinglong Liu, Jordi J. Mallorqui, Albert Aguasca, Xavier Fàbregas, Antoni Broquetas, Jordi Llop, Mireia Mas, Feng Zhao and Yanan Wang
Remote Sens. 2025, 17(15), 2736; https://doi.org/10.3390/rs17152736 - 7 Aug 2025
Viewed by 381
Abstract
Most crops accumulate above-ground biomass (AGB) through photosynthesis, inspiring the development of the Photosynthetic Accumulation Model (PAM) and Simplified PAM (SPAM). Both models estimate AGB based on time-series optical vegetation indices (VIs) and canopy height. To further enhance the model performance and evaluate [...] Read more.
Most crops accumulate above-ground biomass (AGB) through photosynthesis, inspiring the development of the Photosynthetic Accumulation Model (PAM) and Simplified PAM (SPAM). Both models estimate AGB based on time-series optical vegetation indices (VIs) and canopy height. To further enhance the model performance and evaluate its applicability across different crop types, an improved PAM model (IPAM) is proposed with three strategies. They are as follows: (i) using numerical integration to reduce reliance on dense observations, (ii) introduction of Fibonacci sequence-based structural correction to improve model accuracy, and (iii) non-photosynthetic area masking to reduce overestimation. Results from both soybean and cotton demonstrate the strong performance of the PAM-series models. Among them, the proposed IPAM model achieved higher accuracy, with mean R2 and RMSE values of 0.89 and 207 g/m2 for soybean and 0.84 and 251 g/m2 for cotton, respectively. Among the vegetation indices tested, the recently proposed Near-Infrared Reflectance of vegetation (NIRv) and Kernel-based normalized difference vegetation index (Kndvi) yielded the most accurate results. Both Monte Carlo simulations and theoretical error propagation analyses indicate a maximum deviation percentage of approximately 20% for both crops, which is considered acceptable given the expected inter-annual variation in model transferability. In addition, this paper discusses alternatives to height measurements and evaluates the feasibility of incorporating synthetic aperture radar (SAR) VIs, providing practical insights into the model’s adaptability across diverse data conditions. Full article
Show Figures

Figure 1

18 pages, 3618 KB  
Article
Quality Assessment of Dual-Polarization C-Band SAR Data Influenced by Precipitation Based on Normalized Polarimetric Radar Vegetation Index
by Jisung Geba Chang, Simon Kraatz, Yisok Oh, Feng Gao and Martha Anderson
Remote Sens. 2025, 17(14), 2343; https://doi.org/10.3390/rs17142343 - 8 Jul 2025
Viewed by 1025
Abstract
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar [...] Read more.
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar Vegetation Index (NPRVI) using dual-polarization Sentinel-1 C-band SAR data from agricultural fields at the Beltsville Agricultural Research Center (BARC). Field-measured precipitation and Global Precipitation Measurement (GPM) precipitation datasets were temporally aligned with Sentinel-1 acquisition times to assess the sensitivity of radar signals to precipitation events. NPRVI exhibited a strong sensitivity to precipitation, particularly within the 1 to 7 h prior to the satellite overpass, even for small amounts of precipitation. A quality assessment (QA) framework was developed to flag and correct precipitation-affected radar observations through interpolation. The adjusted NPRVI values, based on the QA framework using precipitation within a 6 h window, showed strong agreement between field- and GPM-derived data, with an RMSE of 0.09 and a relative RMSE of 19.8%, demonstrating that GPM data can serve as a viable alternative for quality adjustment despite its coarse spatial resolution. The adjusted NPRVI for both soybean and corn fields significantly improved the temporal consistency of the time series and closely followed NDVI trends, while also capturing crop-specific seasonal variations, especially during periods of NDVI saturation or limited variability. These findings underscore the value of the proposed radar-based QA framework in enhancing the interpretability of vegetation dynamics. NPRVI, when adjusted for precipitation effects, can serve as a reliable and complementary tool to optical vegetation indices in agricultural and environmental monitoring. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

22 pages, 20361 KB  
Article
A Three-Dimensional Feature Space Model for Soil Salinity Inversion in Arid Oases: Polarimetric SAR and Multispectral Data Synergy
by Ilyas Nurmemet, Yilizhati Aili, Yang Xiang, Aihepa Aihaiti, Yu Qin and Bilali Aizezi
Agronomy 2025, 15(7), 1590; https://doi.org/10.3390/agronomy15071590 - 29 Jun 2025
Cited by 1 | Viewed by 576
Abstract
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and [...] Read more.
Effective soil salinity monitoring is crucial for sustainable land management in arid regions. Most current studies face limitations by relying solely on single-source data. This study presents a novel three-dimensional (3D) optical-radar feature space model combining Gaofen-3 polarimetric synthetic aperture radar (SAR) and Sentinel-2 multispectral data for China’s Yutian Oasis. The random forest (RF) feature selection algorithm identified three optimal parameters: Huynen_vol (volume scattering component), RVI_Freeman (radar vegetation index), and NDSI (normalized difference salinity index). Based on the interactions of these three optimal features within the 3D feature space, we constructed the Optical-Radar Salinity Inversion Model (ORSIM). Subsequent validation using measured soil electrical conductivity (EC) data (May–June 2023) demonstrated strong model performance, with ORSIM achieving R2 = 0.75 and RMSE = 7.57 dS/m. Spatial analysis revealed distinct salinity distribution patterns: (1) Mildly salinized areas clustered in the central oasis region, and (2) severely salinized zones predominated in northern low-lying margins. This spatial heterogeneity strongly correlated with local topography-higher elevation (south) to desert depression (north) gradient. The 3D feature space approach advances soil salinity monitoring by overcoming traditional 2D limitations while providing an accurate, transferable framework for arid ecosystem management. Furthermore, this study significantly expands the application potential of SAR data in soil salinization research. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

30 pages, 5702 KB  
Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by Derek S. Tesser, Kyle C. McDonald, Erika Podest, Brian T. Lamb, Nico Blüthgen, Constance J. Tremlett, Felicity L. Newell, Edith Villa-Galaviz, H. Martin Schaefer and Raul Nieto
Remote Sens. 2025, 17(13), 2188; https://doi.org/10.3390/rs17132188 - 25 Jun 2025
Viewed by 849
Abstract
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of [...] Read more.
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems. Full article
(This article belongs to the Special Issue NISAR Global Observations for Ecosystem Science and Applications)
Show Figures

Figure 1

40 pages, 4088 KB  
Article
Multi-Sensor Fusion and Machine Learning for Forest Age Mapping in Southeastern Tibet
by Zelong Chi and Kaipeng Xu
Remote Sens. 2025, 17(11), 1926; https://doi.org/10.3390/rs17111926 - 1 Jun 2025
Cited by 2 | Viewed by 1133
Abstract
Forest age is a key factor in determining the carbon sequestration capacity and trends of forests. Based on the Google Earth Engine platform and using the topographically complex and climatically diverse Southeastern Tibet as the study area, we propose a new method for [...] Read more.
Forest age is a key factor in determining the carbon sequestration capacity and trends of forests. Based on the Google Earth Engine platform and using the topographically complex and climatically diverse Southeastern Tibet as the study area, we propose a new method for forest age estimation that integrates multi-source remote-sensing data with machine learning. The study employs the Continuous Degradation Detection (CODED) algorithm combined with spectral unmixing models and Normalized Difference Fraction Index (NDFI) time series analysis to update forest disturbance information and provide annual forest distribution, mapping young forest distribution. For undisturbed forests, we compared 12 machine-learning models and selected the Random Forest model for age prediction. The input variables include multiscale satellite spectral bands (Sentinel-2 MSI, Landsat series, PROBA-V, MOD09A1), vegetation parameter products (canopy height, productivity), data from the Global Ecosystem Dynamics Investigation (GEDI), multi-band SAR data (C/L), vegetation indices (e.g., NDVI, LAI, FPAR), and environmental factors (climate seasonality, topography). The results indicate that the forests in Southeastern Tibet are predominantly overmature (>120 years), accounting for 87% of the total forest cover, while mature (80–120 years), sub-mature (60–80 years), intermediate-aged (40–60 years), and young forests (< 40 years) represent relatively lower proportions at 9%, 1%, 2%, and 1%, respectively. Forest age exhibits a moderate positive correlation with stem biomass (r = 0.54) and leaf-area index (r = 0.53), but weakly negatively correlated with L-band radar backscatter (HV polarization, r = −0.18). Significant differences in reflectance among different age groups are observed in the 500–1000 nm spectral band, with 100 m resolution PROBA-V data being the most suitable for age prediction. The Random Forest model achieved an overall accuracy of 62% on the independent validation set, with canopy height, L-band radar data, and temperature seasonality being the most important predictors. Compared with 11 other machine-learning models, the Random Forest model demonstrated higher accuracy and stability in estimating forest age under complex terrain and cloudy conditions. This study provides an expandable technical framework for forest age estimation in complex terrain areas, which is of significant scientific and practical value for sustainable forest resource management and global forest resource monitoring. Full article
Show Figures

Figure 1

29 pages, 5669 KB  
Article
Research on Machine Learning-Based Extraction and Classification of Crop Planting Information in Arid Irrigated Areas Using Sentinel-1 and Sentinel-2 Time-Series Data
by Lixiran Yu, Hongfei Tao, Qiao Li, Hong Xie, Yan Xu, Aihemaiti Mahemujiang and Youwei Jiang
Agriculture 2025, 15(11), 1196; https://doi.org/10.3390/agriculture15111196 - 30 May 2025
Cited by 1 | Viewed by 777
Abstract
Irrigation areas in arid regions are vital production areas for grain and cash crops worldwide. Grasping the temporal and spatial evolution of planting configurations across several years is crucial for effective regional agricultural and resource management. In view of problems such as insufficient [...] Read more.
Irrigation areas in arid regions are vital production areas for grain and cash crops worldwide. Grasping the temporal and spatial evolution of planting configurations across several years is crucial for effective regional agricultural and resource management. In view of problems such as insufficient optical images caused by cloudy weather in arid regions and the unclear spatiotemporal evolution patterns of the planting structures in irrigation areas over the years, in this study, we took the Santun River Irrigation Area, a typical arid region in Xinjiang, China, as an example. By leveraging long time-series remote sensing images from Sentinel-1 and Sentinel-2, the spectral, index, texture, and polarization features of the ground objects in the study area were extracted. When analyzing the index characteristics, we considered several widely used global vegetation indices, including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and Global Environment Monitoring Index (GEMI). Additionally, we integrated the vertical–vertical and vertical–horizontal polarization data obtained from synthetic aperture radar (SAR) satellite systems. Machine learning algorithms, including the random forest algorithm (RF), Classification and Regression Trees (CART), and Support Vector Machines (SVM), were employed for planting structure classification. The optimal classification model selected was subjected to inter-annual transfer to obtain the planting structures over multiple years. The research findings are as follows: (1) The RF classification algorithm outperforms CART and SVM algorithms in terms of classification accuracy, achieving an overall accuracy (OA) of 0.84 and a kappa coefficient of 0.805. (2) The cropland area classified by the RF algorithm exhibited a high degree of consistency with statistical yearbook data (R2 = 0.82–0.91). Significant differences are observed in the estimated planting areas of cotton, maize, tomatoes, and wheat, while differences in other crops are not statistically significant. (3) From 2019 to 2024, cotton remained the dominant crop, although its proportional area fluctuated considerably, while the areas of maize and wheat tended to remain stable, and those of tomato and melon showed relatively minor changes. Overall, the region demonstrates a cotton-dominated, stable cropping structure for other crops. The newly developed framework exhibits exceptional precision in categorization while maintaining impressive adaptability, offering crucial insights for optimizing agricultural operations and sustainable resource allocation in irrigation-dependent arid zones. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 5268 KB  
Article
High Resolution Crop Type and Rotation Mapping in Farming–Pastoral Ecotone in China Using Multi-Satellite Imagery and Google Earth Engine
by Zhenwei Hou, Bangqian Chen, Yaqun Liu, Huadong Zang, Kiril Manevski, Fangmiao Chen, Yadong Yang, Junyong Ge and Zhaohai Zeng
Remote Sens. 2025, 17(10), 1707; https://doi.org/10.3390/rs17101707 - 13 May 2025
Cited by 1 | Viewed by 1124
Abstract
The accurate mapping of crop types and rotation patterns is essential for promoting sustainable agricultural development, particularly in ecologically fragile regions such as the farming–pastoral ecotone of China (FPEC). This study focuses on Zhangjiakou, a representative area of the FPEC, to develop a [...] Read more.
The accurate mapping of crop types and rotation patterns is essential for promoting sustainable agricultural development, particularly in ecologically fragile regions such as the farming–pastoral ecotone of China (FPEC). This study focuses on Zhangjiakou, a representative area of the FPEC, to develop a multi-sensor remote sensing framework for monitoring crop distribution and analyzing rotation dynamics. After cloud removal and Savitzky–Golay filtering were applied to correct noise, we selected vegetation index features with maximum inter-class separability during the optimal classification window (June 15–August 20) and generated quarterly Sentinel-1 SAR composites. A Random Forest classifier was employed to perform crop classification based on these optimized features, enabling 10 m resolution crop mapping from 2019 to 2023. The proposed method achieved high classification accuracy (overall accuracy and Kappa > 0.90), with strong agreement between mapped and statistical crop areas (R2: 0.85–0.88; RMSE: 0.42–0.58 × 104 ha). Spatial analysis revealed distinct distribution patterns: oats, potato, sesame, and vegetables were predominantly cultivated in northern Zhangjiakou, while maize dominated southern regions. We observed significant annual variations in crop area proportions and identified specific altitudinal preferences: maize, potato, and sesame were mainly grown at 480–520 m, while oats and other crops at 520–600 m. Slope analysis showed that most crops were cultivated on gentle slopes of 0–5°, with sesame extending to 4–10° slopes. Temporal analysis from 2019 to 2023 indicated that sesame, oats, and potato predominantly followed rotation patterns, while maize cultivation was primarily monoculture. Key drivers of rotation change included water scarcity, economic incentives, and continuous cropping constraints. These findings provide critical insights for optimizing crop rotation strategies, enhancing agricultural sustainability, and improving land-use efficiency in ecologically fragile regions. Full article
Show Figures

Graphical abstract

23 pages, 12327 KB  
Article
SE-ResUNet Using Feature Combinations: A Deep Learning Framework for Accurate Mountainous Cropland Extraction Using Multi-Source Remote Sensing Data
by Ling Xiao, Jiasheng Wang, Kun Yang, Hui Zhou, Qianwen Meng, Yue He and Siyi Shen
Land 2025, 14(5), 937; https://doi.org/10.3390/land14050937 - 25 Apr 2025
Viewed by 718
Abstract
The accurate extraction of mountainous cropland from remote sensing images remains challenging due to its fragmented plots, irregular shapes, and the terrain-induced shadows. To address this, we propose a deep learning framework, SE-ResUNet, that integrates Squeeze-and-Excitation (SE) modules into ResUNet to enhance feature [...] Read more.
The accurate extraction of mountainous cropland from remote sensing images remains challenging due to its fragmented plots, irregular shapes, and the terrain-induced shadows. To address this, we propose a deep learning framework, SE-ResUNet, that integrates Squeeze-and-Excitation (SE) modules into ResUNet to enhance feature representation. Leveraging Sentinel-1/2 imagery and DEM data, we fuse vegetation indices (NDVI/EVI), terrain features (Slope/TRI), and SAR polarization characteristics into 3-channel inputs, optimizing the network’s discriminative capacity. Comparative experiments on network architectures, feature combinations, and terrain conditions demonstrated the superiority of our approach. The results showed the following: (1) feature fusion (NDVI + TerrainIndex + SAR) had the best performance (OA: 97.11%; F1-score: 96.41%; IoU: 93.06%), significantly reducing shadow/cloud interference. (2) SE-ResUNet outperformed ResUNet by 3.53% for OA and 8.09% for IoU, emphasizing its ability to recalibrate channel-wise features and refine edge details. (3) The model exhibited robustness across diverse slopes/aspects (OA > 93.5%), mitigating terrain-induced misclassifications. This study provides a scalable solution for mountainous cropland mapping, supporting precision agriculture and sustainable land management. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Graphical abstract

18 pages, 10800 KB  
Article
An Automatic Algorithm for Mapping Algal Blooms and Aquatic Vegetation Using Sentinel-1 SAR and Sentinel-2 MSI Data
by Yihao Xin, Juhua Luo, Jinlong Zhai, Kang Wang, Ying Xu, Haitao Qin, Chao Chen, Bensheng You and Qing Cao
Land 2025, 14(3), 592; https://doi.org/10.3390/land14030592 - 12 Mar 2025
Cited by 1 | Viewed by 1109
Abstract
Aquatic vegetation, including floating-leaved and emergent aquatic vegetation (FEAV), submerged aquatic vegetation (SAV), and algal blooms (AB), are primary producers in eutrophic lake ecosystems and hold significant ecological importance. Aquatic vegetation and AB dominate in clear and turbid water states, respectively. Monitoring their [...] Read more.
Aquatic vegetation, including floating-leaved and emergent aquatic vegetation (FEAV), submerged aquatic vegetation (SAV), and algal blooms (AB), are primary producers in eutrophic lake ecosystems and hold significant ecological importance. Aquatic vegetation and AB dominate in clear and turbid water states, respectively. Monitoring their dynamics is essential for understanding lake states and transitions. Sentinel imagery provides high-resolution data for capturing changes in aquatic vegetation and AB. However, the existing mapping algorithms for aquatic vegetation and AB based on Sentinel data only focused on one or two types. There are still limited algorithms that comprehensively reflect the dynamic changes of aquatic vegetation and AB. Additionally, the unique red-edge bands of Sentinel-2 MSI have not yet been fully exploited for mapping aquatic vegetation and AB. Therefore, we developed an automated mapping algorithm that utilizes Sentinel data, especially red-edge bands, to comprehensively reflect the dynamic changes of FEAV, SAV, and AB. The key indicator of the algorithm, the second principal component (PC2) derived from four red-edge bands and four other bands of Sentinel-2 MSI, can effectively distinguish between FEAV and AB. SAV was mapped by the Sentinel-based submerged aquatic vegetation index (SSAVI), which was constructed by fusing Sentinel-1 SAR and Sentinel-2 MSI data. The algorithm was tested in three representative lakes, including Lake Taihu, Lake Hongze, and Lake Chaohu, and yielded an average accuracy of 87.65%. The algorithm was also applied to track changes in aquatic vegetation and AB from 2019 to 2023. The results show that, over the past five years, AB coverage in all three lakes has decreased. The coverage of aquatic vegetation in Lake Taihu and Lake Hongze is also declining, while coverage remains relatively stable in Lake Chaohu. This algorithm leverages the high spatiotemporal resolution of Sentinel data, as well as its band advantages, and is expected to be applicable for large-scale monitoring of aquatic vegetation and AB dynamics. It will provide valuable technical support for future assessments of lake ecological health and state transitions. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

24 pages, 11584 KB  
Article
Method for Landslide Area Detection with RVI Data Which Indicates Base Soil Areas Changed from Vegetated Areas
by Kohei Arai, Yushin Nakaoka and Hiroshi Okumura
Remote Sens. 2025, 17(4), 628; https://doi.org/10.3390/rs17040628 - 12 Feb 2025
Viewed by 1415
Abstract
This study investigates the use of the radar vegetation index (RVI) derived from Sentinel-1 synthetic aperture radar (SAR) data for landslide detection. Traditional landslide detection methods often rely on the Normalized Difference Vegetation Index (NDVI) derived from optical imagery, which is susceptible to [...] Read more.
This study investigates the use of the radar vegetation index (RVI) derived from Sentinel-1 synthetic aperture radar (SAR) data for landslide detection. Traditional landslide detection methods often rely on the Normalized Difference Vegetation Index (NDVI) derived from optical imagery, which is susceptible to limitations imposed by weather conditions (clouds, rain) and nighttime. In contrast, SAR data, acquired by Sentinel-1, provides all-weather, day-and-night coverage. To leverage this advantage, we propose a novel approach utilizing RVI, a vegetation index calculated from SAR data, to identify non-vegetated areas, which often indicate potential landslide zones. To enhance the accuracy of non-vegetated area classification, we employ the high-performing EfficientNetV2 deep learning model. We evaluated the classification performance of EfficientNetV2 using RVI derived from Sentinel-1 SAR data with VV and VH polarizations. Experiments were conducted on SAR imagery of the Iburi district in Hokkaido, Japan, severely impacted by an earthquake in 2018. Our findings demonstrate that the classification performance using RVI with both VV and VH polarizations significantly surpasses that of using VV and VH polarizations alone. These results highlight the effectiveness of RVI for identifying non-vegetated areas, particularly in landslide detection scenarios. The proposed RVI-based method has broader applications beyond landslide detection, including other disaster area assessments, agricultural field monitoring, and forest inventory. Full article
Show Figures

Figure 1

24 pages, 7131 KB  
Article
Soil Moisture Retrieval in the Northeast China Plain’s Agricultural Fields Using Single-Temporal L-Band SAR and the Coupled MWCM-Oh Model
by Zhe Dong, Maofang Gao and Arnon Karnieli
Remote Sens. 2025, 17(3), 478; https://doi.org/10.3390/rs17030478 - 30 Jan 2025
Cited by 1 | Viewed by 1330
Abstract
Timely access to soil moisture distribution is critical for agricultural production. As an in-orbit L-band synthetic aperture radar (SAR), SAOCOM offers high penetration and full polarization, making it suitable for agricultural soil moisture estimation. In this study, based on the single-temporal coupled water [...] Read more.
Timely access to soil moisture distribution is critical for agricultural production. As an in-orbit L-band synthetic aperture radar (SAR), SAOCOM offers high penetration and full polarization, making it suitable for agricultural soil moisture estimation. In this study, based on the single-temporal coupled water cloud model (WCM) and Oh model, we first modified the WCM (MWCM) to incorporate bare soil effects on backscattering using SAR data, enhancing the scattering representation during crop growth. Additionally, the Oh model was revised to enable retrieval of both the surface layer (0–5 cm) and underlying layer (5–10 cm) soil moisture. SAOCOM data from 19 June 2022, and 23 June 2023 in Bei’an City, China, along with Sentinel-2 imagery from the same dates, were used to validate the coupled MWCM-Oh model individually. The enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and leaf area index (LAI), together with the radar vegetation index (RVI) served as vegetation descriptions. Results showed that surface soil moisture estimates were more accurate than those for the underlying layer. LAI performed best for surface moisture (RMSE = 0.045), closely followed by RVI (RMSE = 0.053). For underlying layer soil moisture, RVI provided the most accurate retrieval (RMSE = 0.038), while LAI, EVI, and NDVI tended to overestimate. Overall, LAI and RVI effectively capture surface soil moisture, and RVI is particularly suitable for underlying layers, enabling more comprehensive monitoring. Full article
Show Figures

Figure 1

Back to TopTop