Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = SAR tomography (TomoSAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 23010 KiB  
Article
Three-Dimensional Reconstruction of Partially Coherent Scatterers Using Iterative Sub-Network Generation Method
by Xiantao Wang, Zhen Dong, Youjun Wang, Xing Chen and Anxi Yu
Remote Sens. 2024, 16(19), 3707; https://doi.org/10.3390/rs16193707 - 5 Oct 2024
Cited by 1 | Viewed by 997
Abstract
Synthetic aperture radar tomography (TomoSAR) has gained significant attention for three-dimensional (3D) imaging in urban environments. A notable limitation of traditional TomoSAR approaches is their primary focus on persistent scatterers (PSs), disregarding targets with temporal decorrelated characteristics. Temporal variations in coherence, especially in [...] Read more.
Synthetic aperture radar tomography (TomoSAR) has gained significant attention for three-dimensional (3D) imaging in urban environments. A notable limitation of traditional TomoSAR approaches is their primary focus on persistent scatterers (PSs), disregarding targets with temporal decorrelated characteristics. Temporal variations in coherence, especially in urban areas due to the dense population of buildings and artificial structures, can lead to a reduction in detectable PSs and suboptimal 3D reconstruction performance. The concept of partially coherent scatterers (PCSs) has been proven effective by capturing the partial temporal coherence of targets across the entire time baseline. In this study, an novel approach based on an iterative sub-network generation method is introduced to leverage PCSs for enhanced 3D reconstruction in dynamic environments. We propose a coherence constraint iterative variance analysis approach to determine the optimal temporal baseline range that accurately reflects the interferometric coherence of PCSs. Utilizing the selected PCSs, a 3D imaging technique that incorporates the iterative generation of sub-networks into the SAR tomography process is developed. By employing the PS reference network as a foundation, we accurately invert PCSs through the iterative generation of local star-shaped networks, ensuring a comprehensive coverage of PCSs in study areas. The effectiveness of this method for the height estimation of PCSs is validated using the TerraSAR-X dataset. Compared with traditional PS-based TomoSAR, the proposed approach demonstrates that PCS-based elevation results complement those from PSs, significantly improving 3D reconstruction in evolving urban settings. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar Interferometry Symposium 2024)
Show Figures

Figure 1

16 pages, 3250 KiB  
Article
Iterative Adaptive Based Multi-Polarimetric SAR Tomography of the Forested Areas
by Shuang Jin, Hui Bi, Qian Guo, Jingjing Zhang and Wen Hong
Remote Sens. 2024, 16(9), 1605; https://doi.org/10.3390/rs16091605 - 30 Apr 2024
Cited by 2 | Viewed by 1901
Abstract
Synthetic aperture radar tomography (TomoSAR) is an extension of synthetic aperture radar (SAR) imaging. It introduces the synthetic aperture principle into the elevation direction to achieve three-dimensional (3-D) reconstruction of the observed target. Compressive sensing (CS) is a favorable technology for sparse elevation [...] Read more.
Synthetic aperture radar tomography (TomoSAR) is an extension of synthetic aperture radar (SAR) imaging. It introduces the synthetic aperture principle into the elevation direction to achieve three-dimensional (3-D) reconstruction of the observed target. Compressive sensing (CS) is a favorable technology for sparse elevation recovery. However, for the non-sparse elevation distribution of the forested areas, if CS is selected to reconstruct it, it is necessary to utilize some orthogonal bases to first represent the elevation reflectivity sparsely. The iterative adaptive approach (IAA) is a non-parametric algorithm that enables super-resolution reconstruction with minimal snapshots, eliminates the need for hyperparameter optimization, and requires fewer iterations. This paper introduces IAA to tomographicinversion of the forested areas and proposes a novel multi-polarimetric-channel joint 3-D imaging method. The proposed method relies on the characteristics of the consistent support of the elevation distribution of different polarimetric channels and uses the L2-norm to constrain the IAA-based 3-D reconstruction of each polarimetric channel. Compared with typical spectral estimation (SE)-based algorithms, the proposed method suppresses the elevation sidelobes and ambiguity and, hence, improves the quality of the recovered 3-D image. Compared with the wavelet-based CS algorithm, it reduces computational cost and avoids the influence of orthogonal basis selection. In addition, in comparison to the IAA, it demonstrates greater accuracy in identifying the support of the elevation distribution in forested areas. Experimental results based on BioSAR 2008 data are used to validate the proposed method. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Figure 1

18 pages, 13409 KiB  
Article
Improving Forest Canopy Height Estimation Using a Semi-Empirical Approach to Overcome TomoSAR Phase Errors
by Hongbin Luo, Cairong Yue, Hua Yuan and Si Chen
Forests 2023, 14(7), 1479; https://doi.org/10.3390/f14071479 - 19 Jul 2023
Cited by 3 | Viewed by 1674
Abstract
Forest canopy height is an important forest indicator parameter. Synthetic aperture radar tomography (TomoSAR) is an effective method to characterize forest canopy height and describe forest 3D structure; however, the residual phase error of TomoSAR affects the focus of the relative reflectance and [...] Read more.
Forest canopy height is an important forest indicator parameter. Synthetic aperture radar tomography (TomoSAR) is an effective method to characterize forest canopy height and describe forest 3D structure; however, the residual phase error of TomoSAR affects the focus of the relative reflectance and can lead to errors in forest canopy height estimation. Therefore, this paper proposes a semi-empirical method to overcome the residual phase effects on forest canopy height estimation. In this study, we used airborne multi-baseline UAVSAR data to estimate forest canopy height via TomoSAR techniques and applied a semi-empirical method to improve forest canopy height estimation without phase calibration to mitigate the effects of phase error. The process is divided into three stages: the first step uses a semi-empirical method to initially determine the optimal relative reflectance loss threshold (K) by excluding the inverse extremes; in the second and third steps, the percentile height was used to gradually reduce the height interval between the upper and lower envelopes to minimize overestimation of extreme values and the lower vegetation. When the root mean square error (RMSE) was minimized, the percentile combinations were determined between the inversion results and a LiDAR dataset of the area. The results show that the canopy height estimation results are not satisfactory when relying solely on the K value to estimate the height difference between the envelope at the top of the forest and the ground; the best result was obtained when K = 0.4, but the corresponding R2 value was only 0.13, and the RMSE was 15.23 m. In our proposed method, the K value is determined as 0.3 by excluding the extreme values of the inversion result in the initial step—the corresponding R2 and RMSE values were 0.59 and 10.73 m, respectively, representing an RMSE decrease of 29.54% relative to the initial K value. After two steps of correction overestimation, the inversion accuracy was significantly improved with an R2 value of 0.65 and an RMSE of 9.69 m, corresponding to an RMSE decrease of 36.38%. Overall, the findings of the study represent an important reference for optimizing future spaceborne TomoSAR forest canopy height estimates. Full article
Show Figures

Figure 1

22 pages, 4535 KiB  
Article
Research on 4-D Imaging of Holographic SAR Differential Tomography
by Shuang Jin, Hui Bi, Jing Feng, Weihao Xu, Jin Xu and Jingjing Zhang
Remote Sens. 2023, 15(13), 3421; https://doi.org/10.3390/rs15133421 - 6 Jul 2023
Cited by 2 | Viewed by 1831
Abstract
Holographic synthetic aperture radar tomography (HoloSAR) combines circular synthetic aperture radar (CSAR) and SAR tomography (TomoSAR) to enable a 360° azimuth observation of the considered scene. This imaging mode achieves a high-resolution three-dimensional (3-D) reconstruction across a full 360°. To capture the deformation [...] Read more.
Holographic synthetic aperture radar tomography (HoloSAR) combines circular synthetic aperture radar (CSAR) and SAR tomography (TomoSAR) to enable a 360° azimuth observation of the considered scene. This imaging mode achieves a high-resolution three-dimensional (3-D) reconstruction across a full 360°. To capture the deformation information of the observed target, this paper first explores the differential HoloSAR imaging mode, which combines the technologies of CSAR and differential TomoSAR (D-TomoSAR). Then, we propose an imaging method based on the orthogonal matching pursuit (OMP) algorithm and a support generalized likelihood ratio (Sup-GLRT), aiming to achieve high-precision multi-dimensional reconstruction of the surveillance area. In addition, a statistical outlier removal (SOR) point cloud filtering technique is applied to enhance the accuracy of the reconstructed point cloud. Finally, this paper presents the detection of vehicle changes in a parking lot based on the 3-D reconstructed results. Full article
Show Figures

Figure 1

26 pages, 25669 KiB  
Article
P-Band UAV-SAR 4D Imaging: A Multi-Master Differential SAR Tomography Approach
by Zhen Wang, Yangkai Wei, Zegang Ding, Jian Zhao, Tao Sun, Yan Wang, Han Li and Tao Zeng
Remote Sens. 2023, 15(9), 2459; https://doi.org/10.3390/rs15092459 - 7 May 2023
Cited by 3 | Viewed by 2778
Abstract
Due to its rapid deployment, high-flexibility, and high-accuracy advantages, the unmanned-aerial-vehicle (UAV)-based differential synthetic aperture radar (SAR) tomography (D-TomoSAR) technique presents an attractive approach for urban risk monitoring. With its sufficiently long spatial and temporal baselines, it offers elevation and velocity resolution beyond [...] Read more.
Due to its rapid deployment, high-flexibility, and high-accuracy advantages, the unmanned-aerial-vehicle (UAV)-based differential synthetic aperture radar (SAR) tomography (D-TomoSAR) technique presents an attractive approach for urban risk monitoring. With its sufficiently long spatial and temporal baselines, it offers elevation and velocity resolution beyond the dimensions of range and azimuth, enabling four-dimensional (4D) SAR imaging. In the case of P-band UAV-SAR, a long spatial-temporal baseline is necessary to achieve high enough elevation-velocity dimensional resolution. Although P-band UAV-SAR maintains temporal coherence, it still faces two issues due to the extended spatial baseline, i.e., low spatial coherence and high sidelobes. To tackle these problems, we introduce a multi-master (MM) D-TomoSAR approach, contributing three main points. Firstly, the traditional D-TomoSAR signal model is extended to a MM one, which improves the average coherence coefficient and the number of baselines (NOB) as well as suppresses sidelobes. Secondly, a baseline distribution optimization processing is proposed to equalize the spatial–temporal baseline distribution, achieve more uniform spectrum samplings, and reduce sidelobes. Thirdly, a clustering-based outlier elimination method is employed to ensure 4D imaging quality. The proposed method is effectively validated through computer simulation and P-band UAV-SAR experiment. Full article
(This article belongs to the Special Issue Advances in SAR: Sensors, Methodologies, and Applications II)
Show Figures

Figure 1

19 pages, 6307 KiB  
Article
Automatic Registration of Homogeneous and Cross-Source TomoSAR Point Clouds in Urban Areas
by Lei Pang, Dayuan Liu, Conghua Li and Fengli Zhang
Sensors 2023, 23(2), 852; https://doi.org/10.3390/s23020852 - 11 Jan 2023
Cited by 3 | Viewed by 2109
Abstract
Building reconstruction using high-resolution satellite-based synthetic SAR tomography (TomoSAR) is of great importance in urban planning and city modeling applications. However, since the imaging mode of SAR is side-by-side, the TomoSAR point cloud of a single orbit cannot achieve a complete observation of [...] Read more.
Building reconstruction using high-resolution satellite-based synthetic SAR tomography (TomoSAR) is of great importance in urban planning and city modeling applications. However, since the imaging mode of SAR is side-by-side, the TomoSAR point cloud of a single orbit cannot achieve a complete observation of buildings. It is difficult for existing methods to extract the same features, as well as to use the overlap rate to achieve the alignment of the homologous TomoSAR point cloud and the cross-source TomoSAR point cloud. Therefore, this paper proposes a robust alignment method for TomoSAR point clouds in urban areas. First, noise points and outlier points are filtered by statistical filtering, and density of projection point (DoPP)-based projection is used to extract TomoSAR building point clouds and obtain the facade points for subsequent calculations based on density clustering. Subsequently, coarse alignment of source and target point clouds was performed using principal component analysis (PCA). Lastly, the rotation and translation coefficients were calculated using the angle of the normal vector of the opposite facade of the building and the distance of the outer end of the facade projection. The experimental results verify the feasibility and robustness of the proposed method. For the homologous TomoSAR point cloud, the experimental results show that the average rotation error of the proposed method was less than 0.1°, and the average translation error was less than 0.25 m. The alignment accuracy of the cross-source TomoSAR point cloud was evaluated for the defined angle and distance, whose values were less than 0.2° and 0.25 m. Full article
(This article belongs to the Special Issue Intelligent Point Cloud Processing, Sensing and Understanding)
Show Figures

Figure 1

21 pages, 24326 KiB  
Article
Elevation Extraction from Spaceborne SAR Tomography Using Multi-Baseline COSMO-SkyMed SAR Data
by Lang Feng, Jan-Peter Muller, Chaoqun Yu, Chao Deng and Jingfa Zhang
Remote Sens. 2022, 14(16), 4093; https://doi.org/10.3390/rs14164093 - 21 Aug 2022
Cited by 7 | Viewed by 2840
Abstract
SAR tomography (TomoSAR) extends SAR interferometry (InSAR) to image a complex 3D scene with multiple scatterers within the same SAR cell. The phase calibration method and the super-resolution reconstruction method play a crucial role in 3D TomoSAR imaging from multi-baseline SAR stacks, and [...] Read more.
SAR tomography (TomoSAR) extends SAR interferometry (InSAR) to image a complex 3D scene with multiple scatterers within the same SAR cell. The phase calibration method and the super-resolution reconstruction method play a crucial role in 3D TomoSAR imaging from multi-baseline SAR stacks, and they both influence the accuracy of the 3D SAR tomographic imaging results. This paper presents a systematic processing method for 3D SAR tomography imaging. Moreover, with the newly released TanDEM-X 12 m DEM, this study proposes a new phase calibration method based on SAR InSAR and DEM error estimation with the super-resolution reconstruction compressive sensing (CS) method for 3D TomoSAR imaging using COSMO-SkyMed Spaceborne SAR data. The test, fieldwork, and results validation were executed at Zipingpu Dam, Dujiangyan, Sichuan, China. After processing, the 1 m resolution TomoSAR elevation extraction results were obtained. Against the terrestrial Lidar ‘truth’ data, the elevation results were shown to have an accuracy of 0.25 ± 1.04 m and a RMSE of 1.07 m in the dam area. The results and their subsequent validation demonstrate that the X band data using the CS method are not suitable for forest structure reconstruction, but are fit for purpose for the elevation extraction of manufactured facilities including buildings in the urban area. Full article
(This article belongs to the Special Issue Recent Progress and Applications on Multi-Dimensional SAR)
Show Figures

Graphical abstract

19 pages, 5287 KiB  
Article
A Novel Phase Compensation Method for Urban 3D Reconstruction Using SAR Tomography
by Hongliang Lu, Jili Sun, Jili Wang and Chunle Wang
Remote Sens. 2022, 14(16), 4071; https://doi.org/10.3390/rs14164071 - 20 Aug 2022
Cited by 10 | Viewed by 2273
Abstract
Synthetic aperture radar (SAR) tomography (TomoSAR) has been widely used in the three-dimensional (3D) reconstruction of urban areas using the multi-baseline (MB) SAR data. For urban scenarios, the MB SAR data are often acquired by repeat-pass using the spaceborne SAR system. Such a [...] Read more.
Synthetic aperture radar (SAR) tomography (TomoSAR) has been widely used in the three-dimensional (3D) reconstruction of urban areas using the multi-baseline (MB) SAR data. For urban scenarios, the MB SAR data are often acquired by repeat-pass using the spaceborne SAR system. Such a data stack generally has long time baselines, which result in different atmospheric disturbances of the data acquired by different tracks. These factors can lead to the presence of phase errors (PEs). PEs are multiplicative noise for observation data, which can cause diffusion and defocus in TomoSAR imaging and seriously affect the extraction of target 3D information. In this paper, we combine the methods of the block-building network (BBN) and phase gradient autofocus (PGA) to propose a novel phase compensation method called BBN-PGA. The BBN-PGA method can effectively and efficiently compensate for PEs of the MB SAR data over a wide area and improve the accuracy of 3D reconstruction of urban areas. The applicability of this proposed BBN-PGA method is proved by using simulated data and the spaceborne MB SAR data acquired by the TerraSAR-X satellite over an area in Barcelona, Spain. Full article
(This article belongs to the Special Issue Recent Progress and Applications on Multi-Dimensional SAR)
Show Figures

Figure 1

22 pages, 3557 KiB  
Article
SAR Tomography Based on Atomic Norm Minimization in Urban Areas
by Ning Liu, Xinwu Li, Xing Peng and Wen Hong
Remote Sens. 2022, 14(14), 3439; https://doi.org/10.3390/rs14143439 - 17 Jul 2022
Cited by 6 | Viewed by 2712
Abstract
Synthetic aperture radar (SAR) tomography (TomoSAR) is a powerful tool for the three-dimensional (3D) reconstruction of buildings in urban areas. At present, the compressed sensing (CS) technique has been widely used in the TomoSAR inversion of urban areas because of the sparsity of [...] Read more.
Synthetic aperture radar (SAR) tomography (TomoSAR) is a powerful tool for the three-dimensional (3D) reconstruction of buildings in urban areas. At present, the compressed sensing (CS) technique has been widely used in the TomoSAR inversion of urban areas because of the sparsity of the backscattering power of buildings along the elevation direction. However, this algorithm discretizes the elevation and assumes that the scatterers are located on predetermined finite grids. In fact, scatterers can lie anywhere in the elevation direction, regardless of grid point constraints. The phenomenon of scatterer positioning errors due to elevation discretization is called the off-grid effect, which will affect the height estimation accuracy of TomoSAR. To overcome this problem, we proposed a TomoSAR reconstruction algorithm based on atomic norm minimization (Tomo-ANM) in this paper. Tomo-ANM employs ANM, a continuous compressed sensing technique, to obtain scatterer positions on the continuous dictionary, thus eliminating the off-grid effect. Baseline compensation is necessary to obtain the data of virtual uniform baselines or the samples of uniform data during preprocessing. A fast realization of ANM, IVDST, is utilized to accelerate the process. Tomo-ANM was tested through simulation experiments, and the results confirmed the validity of eliminating the influence of off-grid effects and exhibited an improved location accuracy and detection rate in less time compared with the on-grid TomoSAR algorithm SL1MMER. Real data experiments based on eight staring spotlight TerraSAR-X images showed that Tomo-ANM can improve the accuracy of building height estimation by 4.83% relative to its real height. Full article
(This article belongs to the Special Issue Radar Imaging Theory, Techniques, and Applications II)
Show Figures

Graphical abstract

15 pages, 4957 KiB  
Article
Remote Monitoring of Civil Infrastructure Based on TomoSAR
by Alessandra Budillon and Gilda Schirinzi
Infrastructures 2022, 7(4), 52; https://doi.org/10.3390/infrastructures7040052 - 6 Apr 2022
Cited by 10 | Viewed by 2850
Abstract
Structural health monitoring and damage detection tools are extremely important topics nowadays with the civil infrastructure aging and deteriorating problems observed in urban areas. These tasks can be done by visual inspection and by using traditional in situ methods, such as leveling or [...] Read more.
Structural health monitoring and damage detection tools are extremely important topics nowadays with the civil infrastructure aging and deteriorating problems observed in urban areas. These tasks can be done by visual inspection and by using traditional in situ methods, such as leveling or using traditional mechanical and electrical sensors, but these approaches are costly, labor-intensive and cannot be performed with a high temporal frequency. In recent years, remote sensing has proved to be a very promising methodology in evaluating the health of a structure by assessing its deformation and thermal dilation. The satellite-based Synthetic Aperture Radar Tomography (TomoSAR) technique, based on the exploitation of a stack of multi-temporal SAR images, allows to remotely sense the movement and the thermal dilation of individual structures with a centimeter- to millimeter-level accuracy, thanks to new generation high-resolution satellite-borne sensors. In this paper, the effectiveness of a recently developed TomoSAR technique in assessing both possible deformations and the thermal dilation evolution of man-made structures is shown. The results obtained using X-band SAR data in two case studies, concerning two urban structures in the city of Naples (Italy), are presented. Full article
Show Figures

Figure 1

22 pages, 16395 KiB  
Article
TomoSAR 3D Reconstruction for Buildings Using Very Few Tracks of Observation: A Conditional Generative Adversarial Network Approach
by Shihong Wang, Jiayi Guo, Yueting Zhang, Yuxin Hu, Chibiao Ding and Yirong Wu
Remote Sens. 2021, 13(24), 5055; https://doi.org/10.3390/rs13245055 - 13 Dec 2021
Cited by 13 | Viewed by 4953
Abstract
SAR tomography (TomoSAR) is an important technology for three-dimensional (3D) reconstruction of buildings through multiple coherent SAR images. In order to obtain sufficient signal-to-noise ratio (SNR), typical TomoSAR applications often require dozens of scenes of SAR images. However, limited by time and cost, [...] Read more.
SAR tomography (TomoSAR) is an important technology for three-dimensional (3D) reconstruction of buildings through multiple coherent SAR images. In order to obtain sufficient signal-to-noise ratio (SNR), typical TomoSAR applications often require dozens of scenes of SAR images. However, limited by time and cost, the available SAR images are often only 3–5 scenes in practice, which makes the traditional TomoSAR technique unable to produce satisfactory SNR and elevation resolution. To tackle this problem, the conditional generative adversarial network (CGAN) is proposed to improve the TomoSAR 3D reconstruction by learning the prior information of building. Moreover, the number of tracks required can be reduced to three. Firstly, a TomoSAR 3D super-resolution dataset is constructed using high-quality data from the airborne array and low-quality data obtained from a small amount of tracks sampled from all observations. Then, the CGAN model is trained to estimate the corresponding high-quality result from the low-quality input. Airborne data experiments prove that the reconstruction results are improved in areas with and without overlap, both qualitatively and quantitatively. Furthermore, the network pretrained on the airborne dataset is directly used to process the spaceborne dataset without any tuning, and generates satisfactory results, proving the effectiveness and robustness of our method. The comparative experiment with nonlocal algorithm also shows that the proposed method has better height estimation and higher time efficiency. Full article
(This article belongs to the Special Issue Monitoring Urban Areas with Satellite SAR Remote Sensing)
Show Figures

Graphical abstract

15 pages, 5704 KiB  
Article
Joint Sparsity for TomoSAR Imaging in Urban Areas Using Building POI and TerraSAR-X Staring Spotlight Data
by Lei Pang, Yanfeng Gai and Tian Zhang
Sensors 2021, 21(20), 6888; https://doi.org/10.3390/s21206888 - 17 Oct 2021
Cited by 6 | Viewed by 2529
Abstract
Synthetic aperture radar (SAR) tomography (TomoSAR) can obtain 3D imaging models of observed urban areas and can also discriminate different scatters in an azimuth–range pixel unit. Recently, compressive sensing (CS) has been applied to TomoSAR imaging with the use of very-high-resolution (VHR) SAR [...] Read more.
Synthetic aperture radar (SAR) tomography (TomoSAR) can obtain 3D imaging models of observed urban areas and can also discriminate different scatters in an azimuth–range pixel unit. Recently, compressive sensing (CS) has been applied to TomoSAR imaging with the use of very-high-resolution (VHR) SAR images delivered by modern SAR systems, such as TerraSAR-X and TanDEM-X. Compared with the traditional Fourier transform and spectrum estimation methods, using sparse information for TomoSAR imaging can obtain super-resolution power and robustness and is only minorly impacted by the sidelobe effect. However, due to the tight control of SAR satellite orbit, the number of acquisitions is usually too low to form a synthetic aperture in the elevation direction, and the baseline distribution of acquisitions is also uneven. In addition, artificial outliers may easily be generated in later TomoSAR processing, leading to a poor mapping product. Focusing on these problems, by synthesizing the opinions of various experts and scholarly works, this paper briefly reviews the research status of sparse TomoSAR imaging. Then, a joint sparse imaging algorithm, based on the building points of interest (POIs) and maximum likelihood estimation, is proposed to reduce the number of acquisitions required and reject the scatterer outliers. Moreover, we adopted the proposed novel workflow in the TerraSAR-X datasets in staring spotlight (ST) work mode. The experiments on simulation data and TerraSAR-X data stacks not only indicated the effectiveness of the proposed approach, but also proved the great potential of producing a high-precision dense point cloud from staring spotlight (ST) data. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

17 pages, 17355 KiB  
Article
Underlying Topography Inversion Using Dual Polarimetric TomoSAR
by Xing Peng, Shilin Long, Youjun Wang, Qinghua Xie, Yanan Du and Xiong Pan
Sensors 2021, 21(12), 4117; https://doi.org/10.3390/s21124117 - 15 Jun 2021
Cited by 2 | Viewed by 2305
Abstract
Underlying topography plays an important role in the national economic construction, military security, resource exploration and investigation. Since synthetic aperture radar tomography (TomoSAR) can achieve the three-dimensional imaging of forests, it has been widely used in underlying topography estimation. At present, there are [...] Read more.
Underlying topography plays an important role in the national economic construction, military security, resource exploration and investigation. Since synthetic aperture radar tomography (TomoSAR) can achieve the three-dimensional imaging of forests, it has been widely used in underlying topography estimation. At present, there are two kinds of TomoSAR based on the applied datasets: single polarimetric TomoSAR (SP-TomoSAR) and fully polarimetric TomoSAR (FP-TomoSAR). However, SP-TomoSAR cannot obtain the underlying topography accurately due to the lack of enough observations. FP-TomoSAR can improve the estimation accuracy of underlying topography. However, it requires high-cost data acquisition for the large-scale application. Thus, this paper proposes the dual polarimetric TomoSAR (DP-TomoSAR) as another suitable candidate to estimate the underlying topography because of its wide swath and multiple polarimetric observations. Moreover, three frequently used spectral estimation algorithms, namely, Beamforming, Capon and MUSIC, are used in DP-TomoSAR. For validation, a series of simulated experiments was carried out, and the airborne P-band multiple polarimetric SAR data over the Lope, Gabon was also acquired to estimate the underlying topography. The results suggest that DP-TomoSAR in HH & HV combination is more suitable to estimate underlying topography over forest areas than other DP combinations. Moreover, the estimation accuracy of DP-TomoSAR is slightly lower than that of FP-TomoSAR but is higher than that of SP-TomoSAR. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

17 pages, 7225 KiB  
Article
Forest Height Estimation from a Robust TomoSAR Method in the Case of Small Tomographic Aperture with Airborne Dataset at L-Band
by Xing Peng, Xinwu Li, Yanan Du and Qinghua Xie
Remote Sens. 2021, 13(11), 2147; https://doi.org/10.3390/rs13112147 - 29 May 2021
Cited by 7 | Viewed by 2783
Abstract
Forest height is an essential input parameter for forest biomass estimation, ecological modeling, and the carbon cycle. Tomographic synthetic aperture radar (TomoSAR), as a three-dimensional imaging technique, has already been successfully used in forest areas to retrieve the forest height. The nonparametric iterative [...] Read more.
Forest height is an essential input parameter for forest biomass estimation, ecological modeling, and the carbon cycle. Tomographic synthetic aperture radar (TomoSAR), as a three-dimensional imaging technique, has already been successfully used in forest areas to retrieve the forest height. The nonparametric iterative adaptive approach (IAA) has been recently introduced in TomoSAR, achieving a good compromise between high resolution and computing efficiency. However, the performance of the IAA algorithm is significantly degraded in the case of a small tomographic aperture. To overcome this shortcoming, this paper proposes the robust IAA (RIAA) algorithm for SAR tomography. The proposed approach follows the framework of the IAA algorithm, but also considers the noise term in the covariance matrix estimation. By doing so, the condition number of the covariance matrix can be prevented from being too large, improving the robustness of the forest height estimation with the IAA algorithm. A set of simulated experiments was carried out, and the results validated the superiority of the RIAA estimator in the case of a small tomographic aperture. Moreover, a number of fully polarimetric L-band airborne tomographic SAR images acquired from the ESA BioSAR 2008 campaign over the Krycklan Catchment, Northern Sweden, were collected for test purposes. The results showed that the RIAA algorithm performed better in reconstructing the vertical structure of the forest than the IAA algorithm in areas with a small tomographic aperture. Finally, the forest height was estimated by both the RIAA and IAA TomoSAR methods, and the estimation accuracy of the RIAA algorithm was 2.01 m, which is more accurate than the IAA algorithm with 3.25 m. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

15 pages, 5173 KiB  
Article
Forest Height and Underlying Topography Inversion Using Polarimetric SAR Tomography Based on SKP Decomposition and Maximum Likelihood Estimation
by Jie Wan, Changcheng Wang, Peng Shen, Jun Hu, Haiqiang Fu and Jianjun Zhu
Forests 2021, 12(4), 444; https://doi.org/10.3390/f12040444 - 6 Apr 2021
Cited by 10 | Viewed by 3370
Abstract
The key point of forest height and underlying topography inversion using synthetic aperture radar tomography (TomoSAR) depends on the accurate positioning of the phase centers of different scattering mechanisms. The traditional nonparametric spectrum analysis methods (such as beamforming and Capon) have limited vertical [...] Read more.
The key point of forest height and underlying topography inversion using synthetic aperture radar tomography (TomoSAR) depends on the accurate positioning of the phase centers of different scattering mechanisms. The traditional nonparametric spectrum analysis methods (such as beamforming and Capon) have limited vertical resolution and cannot accurately distinguish closely spaced scatterers. In addition, it is very difficult to accurately estimate the ground or canopy heights with single polarimetric SAR images because there is no guarantee that the vertical profile will generate two clear and separate peaks for all resolution cells. A polarimetric TomoSAR method based on SKP (sum of Kronecker products) decomposition and iterative maximum likelihood estimation is proposed in this paper. On the one hand, the iterative maximum likelihood TomoSAR method has a higher vertical resolution than that of the traditional methods. On the other hand, the separation of the canopy scattering mechanism and the ground scattering mechanism is conducive to the positioning of the phase centers. This method was applied to the inversion of forest height and underlying topography in a tropical forest over the TropiSAR2009 test site in Paracou, French Guiana with six passes of polarimetric SAR images. The inversion accuracy of underlying topography of the proposed method was up to 1.489 m and the inversion accuracy of forest height was up to 1.765 m. Compared with the traditional polarimetric beamforming and polarimetric capon methods, the proposed method greatly improved the inversion accuracy of forest height and underlying topography. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

Back to TopTop