Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Rhizopogon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1878 KiB  
Article
Deterministic Processes Dominantly Shape Ectomycorrhizal Fungi Community Associated with Pinus tabuliformis, an Endemic Tree Species in China
by Yongjun Fan, Zhimin Yu, Jinyan Li, Xinyu Li, Lu Wang, Jiani Lu, Jianjun Ma and Yonglong Wang
Horticulturae 2025, 11(5), 545; https://doi.org/10.3390/horticulturae11050545 - 18 May 2025
Viewed by 391
Abstract
Pinus tabuliformis is a well-recognized woody mycorrhizae host plant growing in North China. EM fungi contribute to the host health and the stability of the forest ecosystem. However, ectomycorrhiae (EM) fungal community associated with this species is less documented. In this study, we [...] Read more.
Pinus tabuliformis is a well-recognized woody mycorrhizae host plant growing in North China. EM fungi contribute to the host health and the stability of the forest ecosystem. However, ectomycorrhiae (EM) fungal community associated with this species is less documented. In this study, we examined EM fungal diversity and composition of P. tabuliformis from three sites in Inner Mongolia, China by using Illumina MiSeq sequencing on the rDNA ITS2 region. Our results showed that a total of 105 EM fungal operational taxonomic units (OTUs) were identified from 15 composite root samples, and the dominant lineages were /suillus-rhizopogon, /tomentella-thelephora, /tricholoma, /amphinema-tylospora, /wilcoxina, /inocybe, and /Sebacina. A high proportion of unique EM fungal OTUs (33, 31.4% of total OTUs) were detected, and some abundant OTUs preferred to exist in specific sites. The composition of EM fungal communities was significantly different among the sites, with soil, climatic, and spatial variables being related to the community variations. The EM fungal community assembly was mainly driven by environmental factors in deterministic processes. These findings suggest that this endemic Pinaceae species in China also harbored a rich and distinctive EM fungal community and deterministic processes played more important roles than stochastic in shaping the symbiotic fungal community. Our study improves our understanding of EM fungal diversity and community structure from the perspective of a single host plant that has not been investigated exclusively before. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

15 pages, 53661 KiB  
Article
First Morpho-Functional Assessment of Immature Stages of Pelecocera Species (Diptera: Syrphidae) Feeding on False Truffles
by José J. Orengo-Green, M. Ángeles Marcos-García, Leif Bloss Carstensen and Antonio Ricarte
Insects 2024, 15(3), 191; https://doi.org/10.3390/insects15030191 - 13 Mar 2024
Cited by 1 | Viewed by 1951
Abstract
With 14 species, Pelecocera Meigen, 1822 is a scarce and small genus of hoverflies (Diptera: Syrphidae: Rhingiini) from the Holarctic Region. Apart from the finding of larvae of Pelecocera (Chamaesyrphus) japonica (Shiraki, 1956) in fungi in Japan, the larval biology of [...] Read more.
With 14 species, Pelecocera Meigen, 1822 is a scarce and small genus of hoverflies (Diptera: Syrphidae: Rhingiini) from the Holarctic Region. Apart from the finding of larvae of Pelecocera (Chamaesyrphus) japonica (Shiraki, 1956) in fungi in Japan, the larval biology of these hoverflies is virtually unknown. The early stages of all Pelecocera species are undescribed. The adults of Pelecocera (Pelecocera) tricincta Meigen, 1822 and Pelecocera (Chamaesyrphus) lugubris Perris, 1839 are found in Palearctic conifer forests with sand dunes. We here report the first morphological evidence of the immature stages of Pelecocera (P. lugubris and P. tricincta), as well as specific data on their breeding sites. Larvae of both species were collected feeding on the hypogean basidiomycete Rhizopogon luteolus Fr. & Nordholm, 1817 in Denmark in 2021. The first larval stage and second larval stage of P. tricincta, the third larval stage of P. lugubris, the anterior respiratory process, and the posterior respiratory process of the puparia of these two species were analyzed and studied using stereomicroscope and scanning electron microscope techniques. The chaetotaxy of the puparium of each species is also described and illustrated. A taxonomic diagnosis of the larvae of the genus Pelecocera is proposed to separate them from the larvae of other genera of the tribe. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 1631 KiB  
Article
Water Relations, Gas Exchange, Chlorophyll Fluorescence and Electrolyte Leakage of Ectomycorrhizal Pinus halepensis Seedlings in Response to Multi-Heavy Metal Stresses (Pb, Zn, Cd)
by Chadlia Hachani, Mohammed S. Lamhamedi, Abdenbi Zine El Abidine, Mejda Abassi, Damase P. Khasa and Zoubeir Béjaoui
Microorganisms 2022, 10(1), 57; https://doi.org/10.3390/microorganisms10010057 - 28 Dec 2021
Cited by 10 | Viewed by 2721
Abstract
The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis [...] Read more.
The success of mine site restoration programs in arid and semi-arid areas poses a significant challenge and requires the use of high-quality seedlings capable of tolerating heavy metal stresses. The effect of ectomycorrhizal fungi on different physiological traits was investigated in Pinus halepensis seedlings grown in soil contaminated with heavy metals (Pb-Zn-Cd). Ectomycorrhizal (M) and non-ectomycorrhizal (NM) seedlings were subjected to heavy metals stress (C: contaminated, NC: control or non-contaminated) soils conditions for 12 months. Gas exchange, chlorophyll fluorescence, water relations parameters derived from pressure–volume curves and electrolyte leakage were evaluated at 4, 8 and 12 months. Ectomycorrhizal symbiosis promoted stronger resistance to heavy metals and improved gas exchange parameters and water-use efficiency compared to the non-ectomycorrhizal seedlings. The decrease in leaf osmotic potentials (Ψπ100: osmotic potential at saturation and Ψπ0: osmotic potential with loss of turgor) was higher for M-C seedling than NM-C ones, indicating that the ectomycorrhizal symbiosis promotes cellular osmotic adjustment and protects leaf membrane cell against leakage induced by Pb, Zn and Cd. Our results suggest that the use of ectomycorrhizal symbiosis is among the promising practices to improve the morphophysiological quality of seedlings produced in forest nurseries, their performance and their tolerance to multi-heavy metal stresses. Full article
Show Figures

Figure 1

19 pages, 3729 KiB  
Article
The Root Mycobiota of Betula aetnensis Raf., an Endemic Tree Species Colonizing the Lavas of Mt. Etna (Italy)
by Emilio Badalamenti, Valentina Catania, Serena Sofia, Maria Teresa Sardina, Giovanna Sala, Tommaso La Mantia and Paola Quatrini
Forests 2021, 12(12), 1624; https://doi.org/10.3390/f12121624 - 24 Nov 2021
Cited by 3 | Viewed by 2836
Abstract
Betula aetnensis is an endemic tree of high conservation value, which thrives on the nutrient-poor volcanic soils of Mount Etna. Since plant–microbe interactions could play a crucial role in plant growth, resource uptake, and resistance to abiotic stresses, we aimed to characterize the [...] Read more.
Betula aetnensis is an endemic tree of high conservation value, which thrives on the nutrient-poor volcanic soils of Mount Etna. Since plant–microbe interactions could play a crucial role in plant growth, resource uptake, and resistance to abiotic stresses, we aimed to characterize the root and rhizosphere microbial communities. Individuals from natural habitat (NAT) and forest nursery (NURS) were surveyed through microscopy observations and molecular tools: bacterial and fungal automated ribosomal intergenic spacer analysis (ARISA), fungal denaturing gradient gel electrophoresis (DGGE). B. aetnensis was found to be simultaneously colonized by arbuscular (AM), ectomycorrhizal (ECM), ericoid (ERM) fungi, and dark septate endophytes (DSE). A high diversity of the bacterial community was observed whilst the root fungal assemblage of NAT plants was richer than that of NURS. Root and rhizosphere fungal communities from NAT plants were characterized by Illumina MiSeq sequencing. Most of the identified sequences were affiliated to Helotiales, Pezizales, and Malasseziales. Ascomycota and Basidiomycota dominated roots and rhizosphere but differed in community structure and composition. ECM in the roots mainly belonged to Tylospora and Leccinum, while Rhizopogon was abundant in the rhizosphere. The Helotiales, including ERM (mostly Oidiodendron) and DSE (mostly Phialocephala), appeared the dominant component of the fungal community. B. aetnensis harbors an extraordinarily wide array of root-associated soil microorganisms, which are likely to be involved in the adaptation and resistance mechanisms to the extreme environmental conditions in volcano Etna. We argue that nursery-produced seedlings could lack the necessary microbiota for growth and development in natural conditions. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

19 pages, 4883 KiB  
Article
Diversity and Host Relationships of the Mycoparasite Sepedonium (Hypocreales, Ascomycota) in Temperate Central Chile
by Josefa Binimelis-Salazar, Angélica Casanova-Katny, Norbert Arnold, Celia A. Lima, Heraldo V. Norambuena, Gerardo González-Rocha and Götz Palfner
Microorganisms 2021, 9(11), 2261; https://doi.org/10.3390/microorganisms9112261 - 30 Oct 2021
Cited by 3 | Viewed by 4162
Abstract
We present the first major survey of regional diversity, distribution and host-association of Sepedonium. Whereas the rather scarce worldwide records of this mycoparasitic fungus suggested no specific distribution pattern of most species before, we provide new evidence of endemic and specific host-parasite [...] Read more.
We present the first major survey of regional diversity, distribution and host-association of Sepedonium. Whereas the rather scarce worldwide records of this mycoparasitic fungus suggested no specific distribution pattern of most species before, we provide new evidence of endemic and specific host-parasite guilds of Sepedonium in Southern South America, including the description of a new species. The corresponding inventory was performed in temperate central Chile. The regional landscape, a mosaic of exotic timber plantations and remnants of native Nothofagus forests, facilitates a unique combination of endemic and adventitious Boletales hosts. During a two-year survey, 35 Sepedonium strains were isolated and cultured from infected basidiomata of allochthonous Chalciporus piperatus, Paxillus involutus, Rhizopogon spp. and Suillus spp., as well as from the native Boletus loyita, B. loyo, B. putidus and Gastroboletus valdivianus. Taxonomic diagnosis included morphology of conidia and conidiophores, sequences of ITS, RPB2 and EF1 molecular markers and characteristics of in vitro cultures. Phylogenetic reconstructions were performed using Bayesian methods. Four Sepedonium species could be identified and characterized, viz.: S. ampullosporum, S. chrysospermum, S. laevigatum and the newly described species S. loyorum. The most frequent species on introduced Boletales was S. ampullosporum, followed by S. chrysospermum and S. laevigatum. S. loyorum sp. nov. was found exclusively on native boletacean hosts, separated from its closest relative S. chalcipori by micromorphological and molecular attributes. Species descriptions and identification keys are provided. Ecological and biogeographical aspects of endemic and allochthonous symbiotic units consisting of mycoparasite, ectomycorrhizal fungal host and respective mycorrhizal tree are discussed. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

10 pages, 1453 KiB  
Article
Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress
by Yoonhee Cho, Shinnam Yoo, Myung Soo Park, Ji Seon Kim, Chang Sun Kim and Young Woon Lim
Sustainability 2021, 13(8), 4367; https://doi.org/10.3390/su13084367 - 14 Apr 2021
Cited by 6 | Viewed by 3019
Abstract
Flooding is an environmental stress for plants that not only limits aeration and nutrient acquisition, but also disturbs underground plant-associated fungal communities. Despite frequent flooding, red pine (Pinus densiflora) seedlings thrive in streamside environments. However, whether the compatible ectomycorrhizal fungi (EMF) [...] Read more.
Flooding is an environmental stress for plants that not only limits aeration and nutrient acquisition, but also disturbs underground plant-associated fungal communities. Despite frequent flooding, red pine (Pinus densiflora) seedlings thrive in streamside environments. However, whether the compatible ectomycorrhizal fungi (EMF) of red pine are affected by natural flooding is unclear. As EMF are vital symbionts for the development of many trees and allow them to overcome various environmental stresses, in this study, the EMF species associated with red pine seedlings in a streamside environment in Korea were investigated after flooding. The EMF species in 47 seedlings collected from the streamside site were identified by observing their different morphotypes using internal transcribed spacer sequence analysis, and a total of 10 EMF species were identified. The EMF species diversity was lower than that in samples collected from a nearby forest analyzed as a control. The dominant EMF species of streamside seedlings included Amphinema spp., Rhizopogon luteolus, Suillus luteus, and Thelephora terrestris. This study could serve as a basis for investigating the mechanisms by which advantageous EMF aid plant development under flooding stress. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

16 pages, 3222 KiB  
Article
Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine are Influenced by Age of the Seedlings
by Maria Rudawska and Tomasz Leski
Forests 2021, 12(2), 134; https://doi.org/10.3390/f12020134 - 25 Jan 2021
Cited by 14 | Viewed by 3191
Abstract
Scots pine (Pinus sylvestris L.) is the most widely distributed pine species in Europe and is relevant in terms of planted areas and harvest yields. Therefore, each year the demand for planting stock of Scots pine is exceedingly high, and large quantities [...] Read more.
Scots pine (Pinus sylvestris L.) is the most widely distributed pine species in Europe and is relevant in terms of planted areas and harvest yields. Therefore, each year the demand for planting stock of Scots pine is exceedingly high, and large quantities of seedlings are produced annually throughout Europe to carry out reforestation and afforestation programs. Abundant and diverse ectomycorrhizal (ECM) symbiosis is critical for the success of seedlings once planted in the field. To improve our knowledge of ECM fungi that inhabit bare-root nursery stock of Scots pine and understand factors that influence their diversity, we studied the assemblages of ECM fungi present across 23 bare-root forest nurseries in Poland. Nursery stock samples were characterized by a high level of ECM colonization (nearly 100%), and a total of 29 ECM fungal taxa were found on 1- and 2-year-old seedlings. The diversity of the ECM community depended substantially on the nursery and age of the seedlings, and species richness varied from 3–10 taxa on 1-year-old seedlings and 6–13 taxa on 2-year-old seedlings. The ECM fungal communities that developed on the studied nursery stock were characterized by the prevalence of Ascomycota over Basidiomycota members on 1-year-old seedlings. All ecological indices (diversity, dominance, and evenness) were significantly affected by age of the seedlings, most likely because dominant ECM morphotypes on 1-year-old seedlings (Wilcoxina mikolae) were replaced by other dominant ones (e.g., Suillus luteus, Rhizopogon roseolus, Thelephora terrestris, Hebeloma crustuliniforme), mostly from Basidiomycota, on 2-year-old seedlings. Across all nurseries, negative correlations were identified for diversity metrics and soil N or C, indicating that mineral and organic fertilization contributes to the differences in the ECM fungal communities in nurseries. We discuss the ecological and practical implications of the composition and diversity of ECM fungi occurring on bare-root planting stock of Scots pine. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 4525 KiB  
Article
Drivers of Ectomycorrhizal Fungal Community Structure Associated with Pinus sylvestris var. mongolica Differ at Regional vs. Local Spatial Scales in Northern China
by Mishan Guo, Guanglei Gao, Guodong Ding and Ying Zhang
Forests 2020, 11(3), 323; https://doi.org/10.3390/f11030323 - 14 Mar 2020
Cited by 18 | Viewed by 3698
Abstract
Pinus sylvestris var. mongolica, a widely planted tree species, is facing long-lasting, unresolved degradation in desertified Northern China. Ectomycorrhizal fungi (EMF) are closely related to the stand status, because they substantially participate in ecological processes of terrestrial forest ecosystems. EMF may be [...] Read more.
Pinus sylvestris var. mongolica, a widely planted tree species, is facing long-lasting, unresolved degradation in desertified Northern China. Ectomycorrhizal fungi (EMF) are closely related to the stand status, because they substantially participate in ecological processes of terrestrial forest ecosystems. EMF may be key to solving the introduction recession. Therefore, we performed DNA sequencing of P. sylvestris root samples from plantations and natural forests as control to characterize the EMF from semi-arid and dry sub-humid regions, using ITS Illumina sequencing and conventional soil physicochemical index determination. The results indicated that (1) the dominant EMF genera were Suillus, Rhizopogon, and Wilcoxina in the Hulunbuir, Mu Us, and Horqin Sandy Lands, respectively. Their dominance retained with stand ageing. (2) Plantation EM fungal diversity differs significantly among the three sandy lands and was significantly lower than in natural forest. The diversity varied with stand age, showing distinct trends at the local scale. (3) At the regional scale, the mean annual sunshine times and the soil organic carbon content affect EMF diversity. The community composition and structure were more characterized by temperature and precipitation. At the local scale, besides the soil organic carbon content, the EM fungal community composition and structure were correlated with total nitrogen and phosphorus content (Hulunbuir), the total phosphorus content (Mu Us), and the pH and total soil porosity (Horqin). The EM fungal community composition and structure have the obvious geographical distribution variation; they were strongly correlated with the meteorological elements and soil nutrients at the regional scale. At the local scale, they were jointly driven by stand age and soil properties. This improved information contributes to increasing the understanding of the interaction between EMF and forest ecosystems and guides sustainable forest management of degraded P. sylvestris plantations. Full article
(This article belongs to the Special Issue Conservation and Dynamics of Forest Biodiversity)
Show Figures

Figure 1

16 pages, 3206 KiB  
Article
Comparative Mitochondrial Genome Analysis of Two Ectomycorrhizal Fungi (Rhizopogon) Reveals Dynamic Changes of Intron and Phylogenetic Relationships of the Subphylum Agaricomycotina
by Qiang Li, Yuanhang Ren, Xiaodong Shi, Lianxin Peng, Jianglin Zhao, Yu Song and Gang Zhao
Int. J. Mol. Sci. 2019, 20(20), 5167; https://doi.org/10.3390/ijms20205167 - 18 Oct 2019
Cited by 59 | Viewed by 4454
Abstract
In the present study, we assembled and compared two mitogenomes from the Rhizopogon genus. The two mitogenomes of R. salebrosus and R. vinicolor comprised circular DNA molecules, with the sizes of 66,704 bp and 77,109 bp, respectively. Comparative mitogenome analysis indicated that the [...] Read more.
In the present study, we assembled and compared two mitogenomes from the Rhizopogon genus. The two mitogenomes of R. salebrosus and R. vinicolor comprised circular DNA molecules, with the sizes of 66,704 bp and 77,109 bp, respectively. Comparative mitogenome analysis indicated that the length and base composition of protein coding genes (PCGs), rRNA genes and tRNA genes varied between the two species. Large fragments aligned between the mitochondrial and nuclear genomes of both R. salebrosus (43.41 kb) and R. vinicolor (12.83 kb) indicated that genetic transfer between mitochondrial and nuclear genomes has occurred over evolutionary time of Rhizopogon species. Intronic regions were found to be the main factors contributing to mitogenome expansion in R. vinicolor. Variations in the number and type of introns in the two mitogenomes indicated that frequent intron loss/gain events occurred during the evolution of Rhizopogon species. Phylogenetic analyses based on Bayesian inference (BI) and Maximum likelihood (ML) methods using a combined mitochondrial gene set yielded identical and well-supported tree topologies, wherein Rhizopogon species showed close relationships with Agaricales species. This is the first study of mitogenomes within the genus Rhizopogon, and it provides a basis for understanding the evolution and differentiation of mitogenomes from the ectomycorrhizal fungal genus. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

18 pages, 2670 KiB  
Article
Host Phylogenetic Relatedness and Soil Nutrients Shape Ectomycorrhizal Community Composition in Native and Exotic Pine Plantations
by Chen Ning, Gregory M. Mueller, Louise M. Egerton-Warburton, Wenhua Xiang and Wende Yan
Forests 2019, 10(3), 263; https://doi.org/10.3390/f10030263 - 15 Mar 2019
Cited by 18 | Viewed by 4525
Abstract
Exotic non-native Pinus species have been widely planted or become naturalized in many parts of the world. Pines rely on ectomycorrhizal (ECM) fungi mutualisms to overcome barriers to establishment, yet the degree to which host specificity and edaphic preferences influence ECM community composition [...] Read more.
Exotic non-native Pinus species have been widely planted or become naturalized in many parts of the world. Pines rely on ectomycorrhizal (ECM) fungi mutualisms to overcome barriers to establishment, yet the degree to which host specificity and edaphic preferences influence ECM community composition remains poorly understood. In this study, we used high-throughput sequencing coupled with soil analyses to investigate the effect of host plant identity, spatial distance and edaphic factors on ECM community composition in young (30-year-old) native (Pinus massoniana Lamb.) and exotic (Pinus elliottii Engelm.) pine plantations in China. The ECM fungal communities comprised 43 species with the majority belonging to the Thelephoraceae and Russulaceae. Most species were found associated with both host trees while certain native ECM taxa (Suillus) showed host specificity to the native P. massoniana. ECM fungi that are known to occur exclusively with Pinus (e.g., Rhizopogon) were uncommon. We found no significant effect of host identity on ECM communities, i.e., phylogenetically related pines shared similar ECM fungal communities. Instead, ECM fungal community composition was strongly influenced by site-specific abiotic factors and dispersal. These findings reinforce the idea that taxonomic relatedness might be a factor promoting ECM colonization in exotic pines but that shifts in ECM communities may also be context-dependent. Full article
(This article belongs to the Special Issue The Ecology of Fine Roots and Mycorrhizas in Forests)
Show Figures

Figure 1

28 pages, 5773 KiB  
Article
Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA
by Matthew J. Trappe, Kermit Cromack, Bruce A. Caldwell, Robert P. Griffiths and James M. Trappe
Diversity 2012, 4(2), 196-223; https://doi.org/10.3390/d4020196 - 24 Apr 2012
Cited by 15 | Viewed by 11792
Abstract
In forest ecosystems, fungal mats are functionally important in nutrient and water uptake in litter and wood decomposition processes, in carbon resource allocation, soil weathering and in cycling of soil resources. Fungal mats can occur abundantly in forests and are widely distributed globally. [...] Read more.
In forest ecosystems, fungal mats are functionally important in nutrient and water uptake in litter and wood decomposition processes, in carbon resource allocation, soil weathering and in cycling of soil resources. Fungal mats can occur abundantly in forests and are widely distributed globally. We sampled ponderosa pine/white fir and mountain hemlock/noble fir communities at Crater Lake National Park for mat-forming soil fungi. Fungus collections were identified by DNA sequencing. Thirty-eight mat-forming genotypes were identified; members of the five most common genera (Gautieria, Lepiota, Piloderma, Ramaria, and Rhizopogon) comprised 67% of all collections. The mycorrhizal genera Alpova and Lactarius are newly identified as ectomycorrhizal mat-forming taxa, as are the saprotrophic genera Flavoscypha, Gastropila, Lepiota and Xenasmatella. Twelve typical mat forms are illustrated, representing both ectomycorrhizal and saprotrophic fungi that were found. Abundance of fungal mats was correlated with higher soil carbon to nitrogen ratios, fine woody debris and needle litter mass in both forest ecotypes. Definitions of fungal mats are discussed, along with some of the challenges in defining what comprises a fungal “mat”. Full article
(This article belongs to the Special Issue Biodiversity and Forest Dynamics and Functions)
Show Figures

Figure 1

Back to TopTop