Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Ponderosa Pine/White Fir Sites
2.3. Mountain Hemlock/Noble Fir Sites
2.4. Soil Cores and Mineral Soil Bulk Density
2.5. Fungal Mat Sampling
2.6. Fungal Mat Identification
2.7. Carbon, Nitrogen, Stable Isotope Analysis, and Soil Ph Determinations
2.8. Fuels: Litter Mass, Fine and Coarse Woody Debris
2.9. Data Analysis
3. Results
Habitat Type | Treatment | # Plots | # Mats total | Mats per treatment | # Mats identified | # Mat species |
---|---|---|---|---|---|---|
PP | Control | 8 | 67 | 8.4 | 50 | 21 |
PP | Spring Burn | 8 | 74 | 9.3 | 54 | 19 |
PP | Fall Burn | 8 | 9 | 1.1 | 5 | 4 |
MH | Control | 8 | 53 | 6.6 | 44 | 16 |
MH | Active CG | 4 | 10 | 2.5 | 9 | 9 |
MH | Abandoned CG | 3 | 8 | 2.7 | 6 | 4 |
MH | Wildfire | 3 | 3 | 1 | 1 | 1 |
Habitat | Number collected | Species | Trophic level | Matching GenBank accession | % match |
---|---|---|---|---|---|
PP | 2 | Alpova sp. (trappei) | M | AF074920 | 99–100 |
PP | 1 | Cortinarius sp. #1 (caperatus) | M | AY669575 | 100 |
MH | 1 | Cortinarius sp. #2 (pinguis) | M | DQ517414 | 95 |
MH | 2 | Cortinarius sp. #3 (boulderensis) | M | DQ499466 | 95–97 |
PP | 1 | Cortinarius sp. #4 (brunneus/gentilis) | M | AF430287 AF325589 | 95–96 |
MH | 1 | Cortinarius sp. #5 (montanus) | M | AF478578 | 96 |
MH/PP | 2 | Cortinarius sp. #6 (rigidus) | M | AY669658 | 95–97 |
MH | 2 | Cortinarius sp. #7 (subfoetidus) | M | AF325609 | 96–97 |
MH | 6 | Flavoscypha sp. (cantharella) | S | AF072082 | 95–98 |
MH/PP | 5 | Gastropila sp.(subcretacea) | S | DQ112598 | 96–99 |
MH/PP | 8 | Gautieria sp. (monticola) | M | AF377105 | 95–99 |
MH/PP | 7 | Hydnellum sp. (peckii) | M | AY569030 | 95–98 |
MH/PP | 2 | Lactarius sp. (scrobiculatus) | M | EF530942 | 96–98 |
MH/PP | 7 | Lepiota sp. (magnispora) | S | AF391023 | 96–100 |
PP | 2 | Piloderma sp. #1 ( byssinum) | M | DQ365683 | 95–96 |
MH/PP | 45 | Piloderma sp. #2 ( fallax) | M | DQ371931 | 95–97 |
MH/PP | 5 | Piloderma sp. #3 | M | EF218793 | 95–98 |
PP | 2 | Ramaria sp. #1 ( flavobrunnescens var. aromatica) | M | AY102864 | 95–97 |
PP | 2 | Ramaria sp. #2 ( rasilispora) | M | DQ365602 | 95–96 |
MH/PP | 8 | Ramaria sp. #3 ( stricta) | S | DQ367910 | 95–99 |
MH/PP | 8 | Ramaria sp. #4 ( stricta OSC65995) | S | DQ365600 | 95–97 |
MH/PP | 10 | Ramaria sp. #5 ( stricta/pinicola) | S | DQ367910 DQ365649 | 95–97 |
PP | 2 | Rhizopogon sp. #1 ( rubescens/roseolus) | M | AJ810045 AJ810043 | 98–99 |
MH/PP | 8 | Rhizopogon sp. #2 ( salebrosus/subbadius) | M | DQ822822 AF377152 | 95–98 |
PP | 1 | Rhizopogon sp. #3 (subpurpurascens/milleri) | M | AF377132 AF377135 | 95–96 |
MH | 2 | Rhizopogon truncatus | M | By RFLP | |
PP | 4 | Rhizopogon sp. #4 (vulgaris) | M | AF062931 | 95–97 |
MH | 1 | Sistotrema sp. (albopallescens) | M | AM259210 | 98 |
PP | 1 | Suillus sp. (tomentosus) | M | STU74614 | 98 |
MH | 2 | Trechispora sp. #1 ( alnicola) | M | DQ411529 | 95–96 |
MH/PP | 2 | Trechispora sp. #2 (subsphaerospora) | M | AF347080 | 95–97 |
PP | 1 | Tricholoma sp. #1 ( equestre) | M | AF458454 | 95 |
PP | 1 | Tricholoma sp. #2 ( intermedium) | M | AF377202 | 96 |
PP | 3 | Tricholoma sp. #3 ( magnivelare) | M | AF527370 | 96–99 |
PP | 5 | Tricholoma sp. #4 ( saponaceum) | M | DQ370440 | 95–97 |
PP | 1 | Tricholoma sp. #5 ( sejunctum) | M | AB036899 | 96 |
PP | 2 | Tyromyces sp. (chioneus) | S | AJ006676 | 95–97 |
MH | 4 | Xenasmatella sp.(vaga) | S | AY805620 | 95–98 |
3.1. Habitat Associations in the Ponderosa Pine/White Fir Ecotype
Habitat variable | PP habitat | MH habitat | ||
---|---|---|---|---|
P value | adj. R2 | P value | adj. R2 | |
Soil pH | −0.0173 | 0.1967 | ||
C:N ratio | 0.0308 | 0.1582 | 0.0037 | 0.3815 |
Litter mass | 0.0223 | 0.1798 | 0.002 | 0.5775 |
FWD mass | 0.0129 | 0.2157 | 0.0424 | 0.1852 |
Stand age | 0.0236 | 0.2363 | ||
Interactions | ||||
C:N × Litter | 0.004 | 0.2889 | 0.0001 | 0.646 |
C:N × FWD | 0.0017 | 0.3383 | 0.0022 | 0.4189 |
C:N × Stand age | 0.0021 | 0.4236 | ||
Litter × Stand age | 0.001 | 0.6117 | ||
FWD × Stand age | 0.0014 | 0.4498 | ||
Litter × pH | 0.0318 | 0.1561 | ||
FWD × pH | 0.0608 | 0.1121 | ||
FWD × Litter | 0.0494 | 0.1263 | 0.001 | 0.4706 |
3.2. Habitat Associations in the Mountain Hemlock/Noble Fir Ecotype
PP habitat | n | Bulk density(g cm−3) | Total Soil C (%) | Soil δ13C (‰) | Total Soil N (%) | Soil δ15N (‰) | C:N ratio | CWD (Mg ha−1) | FWD (Mg ha−1) | Litter mass (Mg ha−1) | Soil pH |
---|---|---|---|---|---|---|---|---|---|---|---|
Gautieria monticola | 6 | −0.311 | 0.0731 | −0.410 | −0.677 | 0.155 | 0.056 | 0.118 | 0.104 | 0.128 | −0.124 |
Lepiota magnispora | 4 | 0.776 | 0.348 | 0.201 | 0.13 | 0.986 | −0.705 | 0.227 | 0.067 | 0.094 | −0.462 |
Piloderma fallax | 15 | −0.039 | 0.637 | −0.154 | −0.214 | −0.777 | 0.017 | 0.063 | 0.031 | 0.048 | −0.190 |
Piloderma sp. | 4 | 0.63 | 0.178 | −0.161 | −0.353 | 0.314 | 0.088 | 0.117 | 0.645 | 0.305 | 0.710 |
Ramaria stricta | 6 | −0.375 | 0.812 | −0.615 | −0.126 | 0.281 | 0.040 | 0.138 | 0.641 | 0.682 | −0.233 |
Ramaria stricta/OSC65995 | 3 | 0.703 | 0.622 | 0.372 | 0.46 | 0.115 | 0.8541 | 0.381 | 0.732 | 0.678 | 0.188 |
Ramaria stricta/pinicola | 6 | 0.138 | 0.453 | 0.539 | 0.603 | 0.651 | 0.299 | 0.559 | −0.905 | 0.497 | −0.233 |
Rhizopogon salebrosus | 5 | −0.105 | 0.897 | 0.793 | −0.448 | 0.625 | 0.299 | −0.722 | 0.799 | 0.997 | −0.194 |
Rhizopogon vulgaris | 4 | −0.159 | 0.099 | −0.274 | 0.419 | −0.999 | 0.495 | 0.145 | 0.223 | 0.148 | −0.122 |
Tricholoma saponaceum | 5 | 0.966 | 0.532 | 0.936 | 0.592 | 0.256 | −0.403 | 0.383 | 0.439 | 0.208 | −0.243 |
MH habitat | |||||||||||
Flavoscypha cantharella | 6 | 0.505 | 0.599 | 0.542 | 0.591 | −0.973 | 0.642 | −0.486 | 0.520 | 0.096 | −0.317 |
Gastropila subcretacea | 3 | 0.484 | −0.332 | −0.875 | −0.271 | −0.822 | 0.252 | −0.277 | −0.985 | 0.419 | 0.756 |
Hydnellum peckii | 4 | 0.877 | −0.927 | −0.142 | −0.580 | 0.972 | 0.336 | 0.575 | 0.568 | 0.578 | 0.620 |
Piloderma fallax | 15 | −0.124 | −0.149 | −0.693 | −0.115 | 0.136 | 0.052 | 0.052 | 0.099 | 0.042 | −0.226 |
Ramaria stricta/OSC65995 | 5 | −0.586 | 0.561 | 0.142 | 0.540 | −0.651 | 0.693 | 0.872 | 0.660 | 0.233 | −0.317 |
Rhizopogon truncatus | 3 | 0.156 | −0.517 | 0.275 | −0.386 | −0.585 | 0.701 | 0.637 | 0.806 | −0.559 | 0.385 |
4. Discussion
4.1. Mat Abundance and Taxonomy
4.2. Mat Functions in Forest Ecosystems
Fungal mat species | Trophic level | Ecosystem function | Tree species & location | Reference |
---|---|---|---|---|
Cortinarius montanus | M | Organic N uptake from litter humus substrates—13C and 15N isotopes | Western hemlock, Douglas-fir—Olympic National Park, Washington | [94] |
Cortinarius sp. | M | Carbon transfer to mycorrhizal fungal network—13C labeling | Scots pine—Sweden | [20] |
Gautieria monticola | M | Increased soil labile-C | Multi-aged Douglas-fir Oregon, USA | [41] |
Hydnellum peckii | M | Nitrogen uptake from soil organic matter—13C & 15N isotope fractionation | Scots pine—Sweden | [84] |
Hysterangium setchelliia | M | Calcium oxalate, biogeochemical cycles | Douglas-fir—Oregon, USA | [113] |
M | Calcium oxalate, clay weathering | Douglas-fir—Oregon, USA | [5] | |
M | Altered soil fauna | Douglas-fir—Oregon, USA | [19] | |
M | Litter decomposition and nutrient release | [50] | ||
M | Elevated soil biomass, altered soil chemistry (N, P, Ca, Mg) | Douglas-fir—Oregon, USA | [40] | |
Hysterangium setchelliia | M | Calcium oxalate, biogeochemical cycles | Douglas-fir—Oregon, USA | [113] |
M | Calcium oxalate, clay weathering | Douglas-fir—Oregon, USA | [5] | |
M | Altered soil fauna | Douglas-fir—Oregon, USA | [19] | |
M | Litter decomposition and nutrient release | [50] | ||
M | Elevated soil biomass, altered soil chemistry (N, P, Ca, Mg) | Douglas-fir—Oregon, USA | [40] | |
Gautiera monticola & Hysterangium setchelliia | M | Douglas-fir seedling regeneration | Douglas-fir—Oregon | [47] |
M | Soil enzyme activities: cellulase, peroxidase, phosphatase, protease | Douglas-fir—Oregon, USA | [51] | |
M | Altered soil solution chemistry: elevated C, N,P. S, oxalate, H+, Al, Ca, K, Mg, Fe, Mn, Cu, Zn | Douglas-fir—Oregon, USA | [42] | |
Gautieria monticola, Hysterangium setchelliia, & Piloderma sp. | M | Soil enzyme activities: phosphatase, chitinase | Douglas-fir, western hemlock—Oregon, USA | [39,97] |
Piloderma byssinum | M | Mineral weathering | Scots pine—Sweden | [43] |
Piloderma fallax | M | Calcium oxalate biomineralization,? | Subalpine fir—Canada | [96] |
Rhizopogon salebrosus | M | Hydraulic redistribution of water | Ponderosa pine –Metolius Research Natural Area, Oregon | [92] |
Alpova trappei, Gautieria monticola, Rhizopogon salebrosus, Rhizopogon truncatus | M | Sporocarp consumption by small mammals | Douglas-fir, mountain hemlock, ponderosa pine—Oregon | [11] |
Cortinarius sp. | M | Mycelial consumption by springtails in soil | Scots pine—Sweden | [20] |
Lepiota clypeolariab | S | Litter decomposition, white-rot humus | Norway spruce—Finland | [109] |
Lepiota magnispora | S | Soil humus layer—13C and 15N isotopes | Western hemlock, Norway spruce—Olympic National Park, Washington | [94] |
Lepiota sp.b | S | Litter decomposition, white-rot humus—13C and 15N isotopes | Douglas-fir—Oregon | [118] |
4.3. Definitions of Fungal Mats
5. Conclusions
Acknowledgements
Supplementary Files
References
- Lindahl, B.D.; Ihrmark, K.; Boberg, J.; Trumbore, S.E.; Högberg, P.; Stenlid, J.; Finlay, R.D. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007, 173, 611–620. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Cairney, J.W.G. Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol. Res. 1992, 96, 135–141. [Google Scholar]
- Boddy, L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 1999, 91, 13–32. [Google Scholar]
- Cromack, K., Jr.; Sollins, P.; Graustein, W.C.; Speidel, K.; Todd, A.W.; Spycher, G.; Li, C.Y.; Todd, R.L. Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol. Biochem. 1979, 11, 463–468. [Google Scholar] [CrossRef]
- Högberg, P. Mycorrhizal associations in some woodland and forest trees and shrubs in Tanzania. New Phytol. 1982, 92, 407–415. [Google Scholar]
- Alexander, I.J.; Högberg, P. Ectomycorrhizas of tropical angiospermous trees. New Phytol. 1986, 102, 541–549. [Google Scholar]
- Högberg, P. 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 1990, 115, 483–486. [Google Scholar]
- Hosaka, K.; Castellano, M.A.; Spatafora, J.W. Biogeography of Hysterangiales (Phallomycetidae, Basidiomycota). Mycol. Res. 2008, 112, 448–462. [Google Scholar] [CrossRef]
- McGuire, K.L.; Zak, D.R.; Edwards, I.P.; Blackwood, C.B.; Upchurch, R. Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia 2010, 164, 785–795. [Google Scholar] [CrossRef]
- Trappe, J.M.; Claridge, A.W. The hidden life of truffles. Sci. Amer. 2010, 302, 78–84. [Google Scholar]
- Sbrana, C.; Fortuna, P.; Giovannetti, M. Plugging into the network, belowground connections between germlings and extraradical mycelium of arbuscular myocorrhizal fungi. Mycologia 2011, 103, 307–316. [Google Scholar]
- Courty, P.-C.; Buée, M.; Diedhiou, A.G.; Frey-Klett, P.; Le Tacon, F.; Rineau, F.; Turpault, M.-P; Uroz, S.; Garbaye, J. The role of communities in forest ecosystem processes, new perspectives and emerging concepts. Soil Biol. Biochem. 2010, 42, 679–698. [Google Scholar] [CrossRef]
- Lindahl, B.D.; Finlay, R.D.; Cairney, J.W.G. Enzymatic activities of mycelia in mycorrhizal communities. In The fungal community, its organization and role in the ecosystem, 3rd; Dighton, J., White, J.F., Oudemans, P., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 331–348. [Google Scholar]
- Lindahl, B.D.; de Boer, W.; Finlay, R.D. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME Journal 2010, 4, 872–881. [Google Scholar]
- Sun, Y.P.; Unestam, T.; Lucas, S.D.; Johanson, K.J.; Kenne, L.; Finlay, R. Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interactions with soil and soil microorganisms. Mycorrhiza 1999, 9, 137–144. [Google Scholar]
- St. John, T.V.; Coleman, D.C.; Reid, C.P.P. Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 1983, 64, 957–959. [Google Scholar]
- Coleman, D.C. From peds to paradoxes, linkages between soil biota and their influences on ecological processes. Soil Biol. Biochem. 2008, 40, 271–289. [Google Scholar]
- Cromack, K., Jr.; Fichter, B.L.; Moldenke, A.; Entry, J.A.; Ingham, E.R. Interactions between soil animals and ectomycorrhizal fungal mats. Agric. Ecosys. Environ. 1988, 24, 161–168. [Google Scholar]
- Högberg, M.N.; Briones, M.J.I.; Keel, S.G.; Metcalfe, D.B.; Campbell, C.; Midwood, A.J.; Thornton, B.; Hurry, V.; Linder, S.; Näsholm, T.; Högberg, P. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol. 2010, 187, 485–493. [Google Scholar]
- Högberg, M.N.; Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol. 2002, 154, 791–795. [Google Scholar] [CrossRef]
- Kleber, M.; Sollins, P.; Sutton, R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007, 85, 9–24. [Google Scholar]
- Kleber, M.; Johnson, M.G. Advances in understanding the molecular structure of soil organic matter, implications for interactions in the environment. Adv. Agron. 2010, 106, 77–141. [Google Scholar]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar]
- Vittadini, C. Monographia Tuberacearum; Ex Typographia F. Rusconi: Milan, Italy, 1831. [Google Scholar]
- Vittadini, C. Monographia Lycoperdineorum; Ex Officina Regia: Torino, Italy, 1842. [Google Scholar]
- Tulasne, L.-R.; Tulasne, C. Fungi Hypogaei; Friedrich Klincksieck: Paris, France, 1851. [Google Scholar]
- Hesse, R. Die Hypogaeen Deutschlands. Die Hymenogastreen; Ludwig Hofstetter: Halle, Germany, 1891; Volume I. [Google Scholar]
- Ramsbottom, J. Mushrooms and toadstools; Collins: London, UK, 1953; pp. 132–137. [Google Scholar]
- Hawker, L.E. British hypogeous fungi. Phil. Trans. R. Soc. London, Series B, Biol. Sci. 1954, 237, 429–546. [Google Scholar] [CrossRef]
- Meyer, F.H. Laccaria amythestina (Bolt. ex Fr.) Berk. et Br., Ein zur mykorrhizabildung an der buche befähigter pilz. Ber. Dtsch. Bot. Ges. 1963, 76, 90–96. [Google Scholar]
- Fisher, R.F. Spodosol development and nutrient distribution under Hydnaceae fungal mats. Soil Sci. Soc. Am. Proc. 1972, 36, 492–495. [Google Scholar] [CrossRef]
- Griffiths, R.P.; Caldwell, B.A.; Cromack, K., Jr.; Morita, R.Y. Douglas-fir forest soils colonized with ectomycorrhizal mats. I. Seasonal variation in nitrogen chemistry and nitrogen cycle transformations. Can. J. For. Res. 1990, 20, 211–218. [Google Scholar] [CrossRef]
- Unestam, T.; Sun, Y.-P. Extramatricular structures of hydrophilic and hydrophobic ectomycorrhizal fungi. Mycorrhiza 1995, 5, 301–311. [Google Scholar]
- Nouhra, E.; Horton, T.R.; Cazares, E.; Castellano, M.A. Morphological and molecular characterization of selected Ramaria mycorrhizae. Mycorrhiza 2005, 15, 55–59. [Google Scholar] [CrossRef]
- Agerer, R. Fungal relationships and structural identity of their ectomycorrhizae. Mycol. Progress 2006, 5, 67–107. [Google Scholar]
- Griffiths, R.P.; Bradshaw, G.A.; Marks, B.; Lienkaemper, G.W. Spatial distribution of ectomycorrhizal mats in coniferous forests of the Pacific Northwest, USA. Plant Soil 1996, 180, 147–158. [Google Scholar]
- Dunham, S.M.; Larsson, K.-H.; Spatafora, J.W. Species richness and community composition of mat-forming ectomycorrhizal fungi in old- and second-growth Douglas-fir forests of the HJ Andrews Experimental Forest, Oregon, USA. Mycorrhiza 2007, 17, 633–645. [Google Scholar] [CrossRef]
- Kluber, L.A.; Tinnesand, K.M.; Caldwell, B.A.; Dunham, S.M.; Yarwood, R.R.; Bottomley, P.J.; Myrold, D.D. Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biol. Biochem. 2010, 42, 1607–1612. [Google Scholar]
- Entry, J.A.; Rose, C.L.; Cromack, K., Jr. Microbial biomass and nutrient concentrations in hyphal mats of the ectomycorrhizal fungal Hysterangium setchellii in a coniferous forest soil. Soil Biol. Biochem. 1992, 24, 447–453. [Google Scholar] [CrossRef]
- Aguilera, L.; Griffiths, R.P.; Caldwell, B.A. Nitrogen in ectomycorrhizal mat and non-mat soils of different-age Douglas-fir forests. Soil Biol. Biochem. 1993, 8, 1015–1019. [Google Scholar]
- Griffiths, R.P.; Baham, J.E.; Caldwell, B.A. Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Boil. Biochem. 1994, 26, 331–337. [Google Scholar]
- Rosling, A.; Finlay, R.D. Response of different ectomycorrhizal fungi to mineral substrates. Geochim. Cosmochim. Acta 2005, 69, 222–232. [Google Scholar]
- Finlay, R.; Wallander, H.; Smits, M.; Holmstrom, S.; van Hees, P.; Lian, B.; Rosling, A. The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol. Rev. 2009, 23, 101–106. [Google Scholar]
- Rosling, A. Trees, mycorrhiza and minerals—Field relevance of in vitro experiments. GeomicroBiol. J. 2009, 26, 389–401. [Google Scholar] [CrossRef]
- Unestam, T. Water repellency, mat formation, and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1991, 1, 13–20. [Google Scholar] [CrossRef]
- Griffiths, R.P.; Castellano, M.A.; Caldwell, B.A. Hyphal mats formed by two ectomycorrhizal fungi and their association with Douglas-fir seedlings, A case study. Plant Soil 1991, 134, 255–259. [Google Scholar]
- Simard, S.W.; Perry, D.A.; Jones, M.D.; Myrold, D.D.; Durall, D.M.; Molina, R. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 1997, 388, 579–582. [Google Scholar]
- Durall, D.M.; Todd, A.W.; Trappe, J.M. Decomposition of 14C-labelled substrates by ectomycorrhizal fungi in association with Douglas-fir. New Phytol. 1994, 127, 725–729. [Google Scholar]
- Entry, J.A.; Donnelly, P.K.; Cromack, K., Jr. Influence of ectomycorrhizal mat soils on lignin and cellulose degradation. Biol. Fert. Soils 1991, 11, 75–78. [Google Scholar] [CrossRef]
- Griffiths, R.P.; Caldwell, B.A. Mycorrhizal mat communities in forest soils. In Mycorrhizas in Ecosystems; Read, D.J., Lewis, D.H., Fitter, A.H., Alexander, I.J., Eds.; CABI: Wallingford, UK, 1992; pp. 98–105. [Google Scholar]
- Caldwell, B.A.; Castellano, M.A.; Griffiths, R.P. Fatty acid esterase production by ectomycorrhizal fungi. Mycologia 1991, 83, 233–236. [Google Scholar]
- Griffiths, R.P.; Ingham, E.R.; Caldwell, B.A.; Castellano, M.A.; Cromack, K., Jr. Microbial characteristics of ectomycorrhizal mat communities in Oregon and California. Biol. Fert. Soils 1991, 11, 196–202. [Google Scholar]
- Phillips, C.L. Distinguishing biological and physical controls on soil respiration. Ph.D. Dissertation, Oregon State University, Corvallis, OR, USA, 2009. [Google Scholar]
- Agerer, R.; Otto, P. Bankera fuligineo-alba Fr. + Fagus sylvatica L. Descr. Ectomyc. 1997, 3, 13–18. [Google Scholar]
- Agerer, R. Studies on ectomycorrhiza. LIV. Ectomycorrhizae of Boletopsis leucomelaena (Thelephoraceae, Basidiomycetes) and their relationship to an unidentified ectomycorrhiza. Nova Hedw. Krypt. 1992, 55, 501–518. [Google Scholar]
- Bougher, N.L.; Malajczuk, N. An undescribed species of hypogeous Cortinarius associated with Eucalyptus in western Australia. Trans. Br. Mycol. Soc. 1986, 86, 301–304. [Google Scholar] [CrossRef]
- Agerer, R.; Beenken, L. Geastrum imbricatum (J.C. Schmidt., Fr.) Pouzar + Pinus sylvestris L. Descr. Ectomyc. 1998, 2, 1–6. [Google Scholar]
- Agerer, R.; Beenken, L.; Christian, J. Gomphus clavatus (Pers., Fr.) S.F. Gray + Picea abies (L.) Karst. Descr. Ectomyc. 1998, 3, 25–29. [Google Scholar]
- Hintikka, V. Some types of mycorrhizae in the humus layer of conifer forests in Finland. Karstenia 1974, 14, 9–11. [Google Scholar]
- Hintikka, V.; Näykki, O. Notes on the effects of the fungus Hydnellum ferruginieum (Fr.) Karst. on forest soil and vegetation. Comm. Inst. For. Fenn. 1967, 62, 1–23. [Google Scholar]
- Agerer, R. Ectomycorrhizae of Phellodon niger on Norway spruce and their chlamydospores. Mycorrhiza 1992, 2, 47–52. [Google Scholar] [CrossRef]
- Mikola, P. The bright yellow mycorrhiza of raw humus. In The Proceedings of the 13th Congress of the INTERNATIONAL Union of Forest Research Organizations, Vienna, Austria, September 1961.
- Marr, C.D.; Stuntz, D.E. Ramaria of western Washington. In Bibl Mycol Band 38; Verlag von J. Cramer: Leutershausen, Germany, 1973. [Google Scholar]
- Agerer, R. Ectomycorrhizae of Sarcodon imbricatus on Norway spruce and their chlamydospores. Mycorrhiza 1991, 1, 21–30. [Google Scholar] [CrossRef]
- Ogawa, M.; Hamada, M. Microbial ecology of ‘shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. Trans. Mycol. Soc. Jap. 1965, 6, 67–71. [Google Scholar]
- Franklin, J.F.; Dyrness, C.T. Natural vegetation of Oregon and Washington; General Technical Report for USDA Forest Service PNW Research Station: Portland, OR, USA, 1973. [Google Scholar]
- Perrakis, D.D.B.; Agee, J.K. Seasonal fire effects on mixed-conifer forest structure and pine resin properties. Can. J. For. Res. 2006, 36, 238–254. [Google Scholar]
- Trappe, M.J.; Perrakis, D.D.B.; Cromack, K., Jr.; Trappe, J.M.; Cazares, E.; Castellano, M.A.; Miller, S.L. Interactions among prescribed fire, soil attributes, and mycorrhizal community structure at Crater Lake National Park. Fire Ecol. 2009, 5, 30–50. [Google Scholar] [CrossRef]
- McNeil, R.C.; Zobel, D.B. Vegetation and fire history of a ponderosa pine-white fir forest in Crater Lake National Park. Northwest Sci. 1980, 54, 30–46. [Google Scholar]
- Trappe, M.J.; Cromack, K., Jr.; Trappe, J.M.; Wilson, J.; Rasmussen, M.C.; Castellano, M.A.; Miller, S.L. Relationships of current and past anthropogenic disturbances to mycorrhizal sporocarp fruiting patterns at Crater Lake National Park, Oregon. Can. J. For. Res. 2009, 39, 1662–1676. [Google Scholar]
- Chappell, C.B.; Agee, J.K. Fire severity and tree seedling establishment in Abies magnifica forests, southern Cascades, Orego. Ecol. Appl. 1996, 6, 628–640. [Google Scholar]
- Wilson, J.K. The Effects of Natural Fire and Recreational Disturbance on Montane Forest Ecosystem Composition, Structure and Nitrogen Dynamics, Crater Lake National Park, Oregon. Ph.D. Dissertation, Oregon State University, Corvallis, OR, USA, 2007. [Google Scholar]
- USDI National Park Service, Green, L.W. Historic resource study, Crater Lake National Park, Oregon; Branch of Cultural Resources: Denver, CO, USA, 1984. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS-RFLP matching for identification of fungi. In Methods in Molecular Biology, Vol. 50: Species Diagnostic Protocols, PCR and Other Nucleic Acid Methods; Clapp, J.P., Ed.; Hamana Press: Totowa, NJ, USA, 1996; pp. 177–186. [Google Scholar]
- Nilsson, R.H.; Ryberg, M.; Kristiansson, E.; Abarenkov, K.; Larsson, K-H.; Kõljalg, U. Taxonomic reliability of DNA sequences in public sequence databases, a fungal ferspective. PLoS ONE 2006, 1. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer-Verlag: Heidelberg, Germany, 2008. [Google Scholar]
- Brown, J.K. Handbook for Inventorying Downed Woody Material; General Technical Report INT-GTR-16 for USDA Forest Service Intermountain West Research Station: Ogden, UT, USA, 1974. [Google Scholar]
- Van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M. Physical properties of woody fuel particles of Sierra Nevada conifers. Intl. J. Wildl. Fire 1996, 6, 117–123. [Google Scholar]
- SAS Institute, SAS statistical analysis software: Version 9.1, SAS Institute: Cary, NC, USA, 2003.
- Hobbie, E.A.; Horton, T.R. Evidence that saprotrophic fungi mobilize carbon and mycorrhizal fungi mobilize nitrogen during litter decomposition. New Phytol. 2007, 173, 447–449. [Google Scholar]
- Perry, D.A.; Griffiths, R.P.; Moldenke, A.R.; Madson, S.L. The influence of forest age and structure on abiotic and biotic patterns in soils and litter. Diversity 2012, in press. [Google Scholar]
- Agerer, R. Exploration types of mycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 2001, 11, 107–114. [Google Scholar] [CrossRef]
- Taylor, A.F.S.; Fransson, P.M.; Högberg, P.; Högberg, M.N.; Plamboeck, A.H. Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol. 2003, 159, 757–774. [Google Scholar]
- Van Schöll, L.; Kuyper, T.W.; Smits, M.M.; Landeweert, R.; Hoffland, E.; van Breemen, N. Rock-eating mycorrhizas, their role in plant nutrition and biogeochemical cycles. Plant Soil 2008, 303, 35–47. [Google Scholar]
- Stark, N. Nutrient cycling pathways and litter fungi. Bioscience 1972, 22, 355–360. [Google Scholar]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; University of California Press: Berkeley, CA, USA, 1979. [Google Scholar]
- Dighton, J. Fungi in Ecosystem Processes; Marcel Dekker, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Cromack, K., Jr.; Todd, R.L.; Monk, C.D. Patterns of basidiomycete nutrient accumulation in conifer and deciduous forest litter. Soil Biol. Biochem. 1975, 7, 265–268. [Google Scholar]
- He, X.H.; Bledsoe, C.S.; Zasoski, R.J.; Southworth, D.; Horwath, W.R. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol. 2006, 170, 143–151. [Google Scholar]
- Querejeta, J.I.; Egerton-Warburton, L.M.; Allen, M.F. Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California oak savanna. Soil Biol. Biochem. 2007, 39, 409–417. [Google Scholar]
- Warren, J.M.; Brooks, J.R.; Meinzer, F.C.; Eberhart, J.L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol. 2008, 178, 382–394. [Google Scholar] [CrossRef]
- Taylor, A.F.S.; Gebauer, G.; Read, D.J. Uptake of nitrogen and carbon from double-labelled 15N and 13C glycine by mycorrhizal pine seedlings. New Phytol. 2004, 164, 383–388. [Google Scholar]
- Trudell, S.A.; Rygiewicz, P.T.; Edmonds, R.L. Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytol. 2004, 164, 317–335. [Google Scholar]
- Hobbie, E.A.; Agerer, R. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 2010, 327, 71–83. [Google Scholar]
- Tuason, M.M.S.; Arocena, J.M. Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Appl. Environ. Microbiol. 2009, 75, 7079–7085. [Google Scholar]
- Kluber, L.A.; Smith, J.E.; Myrold, D.D. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol. Biochem. 2011, 43, 1042–1050. [Google Scholar]
- Leake, J.; Johnson, D.; Donnelly, D.; Muckle, G.; Boddy, L.; Read, D. Networks of power and influence, the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 2004, 82, 1016–1045. [Google Scholar] [CrossRef]
- Treseder, K.K.; Allen, M.F.; Ruess, R.W.; Pregitzer, K.S.; Hendrick, R.L. Lifespans of fungal rhizomorphs under nitrogen fertilization in a Pinyon-Juniper woodland. Plant Soil 2005, 270, 249–255. [Google Scholar]
- Simard, S.W. The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. For. Ecol. Manage. 2009, 158, S95–S107. [Google Scholar]
- Berbee, M.L.; Taylor, J.W. Dating the evolutionary radiation of the true fungi. Can. J. Bot. 1993, 71, 1114–1127. [Google Scholar]
- Högberg, P.; Nordgren, A.; Buchmann, N.; Taylor, A.F.S.; Ekblad, A.; Högberg, M.N.; Nyberg, G.; Ottosson-Löfvenius, M.; Read, D.J. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 2001, 411, 789–792. [Google Scholar]
- Arnolds, E. The fate of hydnoid fungi in The Netherlands and Northwestern Europe. Fungal Ecol. 2010, 3, 81–88. [Google Scholar]
- Dahlberg, A.; Mueller, G.M. Applying red-listing criteria for assessing and reporting on the conservation status of fungal species. Fungal Ecol. 2011, 4, 147–162. [Google Scholar]
- Lilleskov, E.A.; Hobbie, E.A.; Horton, T.R. Conservation of ectomycorrhizal fungi: Exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 2011, 4, 174–183. [Google Scholar]
- Högberg, P.; Johannisson, C.; Yarwood, S.; Callesen, I.; Näsholm, T.; Myrold, D.D.; Högberg, M.N. Recovery of ectomycorrhiza after “nitrogen saturation” of a conifer forest. New Phytol. 2011, 189, 515–525. [Google Scholar] [CrossRef]
- Maser, Z.; Maser, C.; Trappe, J.M. Food habits of the northern flying squirrel (Glaucomys sabrinus) in Oregon. Can. J. Zool. 1985, 63, 1084–1088. [Google Scholar] [CrossRef]
- Jones, M.D.; Twieg, B.D.; Ward, V.; Barker, J.; Durall, D.M.; Simard, S.W. Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct. Ecol. 2010, 24, 1139–1151. [Google Scholar]
- Hintikka, V. Studies on white-rot humus formed by higher fungi in forest soils. Comm. Inst. For. Fenn. 1970, 69, 1–68. [Google Scholar]
- Jongmans, A.G.; van Breemen, N.; Lundström, U.; van Hees, P.A.W.; Finlay, R.D.; Srinivasan, M.; Unestam, T.; Giesler, R. Rock-eating fungi. Nature 1997, 389, 682–683. [Google Scholar]
- Allen, M.F.; Vargas, R.; Graham, E.A.; Swenson, W.; Hamilton, M.; Taggart, M.; Harmon, T.C.; Rat’ko, A.; Rundel, P.; Fulkerson, B.; Estrin, D. Soil sensor technology: life within a pixel. BioScience 2007, 57, 859–867. [Google Scholar]
- Beiler, K.J.; Durall, D.M.; Simard, S.; Maxwell, S.A.; Kretzer, A.M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 2010, 185, 543–553. [Google Scholar] [CrossRef]
- Graustein, W.C.; Cromack, K., Jr.; Sollins, P. Calcium oxalate, its occurrence in soils and effect on nutrient and geochemical cycles. Science 1977, 198, 1252–1254. [Google Scholar]
- Gulden, G.; Hanssen, E.W. Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline. Sommerfeltia 1992, 13, 1–58. [Google Scholar]
- Lilleskov, E.A.; Hobbie, E.A.; Fahey, T.J. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol. 2002, 154, 219–231. [Google Scholar]
- Peter, M.; Ayer, F.; Egli, S. Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytol. 2001, 149, 311–325. [Google Scholar]
- Sollins, P.; Swanston, C.; Kramer, M. Stabilization of soil organic matter—A new focus. Biogeochem. 2007, 85, 1–7. [Google Scholar]
- Hobbie, E.A.; Weber, N.S.; Trappe, J.M. Mycorrhizal vs. saprotrophic status of fungi: The isotopic evidence. New Phytol. 2001, 150, 601–610. [Google Scholar] [CrossRef]
- Wallander, H.; Ekblad, A.; Bergh, J. Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. For. Ecol. Manage. 2011, 262, 999–1007. [Google Scholar]
- Taylor, A.F.S. Personal Communication.
- Agerer, R. Ectomycorrhizae of Hydnellum peckii on Norway spruce and their chlamydospores. Mycologia 1993, 85, 74–83. [Google Scholar] [CrossRef]
- Lefevre, C.K.; Müller, W. Tricholoma magnivelare (Peck) Redhead + Pinus contorta Dougl. var. latifolia Engelm. In Concise descriptions of North American ectomycorrhizae; Goodman, D.M., Durall, D.M., Trofymow, J.A., Berch, S.M., Eds.; Mycologue Publications: Victoria, Canada, 1998; pp. DE18.1–18.4. [Google Scholar]
- Cromack, K., Jr. Personal Communication.
- Smith, J.E.; Molina, R.; Huso, M.M.P.; Larsen, M.J. Occurrence of Piloderma fallax in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, USA. Can. J. Bot. 2000, 78, 995–1001. [Google Scholar]
- Elliott, J.C.; Smith, J.E.; Cromack, K., Jr.; Chen, H.; McKay, D. Chemistry and ectomycorrhizal communities of coarse wood in young- and old-growth forests in the Cascade Range of Oregon. Can. J. For. Res. 2007, 37, 2041–2051. [Google Scholar]
- Arora, D. Mushrooms Demystified, 2nd ed; Ten Speed Press: Berkeley, CA, USA, 1986. [Google Scholar]
- McDougall, D.N.; Blanchette, R.A. Metal ion adsorption by pseudosclerotial plates of Phellinus weirii. Mycologia 1996, 88, 98–103. [Google Scholar] [CrossRef]
- Wallander, H.; Goransson, H.; Rosengren, U. Production, standing biomass, and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 2004, 139, 89–97. [Google Scholar] [CrossRef]
- Amaranthus, M.P.; Perry, D.A. Interaction effects of vegetation type and Pacific madrone soil inocula on survival, growth, and mycorrhiza formation of Douglas-fir. Can. J. For. Res. 1989, 19, 550–556. [Google Scholar] [CrossRef]
- Landeweert, R.; Leeflanf, P.; Kuyper, T.W.; Hoffland, E.; Rosling, A.; Wernars, K.; Smit, E. Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl. Environ. Microbiol. 2003, 69, 327–333. [Google Scholar]
- Goodman, D.M.; Trofymow, J.A. Distribution of ectomycorrhizas in microhabitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biol. Biochem. 1998, 30, 2127–2138. [Google Scholar]
- Murata, M.; Ohta, A.; Akiyoshi, Y.; Narimatsu, M.; Futamura, N. Genetic mosaics in the massive persisting rhizosphere colony “shiro” of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 2005, 15, 505–512. [Google Scholar] [CrossRef]
- Eberhart, J.L. Personal Communication.
- Van Breemen, N.; Finlay, R.; Lundstrom, U.; Jongmans, A.G.; Giesler, R.; Olsson, M. Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 2000, 49, 53–67. [Google Scholar] [CrossRef]
- Larsen, M.J.; Smith, J.E.; McKay, D. On Piloderma bicolor and the closely related P. byssinum, P. croceum and P. fallax. Mycotaxon 1997, 63, 1–8. [Google Scholar]
- Buée, M.; Reich, M.; Murat, C.; Morin, E.; Nilsson, R.H.; Uroz, S.; Martin, F. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009, 184, 449–456. [Google Scholar]
- Blanchard, J.H. Episodic dynamics of microbial communities associated with the birth and death of ectomycorrhizal mats in old-growth Douglas-fir stands. Master Thesis, Oregon State University, Corvallis, OR, USA, 2008. [Google Scholar]
- Cappellazzi, J. Personal communication.
- Genney, D.R.; Anderson, I.C.; Alexander, I.J. Fine-scale distribution of pine ectomycorrhizas and their extramatricular mycelium. New Phytol. 2006, 170, 381–390. [Google Scholar]
- Phillips, C.L.; Kluber, L.A.; Martin, J.P.; Caldwell, B.A.; Bond, B.J. Contributions of ectomycorrhizal fungal mats to forest soil respiration. Biogeosciences Discuss. 2012, 9, 1635–1666. [Google Scholar]
- Hendricks, J.J.; Mitchell, R.J.; Kuehn, K.A.; Pecot, S.D.; Sims, S.E. Measuring external mycelia production of ectomycorrhizal fungi in the field: The soil matrix matters. New Phytol. 2006, 171, 179–186. [Google Scholar]
- Leckie, S.E. Methods of microbial community profiling and their applications to forest soils. For. Ecol. Manag. 2005, 220, 88–106. [Google Scholar]
- Rosling, A.; Cox, F.; Cruz-Martinez, K.; Ihrmark, K.; Grelet, G-A.; Lindahl, B.D.; Menkis, A.; James, T.Y. Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science 2011, 333, 876–879. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Trappe, M.J.; Cromack, K., Jr.; Caldwell, B.A.; Griffiths, R.P.; Trappe, J.M. Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA. Diversity 2012, 4, 196-223. https://doi.org/10.3390/d4020196
Trappe MJ, Cromack K Jr., Caldwell BA, Griffiths RP, Trappe JM. Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA. Diversity. 2012; 4(2):196-223. https://doi.org/10.3390/d4020196
Chicago/Turabian StyleTrappe, Matthew J., Kermit Cromack, Jr., Bruce A. Caldwell, Robert P. Griffiths, and James M. Trappe. 2012. "Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA" Diversity 4, no. 2: 196-223. https://doi.org/10.3390/d4020196
APA StyleTrappe, M. J., Cromack, K., Jr., Caldwell, B. A., Griffiths, R. P., & Trappe, J. M. (2012). Diversity of Mat-Forming Fungi in Relation to Soil Properties, Disturbance, and Forest Ecotype at Crater Lake National Park, Oregon, USA. Diversity, 4(2), 196-223. https://doi.org/10.3390/d4020196