Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Ras homolog gene family member A (RhoA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9351 KiB  
Article
Inhibition of Cxcr4 Disrupts Mouse Embryonic Palatal Mesenchymal Cell Migration and Induces Cleft Palate Occurrence
by Xiaoyu Zheng, Xige Zhao, Yijia Wang, Jing Chen, Xiaotong Wang, Xia Peng, Li Ma and Juan Du
Int. J. Mol. Sci. 2023, 24(16), 12740; https://doi.org/10.3390/ijms241612740 - 13 Aug 2023
Cited by 5 | Viewed by 2322
Abstract
Many processes take place during embryogenesis, and the development of the palate mainly involves proliferation, migration, osteogenesis, and epithelial–mesenchymal transition. Abnormalities in any of these processes can be the cause of cleft palate (CP). There have been few reports on whether C-X-C motif [...] Read more.
Many processes take place during embryogenesis, and the development of the palate mainly involves proliferation, migration, osteogenesis, and epithelial–mesenchymal transition. Abnormalities in any of these processes can be the cause of cleft palate (CP). There have been few reports on whether C-X-C motif chemokine receptor 4 (CXCR4), which is involved in embryonic development, participates in these processes. In our study, the knockdown of Cxcr4 inhibited the migration of mouse embryonic palatal mesenchymal (MEPM) cells similarly to the use of its inhibitor plerixafor, and the inhibition of cell migration in the Cxcr4 knockdown group was partially reversed by supplementation with C-X-C motif chemokine ligand 12 (CXCL12). In combination with low-dose retinoic acid (RA), plerixafor increased the incidence of cleft palates in mice by decreasing the expression of Cxcr4 and its downstream migration-regulating gene Rac family small GTPase 1 (RAC1) mediating actin cytoskeleton to affect lamellipodia formation and focal complex assembly and ras homolog family member A (RHOA) regulating the actin cytoskeleton to affect stress fiber formation and focal complex maturation into focal adhesions. Our results indicate that the disruption of cell migration and impaired normal palatal development by inhibition of Cxcr4 expression might be mediated through Rac1 with RhoA. The combination of retinoic acid and plerixafor might increase the incidence of cleft palate, which also provided a rationale to guide the use of the drug during conception. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

31 pages, 7464 KiB  
Article
The RhoA-ROCK1/ROCK2 Pathway Exacerbates Inflammatory Signaling in Immortalized and Primary Microglia
by Elliot J. Glotfelty, Luis B. Tovar-y-Romo, Shih-Chang Hsueh, David Tweedie, Yazhou Li, Brandon K. Harvey, Barry J. Hoffer, Tobias E. Karlsson, Lars Olson and Nigel H. Greig
Cells 2023, 12(10), 1367; https://doi.org/10.3390/cells12101367 - 11 May 2023
Cited by 29 | Viewed by 7308
Abstract
Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and [...] Read more.
Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer’s disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies. Full article
(This article belongs to the Special Issue Microglia in Neurological Diseases)
Show Figures

Figure 1

14 pages, 697 KiB  
Article
The In Vitro Evaluation of Rooster Semen Pellets Frozen with Dimethylacetamide
by Shaimaa K. Hamad, Ahmed M. Elomda, Yanyan Sun, Yunlei Li, Yunhe Zong, Jilan Chen, Ahmed O. Abbas, Farid K. R. Stino, Ali Nazmi and Gamal M. K. Mehaisen
Animals 2023, 13(10), 1603; https://doi.org/10.3390/ani13101603 - 11 May 2023
Cited by 3 | Viewed by 2445
Abstract
Sperm cryopreservation is an effective technique for conserving animal genetic diversity and transmitting superior genetic backgrounds, maintained via a non-invasive sampling and collection of huge quantities of sperm. Nevertheless, cryopreservation in avian species is not commercially viable because of the rooster sperm’s susceptibility [...] Read more.
Sperm cryopreservation is an effective technique for conserving animal genetic diversity and transmitting superior genetic backgrounds, maintained via a non-invasive sampling and collection of huge quantities of sperm. Nevertheless, cryopreservation in avian species is not commercially viable because of the rooster sperm’s susceptibility to damage. This study aims to estimate the impact of dimethylacetamide (DMA) as a cryoprotectant at different levels (3%, 6%, or 9%) on the post-thawed sperm quality, motility, antioxidant-biomarkers, and the expression of anti-freeze related genes. Semen samples were collected twice a week from twelve roosters aged 40 wk, weighing 3400 ± 70 g, and belonging to the Cairo-B2 chicken strain. Fresh semen samples were rapidly appraised, pooled, diluted with two volumes of a basic extender, and divided equally into three groups. The diluted groups were chilled at −20 °C for 7 min, then gently supplemented with 3, 6, or 9% pre-cooled DMA and equilibrated at 5 °C for a further 10 min. Semen pellets were formed by pipetting drops 7 cm above liquid nitrogen (LN2), which were then kept inside cryovials in the LN2. Thawing was performed 2 months later by taking 3–4 pellets of the frozen semen into a glass tube and warming it in a water bath for 8 s at 60 °C. The results showed that 3% DMA increased the proportion of total motile sperm, progressivity, viability, and plasma membrane integrity (%) compared to the 6% and 9% DMA groups. The lipid peroxidation and antioxidant enzyme activity were improved in the 3% group. At the same time, some anti-freeze-related genes’ (including ras homolog family member A (RHOA), heat shock protein 70 (HSP70), and small nuclear ribonucleoprotein polypeptide A (SNRPA1)) expressions were upregulated within the 3% DMA group relative to other groups. In conclusion, the 3% DMA group maintained higher post-thawed sperm quality than the other tested groups. Full article
Show Figures

Figure 1

20 pages, 1173 KiB  
Review
RHOA Therapeutic Targeting in Hematological Cancers
by Juliana Carvalho Santos, Núria Profitós-Pelejà, Salvador Sánchez-Vinces and Gaël Roué
Cells 2023, 12(3), 433; https://doi.org/10.3390/cells12030433 - 28 Jan 2023
Cited by 10 | Viewed by 4944
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated [...] Read more.
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases. Full article
(This article belongs to the Special Issue Innovative Drug Treatment of Cancer Cells)
Show Figures

Figure 1

13 pages, 455 KiB  
Article
Effect of Dimethylacetamide Concentration on Motility, Quality, Antioxidant Biomarkers, Anti-Freeze Gene Expression, and Fertilizing Ability of Frozen/Thawed Rooster Sperm
by Gamal M. K. Mehaisen, Ahmed M. Elomda, Shaimaa K. Hamad, Mona M. Ghaly, Yanyan Sun, Yunlei Li, Yunhe Zong, Jilan Chen, Agnieszka Partyka, Ali Nazmi, Ahmed O. Abbas and Farid K. R. Stino
Animals 2022, 12(20), 2739; https://doi.org/10.3390/ani12202739 - 12 Oct 2022
Cited by 16 | Viewed by 2960
Abstract
Sperm cryopreservation is of great importance for the poultry industry but still needs to be optimized. The high susceptibility of poultry sperm to cryodamage leads to low fertility rates after cryopreservation. Therefore, the present study aimed at evaluating the effect of including a [...] Read more.
Sperm cryopreservation is of great importance for the poultry industry but still needs to be optimized. The high susceptibility of poultry sperm to cryodamage leads to low fertility rates after cryopreservation. Therefore, the present study aimed at evaluating the effect of including a cryoprotectant, dimethylacetamide (DMA), in the chicken semen freezing extenders at a final concentration of 3%, 6%, or 9% on the post-thawed sperm motility, quality, antioxidant biomarkers, anti-freeze gene expression, and fertilizing ability. Results showed that the total motile sperm, progressivity, and viability were quadratically increased (p < 0.05) in the 6% DMA group. The antioxidant enzyme activity and lipid peroxidation were negatively (p < 0.05) affected by the increase in DMA concentration. Furthermore, some anti-freeze-associated genes such as heat shock protein 70 (HSP70) and ras homolog family member A (RHOA) were linearly and quadratically down-regulated (p < 0.05) with the high concentration of DMA. Finally, the fertility and hatchability rates did not indicate statistical differences between DMA groups. It can be concluded that using the low concentration of 3–6% DMA in the freezing semen extender is preferable to obtain acceptable results in the post-thawed sperm quality and fertility. Full article
(This article belongs to the Special Issue Current Status and Advances in Semen Preservation)
Show Figures

Figure 1

32 pages, 1594 KiB  
Review
RhoA Signaling in Neurodegenerative Diseases
by Sissel Ida Schmidt, Morten Blaabjerg, Kristine Freude and Morten Meyer
Cells 2022, 11(9), 1520; https://doi.org/10.3390/cells11091520 - 1 May 2022
Cited by 77 | Viewed by 8421
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the [...] Read more.
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration. Full article
Show Figures

Figure 1

17 pages, 1320 KiB  
Review
Role of Small GTPase RhoA in DNA Damage Response
by Chibin Cheng, Daniel Seen, Chunwen Zheng, Ruijie Zeng and Enmin Li
Biomolecules 2021, 11(2), 212; https://doi.org/10.3390/biom11020212 - 3 Feb 2021
Cited by 25 | Viewed by 5490
Abstract
Accumulating evidence has suggested a role of the small GTPase Ras homolog gene family member A (RhoA) in DNA damage response (DDR) in addition to its traditional function of regulating cell morphology. In DDR, 2 key components of DNA repair, ataxia telangiectasia-mutated (ATM) [...] Read more.
Accumulating evidence has suggested a role of the small GTPase Ras homolog gene family member A (RhoA) in DNA damage response (DDR) in addition to its traditional function of regulating cell morphology. In DDR, 2 key components of DNA repair, ataxia telangiectasia-mutated (ATM) and flap structure-specific endonuclease 1 (FEN1), along with intracellular reactive oxygen species (ROS) have been shown to regulate RhoA activation. In addition, Rho-specific guanine exchange factors (GEFs), neuroepithelial transforming gene 1 (Net1) and epithelial cell transforming sequence 2 (Ect2), have specific functions in DDR, and they also participate in Ras-related C3 botulinum toxin substrate 1 (Rac1)/RhoA interaction, a process which is largely unappreciated yet possibly of significance in DDR. Downstream of RhoA, current evidence has highlighted its role in mediating cell cycle arrest, which is an important step in DNA repair. Unraveling the mechanism by which RhoA modulates DDR may provide more insight into DDR itself and may aid in the future development of cancer therapies. Full article
Show Figures

Figure 1

15 pages, 2631 KiB  
Article
Increased Level of Long Non-Coding RNA MALAT1 Is a Common Feature of Amoeboid Invasion
by Ladislav Merta, Aneta Gandalovičová, Vladimír Čermák, Michal Dibus, Tony Gutschner, Sven Diederichs, Daniel Rösel and Jan Brábek
Cancers 2020, 12(5), 1136; https://doi.org/10.3390/cancers12051136 - 1 May 2020
Cited by 4 | Viewed by 3615
Abstract
The ability of cancer cells to adopt various migration modes (the plasticity of cancer cell invasiveness) is a substantive obstacle in the treatment of metastasis, yet still an incompletely understood process. We performed a comparison of publicly available transcriptomic datasets from various cell [...] Read more.
The ability of cancer cells to adopt various migration modes (the plasticity of cancer cell invasiveness) is a substantive obstacle in the treatment of metastasis, yet still an incompletely understood process. We performed a comparison of publicly available transcriptomic datasets from various cell types undergoing a switch between the mesenchymal and amoeboid migration modes. Strikingly, lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was one of three genes that were found upregulated in all amoeboid cells analyzed. Accordingly, downregulation of MALAT1 in predominantly amoeboid cell lines A375m2 and A2058 resulted in decrease of active RhoA (Ras homolog family member A) and was accompanied by the amoeboid-mesenchymal transition in A375m2 cells. Moreover, MALAT1 downregulation in amoeboid cells led to increased cell proliferation. Our work is the first to address the role of MALAT1 in MAT/AMT (mesenchymal to amoeboid transition/amoeboid to mesenchymal transition) and suggests that increased MALAT1 expression is a common feature of amoeboid cells. Full article
Show Figures

Figure 1

27 pages, 8679 KiB  
Article
Pulmonary Hypertension Remodels the Genomic Fabrics of Major Functional Pathways
by Rajamma Mathew, Jing Huang, Sanda Iacobas and Dumitru A. Iacobas
Genes 2020, 11(2), 126; https://doi.org/10.3390/genes11020126 - 23 Jan 2020
Cited by 11 | Viewed by 4186
Abstract
Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality rate. We analyzed the right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), lung histology, and transcriptomes of six-week-old male rats with PH induced by (1) hypoxia (HO), (2) administration of monocrotaline (CM), [...] Read more.
Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality rate. We analyzed the right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), lung histology, and transcriptomes of six-week-old male rats with PH induced by (1) hypoxia (HO), (2) administration of monocrotaline (CM), or (3) administration of monocrotaline and exposure to hypoxia (HM). The results in PH rats were compared to those in control rats (CO). After four weeks exposure, increased RVSP and RVH, pulmonary arterial wall thickening, and alteration of the lung transcriptome were observed in all PH groups. The HM group exhibited the largest alterations, as well as neointimal lesions and obliteration of the lumen in small arteries. We found that PH increased the expression of caveolin1, matrix metallopeptidase 2, and numerous inflammatory and cell proliferation genes. The cell cycle, vascular smooth muscle contraction, and oxidative phosphorylation pathways, as well as their interplay, were largely perturbed. Our results also suggest that the upregulated Rhoa (Ras homolog family member A) mediates its action through expression coordination with several ATPases. The upregulation of antioxidant genes and the extensive mitochondrial damage observed, especially in the HM group, indicate metabolic shift toward aerobic glycolysis. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 1736 KiB  
Article
In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis
by Marzia Dolcino, Elisa Tinazzi, Antonio Puccetti and Claudio Lunardi
J. Clin. Med. 2019, 8(3), 320; https://doi.org/10.3390/jcm8030320 - 7 Mar 2019
Cited by 26 | Viewed by 4352
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by three main features: vasculopathy, immune system dysregulation and fibrosis. Long non-coding RNAs (lncRNAs) may play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in SSc is still [...] Read more.
Systemic sclerosis (SSc) is an autoimmune disease characterized by three main features: vasculopathy, immune system dysregulation and fibrosis. Long non-coding RNAs (lncRNAs) may play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in SSc is still lacking. We profiled 542,500 transcripts in peripheral blood mononuclear cells (PBMCs) from 20 SSc patients and 20 healthy donors using Clariom D arrays, confirming the results by Reverse Transcription Polymerase-chain reaction (RT-PCR). A total of 837 coding-genes were modulated in SSc patients, whereas only one lncRNA, heterogeneous nuclear ribonucleoprotein U processed transcript (ncRNA00201), was significantly downregulated. This transcript regulates tumor proliferation and its gene target hnRNPC (Heterogeneous nuclear ribonucleoproteins C) encodes for a SSc-associated auto-antigen. NcRNA00201 targeted micro RNAs (miRNAs) regulating the most highly connected genes in the Protein-Protein interaction (PPI) network of the SSc transcriptome. A total of 26 of these miRNAs targeted genes involved in pathways connected to the three main features of SSc and to cancer development including Epidermal growth factor (EGF) receptor, ErbB1 downstream, Sphingosine 1 phosphate receptor 1 (S1P1), Activin receptor-like kinase 1 (ALK1), Endothelins, Ras homolog family member A (RhoA), Class I Phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (MAPK), Ras-related C3 botulinum toxin substrate 1 (RAC1), Transforming growth factor (TGF)-beta receptor, Myeloid differentiation primary response 88 (MyD88) and Toll-like receptors (TLRs) pathways. In SSc, the identification of a unique deregulated lncRNA that regulates genes involved in the three main features of the disease and in tumor-associated pathways, provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

13 pages, 2044 KiB  
Article
The Involvement of RhoA and Wnt-5a in the Tumorigenesis and Progression of Ovarian Epithelial Carcinoma
by Shuo Chen, Jun Wang, Wen-Feng Gou, Ying-Ling Xiu, Hua-Chuan Zheng, Zhi-Hong Zong, Yasuo Takano and Yang Zhao
Int. J. Mol. Sci. 2013, 14(12), 24187-24199; https://doi.org/10.3390/ijms141224187 - 12 Dec 2013
Cited by 35 | Viewed by 6755
Abstract
Background: Ras homolog gene family member A (RhoA) is involved in Wnt-5a–induced migration of gastric and breast cancer cells. We investigated the roles of RhoA and Wnt-5a in ovarian carcinoma. Methods: RhoA and Wnt-5a mRNA and protein expression in normal fallopian [...] Read more.
Background: Ras homolog gene family member A (RhoA) is involved in Wnt-5a–induced migration of gastric and breast cancer cells. We investigated the roles of RhoA and Wnt-5a in ovarian carcinoma. Methods: RhoA and Wnt-5a mRNA and protein expression in normal fallopian tube epithelium, benign tumors, primary ovarian carcinomas, and metastatic omentum were quantified. RhoA or Wnt-5a was knocked down in OVCAR3 ovarian carcinoma cells using siRNAs and cell phenotype and expression of relevant molecules were assayed. Results: RhoA and Wnt-5a mRNA and protein expression were found to be significantly higher in metastatic omentum than in ovarian carcinomas, benign tumors, and normal fallopian tube epithelium (p < 0.05), and positively associated with differentiation and FIGO staging (stage I/II vs. stage III/IV) in ovarian carcinoma (p < 0.05). RhoA and Wnt-5a expression were positively correlated in ovarian carcinoma (p = 0.001, R2 = 0.1669). RhoA or Wnt-5a knockdown downregulated RhoA and Wnt-5a expression; reduced cell proliferation; promoted G1 arrest and apoptosis; suppressed lamellipodia formation, cell migration, and invasion; and reduced PI3K, Akt, p70S6k, Bcl-xL, survivin, and VEGF mRNA or protein expression. Conclusions: This is the first demonstration that RhoA and Wnt-5a are associated with ovarian carcinogenesis and apoptosis inhibition; there might be positive correlation between RhoA and Wnt-5a expression. RhoA is a potential tumorigenesis, differentiation, and progression biomarker in ovarian carcinoma. Full article
Show Figures

13 pages, 1358 KiB  
Article
Genomic DNA Methylation Changes in NYGGF4-Overexpression 3T3-L1 Adipocytes
by Lei Yang, Mei-Ling Tong, Xia Chi, Min Zhang, Chun-Mei Zhang and Xi-Rong Guo
Int. J. Mol. Sci. 2012, 13(12), 15575-15587; https://doi.org/10.3390/ijms131215575 - 22 Nov 2012
Cited by 6 | Viewed by 6439
Abstract
NYGGF4, an obesity-related gene, is proposed to be involved in the development of insulin resistance; however, the underlying molecular mechanisms remain unclear. In the present analysis, NimbleGen tiling arrays were used to determine the patterns of genomic DNA methylation at CpG islands [...] Read more.
NYGGF4, an obesity-related gene, is proposed to be involved in the development of insulin resistance; however, the underlying molecular mechanisms remain unclear. In the present analysis, NimbleGen tiling arrays were used to determine the patterns of genomic DNA methylation at CpG islands and promoters in NYGGF4-overexpression adipocytes. A total of 2352 CpG dinucleotides in 2018 genes and 3490 CpG dinucleotides in 3064 genes were found to be hypermethylated or hypomethylated, respectively, in NYGGF4-overexpression adipocytes. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis revealed enrichment of biological processes associated with energy metabolism and signal transduction events, including the peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway, and mitogen-activated protein kinases(MAPK) and Ras homolog gene family, member A (RhoA) signaling. These data demonstrate that differentially methylated genes are significantly overrepresented in NYGGF4-overexpression adipocytes, providing valuable clues for further exploration of the role of NYGGF4 in insulin sensitivity regulation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop