In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Microarray Analysis
2.3. Protein–Protein Interaction (PPI) Network Construction and Network Clustering
2.4. Gene Functional Classification and Enrichment Analysis
2.5. Real Time PCR of ncRNA00201
2.6. Real Time PCR of Genes Modulated in SSc Patients
2.7. Real Time PCR of microRNAs Targeted by ncRNA00201
2.8. Detection of Soluble Mediators in Sera of SSc Patients
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef]
- Lunardi, C.; Bason, C.; Navone, R.; Millo, E.; Damonte, G.; Corrocher, R.; Puccetti, A. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat. Med. 2000, 6, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Dolcino, M.; Puccetti, A.; Barbieri, A.; Bason, C.; Tinazzi, E.; Ottria, A.; Patuzzo, G.; Martinelli, N.; Lunardi, C. Infections and autoimmunity: Role of human cytomegalovirus in autoimmune endothelial cell damage. Lupus 2015, 24, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.; Distler, J.H. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics 2017, 9, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Aslani, S.; Sobhani, S.; Gharibdoost, F.; Jamshidi, A.; Mahmoudi, M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum. Immunol. 2018, 79, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Dolcino, M.; Pelosi, A.; Fiore, P.F.; Patuzzo, G.; Tinazzi, E.; Lunardi, C.; Puccetti, A. Gene profiling in patients with systemic sclerosis reveals the presence of oncogenic gene signatures. Front. Immunol. 2018, 9, 449. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Bello, D.; de Tena, J.G.; Guillén-Del Castillo, A.; Selva-O’Callaghan, A.; Callejas-Moraga, E.L.; Marín-Sánchez, A.M.; Fonollosa-Pla, V.; Simeón-Aznar, C.P. Novel risk factors related to cancer in scleroderma. Autoimmun. Rev. 2017, 16, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Xu, G.; Rosen, A.; Hummers, L.K.; Wigley, F.M.; Elledge, S.J.; Casciola-Rosen, L. Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma. Arthritis Rheumatol. 2017, 69, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Monfort, J.B.; Lazareth, I.; Priollet, P. Paraneoplastic systemic sclerosis: About 3 cases and review of literature. J. Mal. Vasc. 2016, 41, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Casciola-Rosen, L. Cancer and scleroderma: A paraneoplastic disease with implications for malignancy screening. Curr. Opin. Rheumatol. 2015, 27, 563–570. [Google Scholar] [CrossRef] [PubMed]
- van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis. Rheum. 2013, 65, 2737–2747. [Google Scholar] [CrossRef] [PubMed]
- LeRoy, E.C.; Black, C.; Fleischmajer, R.; Jablonska, S.; Krieg, T.; Medsger, T.A., Jr.; Rowell, N.; Wollheim, F. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J. Rheumatol. 1988, 15, 202–205. [Google Scholar] [PubMed]
- Melsens, K.; De Keyser, F.; Decuman, S.; Piette, Y.; Vandecasteele, E.; Smith, V. Disease activity indices in systemic sclerosis: A systematic literature review. Clin. Exp. Rheumatol. 2016, 34, 186–192. [Google Scholar] [PubMed]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [PubMed]
- Pathan, M.; Keerthikumar, S.; Ang, C.S.; Gangoda, L.; Quek, C.Y.; Williamson, N.A.; Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; et al. Funrich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics 2015, 15, 2597–2601. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; et al. String 8—A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009, 37, D412–D416. [Google Scholar] [CrossRef] [PubMed]
- Cline, M.S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B.; et al. Integration of biological networks and gene expression data using cytoscape. Nat. Protoc. 2007, 2, 2366–2382. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 2013, 8, 1551–1566. [Google Scholar] [CrossRef] [PubMed]
- Sutaria, D.S.; Jiang, J.; Azevedo-Pouly, A.C.P.; Lee, E.J.; Lerner, M.R.; Brackett, D.J.; Vandesompele, J.; Mestdagh, P.; Schmittgen, T.D. Expression profiling identifies the noncoding processed transcript of HNRNPU with proliferative properties in pancreatic ductal adenocarcinoma. Noncoding RNA 2017, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Skaug, B.; Assassi, S. Type I interferon dysregulation in systemic sclerosis. Cytokine 2019. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Sato, S. Vasculopathy in scleroderma. Semin. Immunopathol. 2015, 37, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, M.J.; Boonstra, A.; Voskuyl, A.E.; Vonk, M.C.; Vonk-Noordegraaf, A.; van Berkel, M.P.; Mooi, W.J.; Dijkmans, B.A.; Hondema, L.S.; Smit, E.F.; et al. Platelet-derived growth factor receptor-β and epidermal growth factor receptor in pulmonary vasculature of systemic sclerosis-associated pulmonary arterial hypertension versus idiopathic pulmonary arterial hypertension and pulmonary veno-occlusive disease: A case-control study. Arthritis Res. Ther. 2011, 13, R61. [Google Scholar] [CrossRef] [PubMed]
- Yamane, K.; Ihn, H.; Tamaki, K. Epidermal growth factor up-regulates expression of transforming growth factor beta receptor type II in human dermal fibroblasts by phosphoinositide 3-kinase/Akt signaling pathway: Resistance to epidermal growth factor stimulation in scleroderma fibroblasts. Arthritis Rheum. 2003, 48, 1652–1666. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.K.; Zhou, X.; Mayes, M.D.; Gourh, P.; Guo, X.; Marcum, C.; Jin, L.; Arnett, F.C., Jr. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology 2006, 45, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanek, D.; Vencovský, J.; Kafková, J.; Raska, I. Heterogenous nuclear RNP C1 and C2 core proteins are targets for an autoantibody found in the serum of a patient with systemic sclerosis and psoriatic arthritis. Arthritis Rheum. 1997, 40, 2172–2177. [Google Scholar] [PubMed]
- Yang, S.J.; Yang, S.Y.; Wang, D.D.; Chen, X.; Shen, H.Y.; Zhang, X.H.; Zhong, S.L.; Tang, J.H.; Zhao, J.H. The miR-30 family: Versatile players in breast cancer. Tumor Biol. 2017, 39, 1010428317692204. [Google Scholar] [CrossRef] [PubMed]
- Watt, K.; Newsted, D.; Voorand, E.; Gooding, R.J.; Majewski, A.; Truesdell, P.; Yao, B.; Tuschl, T.; Renwick, N.; Craig, A.W. MicroRNA-206 suppresses TGF-β signalling to limit tumor growth and metastasis in lung adenocarcinoma. Cell. Signal. 2018, 50, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Wermuth, P.J.; Piera-Velazquez, S.; Rosenbloom, J.; Jimenez, S.A. Existing and novel biomarkers for precision medicine in systemic sclerosis. Nat. Rev. Rheumatol. 2018, 14, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Hersi, H.M.; Raulf, N.; Gaken, J.; Folarin, N.; Tavassoli, M. MicroRNA-9 inhibits growth and invasion of head and neck cancer cells and is a predictive biomarker of response to plerixafor, an inhibitor of its target CXCR4. Mol. Oncol. 2018, 12, 2023–2041. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Yan, T.; Zhang, W.; Shi, F.; Jiang, X.; Wang, X.; Li, S.; Chen, Y.; Chen, C.; Zhu, Y. miR-613 inhibits cell migration and invasion by downregulating Daam1 in triple-negative breast cancer. Cell. Signal. 2018, 44, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, Y.; Jiang, L.; He, M.; Bai, X.; Yu, L.; Wei, M. MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein(P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1). J. Exp. Clin. Cancer Res. 2016, 35, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Xu, Y.; Liao, X.; Liao, R.; Zhang, L.; Niu, K.; Li, T.; Li, D.; Chen, Z.; Duan, Y.; et al. Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer. Tumor Biol. 2016, 37, 11927–11936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liu, S.; Zhao, X.; Zhao, X.; Wang, Y.; Tian, D.; Jiang, W. MiR-372-3p promotes cell growth and metastasis by targeting FGF9 in lung squamous cell carcinoma. Cancer Med. 2017, 6, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zuo, X.X.; Li, Y.S.; Gao, S.M.; Dai, X.D.; Zhu, H.L.; Luo, H. Integration of microRNA and mRNA expression profiles in the skin of systemic sclerosis patients. Sci. Rep. 2017, 7, 42899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, C.; Li, F.; Li, X.; Tian, Y.; Zhang, Y.; Sheng, X.; Song, Y.; Meng, Q.; Yuan, S.; Luan, L.; et al. MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nat. Commun. 2017, 8, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wei, J.; Mei, Z.; Yin, Y.; Li, Y.; Lu, M.; Jin, S. Suppressing role of miR-520a-3p in breast cancer through CCND1 and CD44. Am. J. Transl. Res. 2017, 9, 146–154. [Google Scholar] [PubMed]
- Hu, N.; Zhang, J.; Cui, W.; Kong, G.; Zhang, S.; Yue, L.; Bai, X.; Zhang, Z.; Zhang, W.; Zhang, X.; et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J. Biol. Chem. 2011, 286, 13714–13722. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Cai, S.; Sun, M.; Xu, M. Upregulation of miR-520b promotes ovarian cancer growth. Oncol. Lett. 2017, 14, 3155–3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.P.; Zhou, H.J.; Qin, J.; Luo, Y.; Zhang, T. MicroRNA-520c-3p negatively regulates EMT by targeting IL-8 to suppress the invasion and migration of breast cancer. Oncol. Rep. 2017, 38, 3144–3152. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Yang, T.; Ding, J.; Liu, W.; Meng, X.; Zhang, P.; Liu, K.; Wang, P. MiR-520d-3p antitumor activity in human breast cancer via post-transcriptional regulation of spindle and kinetochore associated 2 expression. Am. J. Transl. Res. 2018, 10, 1097–1108. [Google Scholar] [PubMed]
- Yi, M.; Li, M.; Long, X.; Ye, J.; Cui, J.; Wei, W.; Wan, H.; Yin, M.; Gao, S.; Su, Z.; et al. miR-520e regulates cell proliferation, apoptosis and migration in breast cancer. Oncol. Lett. 2016, 12, 3543–3548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, H.; Lal, K.; Yang, F.F.; Chen, J. The pathological role and prognostic impact of miR-181 in acute myeloid leukemia. Cancer Genet. 2015, 208, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Zhu, Y.; Hong, X.; Zhang, M.; Qiu, X.; Wang, Z.; Qi, Z.; Hong, X. miR-181d and c-myc-mediated inhibition of CRY2 and FBXL3 reprograms metabolism in colorectal cancer. Cell Death Dis. 2017, 8, e2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil, S.; Fabbri, E.; Santangelo, A.; Bezzerri, V.; Cantù, C.; Di Gennaro, G.; Finotti, A.; Ghimenton, C.; Eccher, A.; Dechecchi, M.; et al. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget 2016, 7, 28195–28206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kuscu, C.; Banach, A.; Zhang, Q.; Pulkoski-Gross, A.; Kim, D.; Liu, J.; Roth, E.; Li, E.; Shroyer, K.R.; et al. miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Res. 2015, 75, 2674–2685. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, H.; Liao, W.; Luo, A.; Cai, M.; He, J.; Zhang, X.; Luo, Z.; Jiang, H.; Xu, L. MiR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1. Mol. Carcinog. 2018, 57, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.N.; Qie, P.; Yang, G.; Song, Y.B. miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell lung cancer cells by targeting Bcl-2. Arch. Med. Sci. 2018, 14, 745–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, M.; Tanaka, K.; Itonaga, I.; Iwasaki, T.; Tsumura, H. MicroRNA-181c prevents apoptosis by targeting of FAS receptor in Ewing’s sarcoma cells. Cancer Cell. Int. 2018, 18, 37. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Pan, X.; He, T.; Lin, C.; Lai, Y.; Chen, P.; Zhang, Z.; Yang, S.; Wang, T.; Lai, Y. Tumor suppressor miR-211-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Exp. Ther. Med. 2018, 15, 4019–4028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, G.; Wen, L.; Deng, W.; Jian, Z.; Zheng, H. Regulatory role of miR-211-5p in hepatocellular carcinoma metastasis by targeting ZEB2. Biomed. Pharmacother. 2017, 90, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Zhang, Z.J.; Yi, Z.B.; Li, J.J. MicroRNA-211-5p suppresses tumour cell proliferation, invasion, migration and metastasis in triple-negative breast cancer by directly targeting SETBP1. Br. J. Cancer. 2017, 117, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Martínez, M.; Benito-Jardón, L.; Alonso, L.; Koetz-Ploch, L.; Hernando, E.; Teixidó, J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res. 2018, 78, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.H.; Wen, D.Y.; Cai, X.Y.; Liang, L.; Wu, P.R.; Qin, H.; Yang, H.; He, Y.; Chen, G. The protective value of miR-204-5p for prognosis and its potential gene network in various malignancies: A comprehensive exploration based on RNA-seq high-throughput data and bioinformatics. Oncotarget 2017, 8, 104960–104980. [Google Scholar] [CrossRef] [PubMed]
- Gallo, L.H.; Ko, J.; Donoghue, D.J. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 2017, 16, 634–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jack, J.; Small, G.W.; Brown, C.C.; Havener, T.M.; McLeod, H.L.; Motsinger-Reif, A.A.; Richards, K.L. Gene expression and linkage analysis implicate CBLB as a mediator of rituximab resistance. Pharmacogenomics J. 2018, 18, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.Y.; Park, C.; Harrison, K.; Boularan, C.; Galés, C.; Kehrl, J.H. An essential role for RGS protein/Gαi2 interactions in B lymphocyte-directed cell migration and trafficking. J. Immunol. 2015, 194, 2128–2139. [Google Scholar] [CrossRef] [PubMed]
- Crescioli, C.; Corinaldesi, C.; Riccieri, V.; Raparelli, V.; Vasile, M.; Del Galdo, F.; Valesini, G.; Lenzi, A.; Basili, S.; Antinozzi, C. Association of circulating CXCL10 and CXCL11 with systemic sclerosis. Ann. Rheum. Dis. 2018, 77, 1845–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruggiero, C.; Fragassi, G.; Grossi, M.; Picciani, B.; Di Martino, R.; Capitani, M.; Buccione, R.; Luini, A.; Sallese, M.A. Golgi-based KDELR-dependent signalling pathway controls extracellular matrix degradation. Oncotarget 2015, 6, 3375–3393. [Google Scholar] [CrossRef] [PubMed]
- Mahil, S.K.; Twelves, S.; Farkas, K.; Setta-Kaffetzi, N.; Burden, A.D.; Gach, J.E.; Irvine, A.D.; Képíró, L.; Mockenhaupt, M.; Oon, H.H.; et al. AP1S3 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating IL-36 production. J. Invest. Dermatol. 2016, 136, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.; Hale, A.B.; Patel, J.; Chuaiphichai, S.; Al Haj Zen, A.; Rashbrook, V.S.; Trelfa, L.; Crabtree, M.J.; McNeill, E.; Channon, K.M. Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression. Cardiovasc. Res. 2018, 114, 1385–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuaiphichai, S.; Crabtree, M.J.; Mcneill, E.; Hale, A.B.; Trelfa, L.; Channon, K.M.; Douglas, G.A. Key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: Studies in endothelial cell tetrahydrobiopterin-deficient mice. Br. J. Pharmacol. 2017, 174, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Wallace, S.; Guo, D.C.; Regalado, E.; Mellor-Crummey, L.; Bamshad, M.; Nickerson, D.A.; Dauser, R.; Hanchard, N.; Marom, R.; Martin, E.; et al. Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension. Clin. Genet. 2016, 90, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Giampaolo, S.; Wójcik, G.; Klein-Hessling, S.; Serfling, E.; Patra, A.K. B cell development is critically dependent on NFATc1 activity. Cell. Mol. Immunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cobaleda, C.; Schebesta, A.; Delogu, A.; Busslinger, M. Pax5: The guardian of B cell identity and function. Nat. Immunol. 2007, 8, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Wipff, J.; Kahan, A.; Boileau, C. Genetic basis for systemic sclerosis. Joint Bone Spine 2007, 74, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Tan, F.K.; Guo, X.; Arnett, F.C. Attenuation of collagen production with small interfering RNA of SPARC in cultured fibroblasts from the skin of patients with scleroderma. Arthritis Rheum. 2006, 54, 2626–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.J.; Aguiar, R.C.T. Biology informs treatment choices in diffuse large B cell lymphoma. Trends Cancer 2017, 3, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Groettrup, M.; Kirk, C.J.; Basler, M. Proteasomes in immune cells: More than peptide producers? Nat. Rev. Immunol. 2010, 10, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.C.; Pan, H.F.; Leng, R.X.; Wang, D.G.; Li, X.P.; Li, X.M.; Ye, D.Q. Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun. Rev. 2015, 14, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Dolcino, M.; Pelosi, A.; Fiore, P.F.; Patuzzo, G.; Tinazzi, E.; Lunardi, C.; Puccetti, A. Long non-coding RNAs play a role in the pathogenesis of psoriatic arthritis by regulating microRNAs and genes involved in inflammation and metabolic syndrome. Front. Immunol. 2018, 9, 1533. [Google Scholar] [CrossRef] [PubMed]
- Planque, S.; Zhou, Y.X.; Nishiyama, Y.; Sinha, M.; O’Connor-Mccourt, M.; Arnett, F.C.; Paul, S. Autoantibodies to the epidermal growth factor receptor in systemic sclerosis, lupus, and autoimmune mice. FASEB J. 2003, 17, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006, 366, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Pattanaik, D.; Postlethwaite, A.E. A role for lysophosphatidic acid and sphingosine 1-phosphate in the pathogenesis of systemic sclerosis. Discov. Med. 2010, 10, 61–67. [Google Scholar]
- Watters, R.J.; Wang, H.G.; Sung, S.S.; Loughran, T.P.; Liu, X. Targeting sphingosine-1-phosphate receptors in cancer. Anticancer Agents Med. Chem. 2011, 11, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Daher, Z.; Noël, J.; Claing, A. Endothelin-1 promotes migration of endothelial cells through the activation of ARF6 and the regulation of FAK activity. Cell. Signal. 2008, 20, 2256–2265. [Google Scholar] [CrossRef] [PubMed]
- Hongu, T.; Yamauchi, Y.; Funakoshi, Y.; Katagiri, N.; Ohbayashi, N.; Kanaho, Y. Pathological functions of the small GTPase Arf6 in cancer progression: Tumor angiogenesis and metastasis. Small GTPases 2016, 7, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.; Chrobak, I.; Bujor, A.; Hant, F.; Mummery, C.; Ten Dijke, P.; Trojanowska, M. Endoglin promotes TGF-β/Smad1 signaling in scleroderma fibroblasts. J. Cell. Physiol. 2011, 226, 3340–3348. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.I.; Pietras, K. ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 2011, 117, 6999–7006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagnato, A.; Loizidou, M.; Pflug, B.R.; Curwen, J.; Growcott, J. Role of the endothelin axis and its antagonists in the treatment of cancer. Br. J. Pharmacol. 2011, 163, 220–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, A.P.; Papaioannou, A.; Malliri, A. Deregulation of Rho GTPases in cancer. Small GTPases 2016, 7, 123–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsou, P.S.; Amin, M.A.; Campbell, P.L.; Zakhem, G.; Balogh, B.; Edhayan, G.; Ohara, R.A.; Schiopu, E.; Khanna, D.; Koch, A.E.; et al. Activation of the thromboxane A2 receptorby 8-isoprostane inhibits the pro-angiogenic effect of vascular endothelial growth factor in scleroderma. J. Invest. Dermatol. 2015, 135, 3153–3162. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Ihn, H.; Yamane, K.; Jinnin, M.; Mimura, Y.; Tamaki, K. Phosphatidylinositol3-kinase is involved in alpha2(I) collagen gene expression in normal and scleroderma fibroblasts. J. Immunol. 2004, 172, 7123–7135. [Google Scholar] [CrossRef] [PubMed]
- Laplante, P.; Raymond, M.A.; Gagnon, G.; Vigneault, N.; Sasseville, A.M.; Langelier, Y.; Bernard, M.; Raymond, Y.; Hébert, M.J. Novel fibrogenic pathways are activated in response to endothelial apoptosis: Implications in the pathophysiology of systemic sclerosis. J. Immunol. 2005, 174, 5740–5749. [Google Scholar] [CrossRef] [PubMed]
- Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci. 2012, 13, 1886–1918. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Luna, J.I.; Marusina, A.I.; Merleev, A.; Kundu-Raychaudhuri, S.; Fiorentino, D.; Raychaudhuri, S.P.; Maverakis, E. Dual mTOR Inhibition is required to prevent TGF-β-mediated fibrosis: Implications for scleroderma. J. Invest. Dermatol. 2015, 135, 2873–2876. [Google Scholar] [CrossRef] [PubMed]
- Ihn, H.; Yamane, K.; Tamaki, K. Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts. J. Invest. Dermatol. 2005, 125, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Leask, A. Getting out of a sticky situation: Targeting the myofibroblast inscleroderma. Open Rheumatol. J. 2012, 6, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Corre, I.; Paris, F.; Huot, J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017, 8, 55684–55714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, S.; Wang, P.; Yang, J.; Ma, J.; Liu, C.; Zhou, M. Prognostic and clinicopathological value of Rac1 in cancer survival: Evidence from a meta-analysis. J. Cancer 2018, 9, 2571–2579. [Google Scholar] [CrossRef] [PubMed]
- Furler, R.L.; Nixon, D.F.; Brantner, C.A.; Popratiloff, A.; Uittenbogaart, C.H. TGF-β sustains tumor progression through biochemical and mechanical signal transduction. Cancers (Basel) 2018, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Bhattacharyya, S.; Tourtellotte, W.G.; Varga, J. Fibrosis in systemic sclerosis: Emerging concepts and implications for targeted therapy. Autoimmun. Rev. 2011, 10, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciechomska, M.; Cant, R.; Finnigan, J.; van Laar, J.M.; O’Reilly, S. Role of toll-like receptors in systemic sclerosis. Expert Rev. Mol. Med. 2013, 15, e9. [Google Scholar] [CrossRef] [PubMed]
- Rakoff-Nahoum, S.; Medzhitov, R. Toll-like receptors and cancer. Nat. Rev. Cancer 2009, 9, 57–63. [Google Scholar] [CrossRef] [PubMed]
Demographic and Clinical Features of Systemic Sclerosis Patients and Healthy Controls | |||
---|---|---|---|
Healthy controls | 20 | ||
Male/Female | 3/17 | ||
Mean age (years) | 55 ± 11 | ||
Patients | lSSc | dSSc | |
10 | 10 | ||
Male/Female | 2/8 | 1/9 | |
Mean age (years) | 57 ± 13 | 55 ± 10 | |
Laboratory findings | ANA | 9 (90%) | 10 (100%) |
Anti-centromere | 6 (60%) | 2 (20%) | |
Scl-70 | 0 | 8 (80%) | |
Lung involvement | Interstitial disease | 3 (30%) | 6 (60%) |
Pulmonary arterial hypertension | 2 (20%) | 1 (10%) | |
Skin involvement | mRSS | 8 ± 3 | 14 ± 8 |
Digital ulcers | 3 (30%) | 5 (50%) | |
Video Capillaroscopy | Early | 2 (20%) | 3 (30%) |
Active | 5 (50%) | 4 (40%) | |
Late | 3 (30%) | 3 (30%) | |
Kidney involvement | 0 (0%) | 1 (10%) | |
Gastro-intestinal involvement | 7 (70%) | 9 (90%) |
ID | Fold Change | p-Value | Gene Symbol | Description | Accession Number |
---|---|---|---|---|---|
TC0100018570.hg.1 | −1.8 | 0.0003 | ncRNA00201 | heterogeneous nuclear ribonucleoprotein U antisense RNA 1 | ENST00000366527.3 |
Apoptosis | |||||
TC0100013000.hg.1 | 1.57 | 0.0012 | CASP9 | caspase 9 | AB020979.1 |
TC1000007990.hg.1 | 2.32 | 0.0017 | DDIT4 | DNA damage inducible transcript 4 | NM_019058.3 |
TC1900011729.hg.1 | 2.1 | <0.0001 | TIMM50 | translocase of inner mitochondrial membrane 50 homolog | NM_001001563.3 |
TC0600014045.hg.1 | 1.65 | 0.0064 | PDCD2 | programmed cell death 2 | NM_002598.3 |
TC1800008891.hg.1 | 2.1 | 0.0013 | BCL2 | B-cell CLL/lymphoma 2 | NM_000633.2 |
TC0200010972.hg.1 | 1.68 | 0.0003 | MFF | mitochondrial fission factor | NM_001277061.1 |
TC1500008231.hg.1 | 1.81 | 0.0002 | AEN | apoptosis enhancing nuclease | NM_022767.3 |
TC0500010104.hg.1 | 1.63 | 0.0006 | DAP | death-associated protein | NM_001291963.1 |
Immune Response | |||||
TC0300013859.hg.1 | 2.95 | 0.0015 | CD200 | CD200 molecule | NM_005944.6 |
TC2000007519.hg.1 | 1.59 | 0.009 | CD40 | CD40 molecule, TNF receptor superfamily member 5 | NM_001250.5 |
TC1900008166.hg.1 | 3.55 | 0.0029 | CD79A | CD79a molecule, immunoglobulin-associated alpha | L32754.1 |
TC1700011430.hg.1 | 2.61 | 0.0011 | CD79B | CD79b molecule, immunoglobulin-associated beta | KM057839 |
TC0700009461.hg.1 | 2.77 | 0.0008 | TRBV24-1 | T cell receptor beta variable 24-1 | AY373826 |
TC0600007597.hg.1 | 1.59 | 0.0039 | LST1 | leukocyte specific transcript 1 | NM_007161 |
TC1600011368.hg.1 | 2 | 0.0002 | LAT | linker for activation of T-cells | AF036905 |
TC1400010806.hg.1 | 6.89 | 0.0029 | IGHV5-51 | immunoglobulin heavy variable 5-51 | EU433880.1 |
TC1600007312.hg.1 | 2.49 | <0.0001 | IL4R | interleukin 4 receptor | AF421855.1 |
Inflammatory Response | |||||
TC0400011053.hg.1 | 9.89 | 0.0001 | CXCL10 | chemokine (C-X-C motif) ligand 10 | NM_001565.3 |
TC0400011054.hg.1 | 2.11 | 0.0029 | CXCL11 | chemokine (C-X-C motif) ligand 11 | NM_020639.2 |
TC1100009225.hg.1 | 2.56 | 0.0068 | CXCR5 | chemokine (C-X-C motif) receptor 5 | NM_032966.2 |
TC0900008660.hg.1 | 1.72 | 0.0027 | PTGS1 | prostaglandin-endoperoxide synthase 1 | NM_001271367.1 |
TC0500007231.hg.1 | 2.42 | 0.0002 | PTGER4 | prostaglandin E receptor 4 (subtype EP4) | NM_000958.2 |
TC2200009231.hg.1 | 1.68 | 0.0004 | MIF | macrophage migration inhibitory factor | NM_002415.1 |
TC0300011059.hg.1 | 2.06 | 0.0002 | GPX1 | glutathione peroxidase 1 | M21304.1 |
TC1400007752.hg.1 | 1.94 | 0.008 | GSTZ1 | glutathione S-transferase zeta 1 | U86529.1 |
Cell Adhesion | |||||
TC1100012686.hg.1 | 2.7 | 0.0015 | ESAM | endothelial cell adhesion molecule | NM_138961.2 |
TC1100009611.hg.1 | 4.79 | 0.0028 | JAM3 | junctional adhesion molecule 3 | AF448478.1 |
TC1100006494.hg.1 | 1.86 | 0.0023 | CD151 | CD151 molecule (Raph blood group) | D29963.1 |
TC0100016357.hg.1 | 3.28 | 0.0008 | SELP | selectin P | NM_003005.3 |
TC1700011435.hg.1 | 1.78 | 0.0002 | ICAM2 | intercellular adhesion molecule 2 | NM_001099788.1 |
TC1900009625.hg.1 | 1.54 | 0.0052 | ICAM3 | intercellular adhesion molecule 3 | NM_002162.4 |
TC1300009165.hg.1 | 1.78 | 0.0025 | PCDH9 | protocadherin 9 | AF169692.2 |
TC1700012274.hg.1 | 7.81 | 0.0006 | ITGB3 | integrin beta 3 | NM_000212.2 |
Blood Coagulation | |||||
TC1100007938.hg.1 | 2.09 | 0.0007 | FERMT3 | fermitin family member 3 | XM_017018398.2 |
TC0600010709.hg.1 | 3.2 | 0.0065 | F13A1 | coagulation factor XIII, A1 polypeptide | NM_000129.3 |
TC0100016828.hg.1 | 1.55 | 0.0027 | F13B | coagulation factor XIII, B polypeptide | NM_001994.2 |
TC0200015194.hg.1 | 2.29 | 0.0008 | TFPI | tissue factor pathway inhibitor | NM_006287.5 |
TC0100008056.hg.1 | 1.86 | 0.0063 | MPL | MPL proto-oncogene, thrombopoietin receptor | NM_005373.2 |
TC2200006614.hg.1 | 2.88 | 0.0034 | GP1BB | glycoprotein Ib (platelet), beta polypeptide | NM_000407.4 |
TC1000008056.hg.1 | 2.42 | 0.0031 | VCL | vinculin | M33308.1 |
TC0700008582.hg.1 | 1.51 | 0.0008 | SERPINE1 | endothelial plasminogen activator inhibitor (PAI-1) | NM_000602.4 |
Angiogenesis | |||||
TC0500012519.hg.1 | 4.74 | 0.0005 | SPARC | secreted protein, acidic, cysteine-rich (osteonectin) | NM_000602.4 |
TC0400011053.hg.1 | 9.89 | 0.0001 | CXCL10 | chemokine (C-X-C motif) ligand 10 | NM_001565.3 |
TC1700012468.hg.1 | 1.74 | 0.0086 | HN1 | hematological and neurological expressed 1 | AF086910.2 |
TC1500010429.hg.1 | 1.91 | 0.0002 | CIB1 | calcium and integrin binding 1 (calmyrin) | NM_001277764.1 |
TC1700012274.hg.1 | 7.81 | 0.0006 | ITGB3 | integrin beta 3 | NM_000212.2 |
TC0700009977.hg.1 | 1.76 | 0.0014 | PDGFA | platelet-derived growth factor alpha polypeptide | NM_002607.5 |
TC1900011707.hg.1 | 1.62 | 0.0022 | GPI | glucose-6-phosphate isomerase | NM_001184722.1 |
TC0700011770.hg.1 | −1.72 | 0.0003 | KRIT1 | KRIT1, ankyrin repeat containing | U90268.1 |
Positive Regulation of Fibroblast Proliferation | |||||
TC1200010977.hg.1 | 1.53 | 0.0071 | CDK4 | cyclin-dependent kinase 4 | NM_000075.3 |
TC2200009231.hg.1 | 1.68 | 0.0004 | MIF | macrophage migration inhibitory factor | NM_002415.1 |
TC0800008845.hg.1 | 2.14 | 0.0029 | MYC | v-myc avian myelocytomatosis viral oncogene homolog | NM_002467.5 |
TC0700009977.hg.1 | 1.76 | 0.0014 | PDGFA | platelet-derived growth factor alpha polypeptide | NM_002607.5 |
TC0100015864.hg.1 | 1.68 | 0.0021 | S100A6 | S100 calcium binding protein A6 | NM_014624.3 |
TC0600007847.hg.1 | 2.68 | 0.0032 | CDKN1A | cyclin-dependent kinase inhibitor 1A (p21, Cip1) | NM_000389 |
TC0600006873.hg.1 | 3.9 | 0.0005 | BMP6 | bone morphogenetic protein 6 | NM_001718.5 |
ECM Component and Organization | |||||
TC0400012213.hg.1 | 1.53 | 0.0072 | CTSK | cathepsin K | NM_001911.2 |
TC0500012519.hg.1 | 4.74 | 0.0005 | SPARC | secreted protein, acidic, cysteine-rich (osteonectin) | J03040.1 |
TC1900006470.hg.1 | 1.83 | 0.0022 | BSG | basigin (Ok blood group) | GU557065.1 |
TC0300007383.hg.1 | 1.6 | 0.0035 | DAG1 | dystroglycan 1 (dystrophin-associated glycoprotein 1) | L19711.1 |
TC0600008462.hg.1 | 3.19 | 0.0037 | COL19A1 | collagen, type XIX, alpha 1 | NM_001858.5 |
TC0100010863.hg.1 | 1.67 | 0.0087 | LAMC1 | laminin, gamma 1 (formerly LAMB2) | NM_002293.3 |
TC2000008678.hg.1 | 2.17 | <0.0001 | CST3 | cystatin C | AH002668.2 |
Interferon Alpha/Beta Signaling | |||||
TC1200012708.hg.1 | 2.66 | 0.0007 | OAS1 | 2-5-oligoadenylate synthetase 1 | AY730627.1 |
TC0100015921.hg.1 | 1.92 | <0.0001 | ADAR | adenosine deaminase, RNA-specific | NM_015841.4 |
TC1400010584.hg.1 | 1.57 | 0.0015 | IRF9 | interferon regulatory factor 9 | NM_006084.4 |
TC1500008232.hg.1 | 2.04 | 0.0002 | ISG20 | interferon stimulated exonuclease gene 20kDa | NM_002201.5 |
TC0100013445.hg.1 | 3.3 | 0.0018 | IFI6 | interferon, alpha-inducible protein 6 | NM_002038.3 |
TC1700007931.hg.1 | 1.52 | 0.0078 | IFI35 | interferon-induced protein 35 | NM_001330230.1 |
TC1000008396.hg.1 | 6.08 | 0.0059 | IFIT2 | interferon-induced protein with tetratricopeptide repeats 2 | NM_001547.4 |
TC1000008401.hg.1 | 1.65 | 0.0037 | IFIT5 | interferon-induced protein with tetratricopeptide repeats 5 | NM_012420.2 |
IL6-Mediated Signaling Events | |||||
TC1300008688.hg.1 | 1.65 | 0.0072 | FOXO1 | forkhead box O1 | NM_002015.3 |
TC0700006890.hg.1 | 12.69 | 0.0044 | IL6 | interleukin 6 | NM_000600.4 |
TC1700011903.hg.1 | 2.03 | 0.0027 | SOCS3 | suppressor of cytokine signaling 3 | NM_003955.4 |
TC0800008845.hg.1 | 2.14 | 0.0029 | MYC | v-myc avian myelocytomatosis viral oncogene homolog | NM_002467.5 |
TGF-Beta Receptor Signaling | |||||
TC0100017258.hg.1 | 1.75 | 0.0003 | BATF3 | basic leucine zipper transcription factor, ATF-like 3 | NM_018664.2 |
TC1800008891.hg.1 | 2.1 | 0.0013 | BCL2 | B-cell CLL/lymphoma 2 | NM_000633.2 |
TC0500013301.hg.1 | 2.69 | 0.0015 | DAB2 | Dab, mitogen-responsive phosphoprotein, homolog 2 | NM_001244871.1 |
TC1300008688.hg.1 | 1.65 | 0.0072 | FOXO1 | forkhead box O1 | NM_002015.3 |
TC1400009426.hg.1 | 1.85 | 0.0001 | MAX | MYC associated factor X | NM_002382.4 |
TC0500011418.hg.1 | 1.55 | 0.0053 | MEF2C | myocyte enhancer factor 2C | NM_002397.4 |
TC0600013126.hg.1 | 2.56 | 0.0005 | PTPRK | protein tyrosine phosphatase, receptor type, K | NM_001291983.1 |
TC0100011533.hg.1 | 1.93 | 0.0076 | ATF3 | activating transcription factor 3 | AY426987.1 |
PDGFR-Beta Signaling Pathway | |||||
TC1000007990.hg.1 | 2.32 | 0.0017 | DDIT4 | DNA damage inducible transcript 4 | NM_019058.3 |
TC0300009916.hg.1 | 1.68 | 0.0009 | HES1 | hes family bHLH transcription factor 1 | Y07572.1 |
TC1900010009.hg.1 | 1.81 | 0.0021 | JUND | jun D proto-oncogene | X56681.1 |
TC0200008742.hg.1 | 2.26 | 0.0001 | NCK2 | NCK adaptor protein 2 | NM_003581.4 |
TC1500010757.hg.1 | 1.89 | 0.0082 | RAB11A | RAB11A, member RAS oncogene family | AF000231.1 |
TC0300008735.hg.1 | 1.65 | 0.0014 | RAB7A | RAB7A, member RAS oncogene family | NM_004637.5 |
TC0900010543.hg.1 | 1.8 | 0.0034 | TLE1 | transducin-like enhancer of split 1 (E(sp1) homolog | M99435.1 |
TC1000008056.hg.1 | 2.42 | 0.0031 | VCL | vinculin | M33308.1 |
VEGF and VEGFR Signaling Network | |||||
TC0300011899.hg.1 | −1.55 | 0.0038 | CBLB | Cbl proto-oncogene B, E3 ubiquitin protein ligase | NM_001321786.1 |
TC0600011809.hg.1 | 1.9 | <0.0001 | CCND3 | cyclin D3 | NM_001136017.3 |
TC1200010977.hg.1 | 1.53 | 0.0071 | CDK4 | cyclin-dependent kinase 4 | NM_000075.3 |
TC0500012938.hg.1 | 2.09 | <0.0001 | CLTB | clathrin, light chain B | M20470.1 |
TC0300011059.hg.1 | 2.06 | 0.0002 | GPX1 | glutathione peroxidase 1 | M21304.1 |
TC0200014790.hg.1 | 1.95 | 0.0009 | GRB14 | growth factor receptor bound protein 14 | L76687.1 |
TC0900012167.hg.1 | 1.81 | 0.0005 | GSN | gelsolin | NM_000177.4 |
TC0100014014.hg.1 | 1.53 | 0.0022 | PRDX1 | peroxiredoxin 1 | NM_002574.3 |
Proteoglycan Syndecan-Mediated Signaling Events | |||||
TC0600006873.hg.1 | 3.9 | 0.0005 | BMP6 | bone morphogenetic protein 6 | NM_001718.5 |
TC1900006470.hg.1 | 1.83 | 0.0022 | BSG | basigin (Ok blood group) | D45131.1 |
TC0300007055.hg.1 | 4.54 | 0.0005 | CTDSPL | CTD small phosphatase like | NM_001008392.1 |
TC0200014790.hg.1 | 1.95 | 0.0009 | GRB14 | growth factor receptor bound protein 14 | L76687.1 |
TC0200008742.hg.1 | 2.26 | 0.0001 | NCK2 | NCK adaptor protein 2 | AF047487.1 |
TC1100013140.hg.1 | 1.86 | <0.0001 | TAF10 | TATA-box binding protein associated factor 10 | NM_006284.3 |
TC0500007912.hg.1 | −1.58 | 0.005 | ZFYVE16 | zinc finger, FYVE domain containing 16 | BC030808.1 |
Endothelins Signaling Pathway | |||||
TC1000007990.hg.1 | 2.32 | 0.0017 | DDIT4 | DNA damage inducible transcript 4 | NM_019058.3 |
TC1900009991.hg.1 | 1.78 | 0.0055 | JAK3 | Janus kinase 3 | NM_000215.3 |
TC0300007432.hg.1 | 1.84 | 0.0029 | MAPKAPK3 | mitogen-activated protein kinase-activated protein kinase 3 | NM_001243926.1 |
TC2200008477.hg.1 | 1.79 | 0.0044 | PATZ1 | POZ (BTB) and AT hook containing zinc finger 1 | NM_174907.3 |
TC0600013126.hg.1 | 2.56 | 0.0005 | PTPRK | protein tyrosine phosphatase, receptor type, K | NM_001135648.2 |
TC0100016357.hg.1 | 3.28 | 0.0008 | SELP | selectin P (granule membrane protein 140kDa, antigen CD62) | NM_003005.3 |
TC1000008056.hg.1 | 2.42 | 0.0031 | VCL | vinculin | M33308.1 |
EGF Receptor (ErbB1) Signaling Pathway | |||||
TC0300011899.hg.1 | −1.55 | 0.0038 | CBLB | Cbl proto-oncogene B, E3 ubiquitin protein ligase | NM_001321786.1 |
TC1200010977.hg.1 | 1.53 | 0.0071 | CDK4 | cyclin-dependent kinase 4 | NM_000075.3 |
TC0600011635.hg.1 | 1.87 | 0.0098 | FKBP5 | FK506 binding protein 5 | NM_004117.3 |
TC0300007410.hg.1 | 1.56 | 0.0005 | GNAI2 | G protein, alpha inhibiting activity polypeptide 2 | NM_002070.3 |
TC0100010863.hg.1 | 1.67 | 0.0087 | LAMC1 | laminin, gamma 1 (formerly LAMB2) | NM_002293.3 |
TC0200007446.hg.1 | 1.67 | 0.0003 | PRKCE | protein kinase C, epsilon | NM_005400.2 |
TC0700008582.hg.1 | 1.51 | 0.0008 | SERPINE1 | serpin peptidase inhibitor, clade E, member 1 | NM_000602.4 |
TC1800006937.hg.1 | 1.99 | 0.0013 | TAF4B | TATA box binding protein (TBP)-associated factor, 105kDa | NM_001293725.1 |
Total Genes Targeted in Systemic Sclerosis | Disease | References | Genes Targeted in Modules (M) |
---|---|---|---|
hsa-miR-30e-5p | |||
22 | breast, lung and other cancers | [26] | M1 (UBE2F,SOCS3, UBE2J1) M2 (GNAI2) |
hsa-miR-206 | |||
20 | lung cancer | [27] | M2 (CXCL11) M5 (GCH1) |
hsa-miR-30b-5p | |||
20 | systemic sclerosis; breast, lung and other cancers | [26,28] | M1 (UBE2F,SOCS3, UBE2J1) M2 (GNAI2) |
hsa-miR-30c-5p | |||
20 | breast, lung and other cancers | [26] | M1 (UBE2F,SOCS3, UBE2J1) M2 (GNAI2) |
hsa-miR-9-5p | |||
20 | squamous cell carcinoma | [29] | M2 (CXCL11) M5 (GCH1) |
hsa-miR-30a-5p | |||
19 | breast and other cancers | [26] | M1 (UBE2F,SOCS3, UBE2J1) M2 (GNAI2) |
hsa-miR-30d-5p | |||
19 | breast and other cancers | [26] | M1 (UBE2F,SOCS3, UBE2J1) M2 (GNAI2) |
hsa-miR-613 | |||
19 | breast cancer | [30] | M2 (CXCL11) M5 (GCH1) |
hsa-miR-302c-3p | |||
17 | breast cancer | [31] | M1 (SOCS3, IRF9) M5 (GUCY1A3) |
hsa-miR-302e | |||
13 | lung cancer | [32] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-372-3p | |||
12 | squamous cell carcinoma | [33] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-302a-3p | |||
11 | breast cancer | [31] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-302b-3p | |||
11 | breast cancer | [31] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-302d-3p | |||
11 | breast cancer | [31] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-31-5p | |||
11 | systemic sclerosis and breast cancer | [34,35] | M3 (KDELR2) M5 (PAX5, SPARC, GCH1) |
hsa-miR-520a-3p | |||
11 | breast cancer | [36] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-520b | |||
11 | breast, ovarian and other cancers | [37,38] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-520c-3p | |||
11 | breast cancer | [39] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-520d-3p | |||
11 | breast cancer | [40] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-520e | |||
11 | breast cancer | [41] | M1 (IRF9) M5 (GUCY1A3) |
hsa-miR-181d-5p | |||
10 | leukemia, colon cancer, glioblastoma | [42,43,44] | M1 (CBLB) M5 (PAX5, BCL2) M4 (AP1S3) |
hsa-miR-181a-5p | |||
8 | leukemia, breast cancer, neuroblastoma | [42,45,46] | M1 (CBLB) M5 (BCL2) M4 (AP1S3) |
hsa-miR-181b-5p | |||
8 | leukemia, lung cancer, neuroblastoma | [42,46,47] | M1 (CBLB) M5 (BCL2) M4 (AP1S3) |
hsa-miR-181c-5p | |||
8 | leukemia, sarcoma | [42,48] | M1 (CBLB) M5 (BCL2) M4 (AP1S3) |
hsa-miR-211-5p | |||
7 | renal cell carcinoma, melanoma, carcinoma, breast cancer | [49,50,51] | M5 (SPARC, BCL2) M6 (PSME1) |
hsa-miR-204-5p | |||
7 | lung and breast cancer, leukemia, carcinoma | [52,53] | M5 (SPARC, BCL2) M6 (PSME1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolcino, M.; Tinazzi, E.; Puccetti, A.; Lunardi, C. In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis. J. Clin. Med. 2019, 8, 320. https://doi.org/10.3390/jcm8030320
Dolcino M, Tinazzi E, Puccetti A, Lunardi C. In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis. Journal of Clinical Medicine. 2019; 8(3):320. https://doi.org/10.3390/jcm8030320
Chicago/Turabian StyleDolcino, Marzia, Elisa Tinazzi, Antonio Puccetti, and Claudio Lunardi. 2019. "In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis" Journal of Clinical Medicine 8, no. 3: 320. https://doi.org/10.3390/jcm8030320
APA StyleDolcino, M., Tinazzi, E., Puccetti, A., & Lunardi, C. (2019). In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis. Journal of Clinical Medicine, 8(3), 320. https://doi.org/10.3390/jcm8030320