Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = ROP1 GTPase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9592 KiB  
Article
Identification and Characterization of the ROP GTPase Gene Family in Strawberry and the Positive Role of FveROP4 in Fruit Resistance to Gray Mold
by Shuai Zhao, Baode Zhu, Zhijun Zou, Yushan Zhai, Sufeng Liao, Ming Xu, Kunyang Li, Nasir Mehmood and Xiong Liao
Agronomy 2025, 15(1), 92; https://doi.org/10.3390/agronomy15010092 - 31 Dec 2024
Viewed by 980
Abstract
ROP small GTPases function as signaling hubs that mediate various physiological processes, including plant defense. Their specific roles in strawberry resistance against gray mold remain uncharacterized. In this study, we identified 53 ROP genes across the genomes of six Rosaceae species. Based on [...] Read more.
ROP small GTPases function as signaling hubs that mediate various physiological processes, including plant defense. Their specific roles in strawberry resistance against gray mold remain uncharacterized. In this study, we identified 53 ROP genes across the genomes of six Rosaceae species. Based on sequence homology, they were classified into three distinct phylogenetic clades. Detailed analysis of FveROP proteins revealed the presence of highly conserved catalytic G-domains, which are essential for their GTPase activity. By conducting transient overexpression experiments in strawberry fruits challenged with the gray mold pathogen Botrytis cinerea, we investigated the impact of the FveROP4 gene on disease resistance. The overexpression of both wild-type and constitutively active forms of FveROP4 enhanced resistance against B. cinerea infection. Subsequent analysis revealed that overexpression of FveROP4 and FveCAROP4 genes led to increased accumulation of reactive oxygen species. Moreover, FveROP4 was localized on the plasma membrane, where it interacted directly with FveRBOHF1, corroborating the results obtained through yeast two-hybrid and luciferase complementation imaging assays. The study findings may provide valuable insights for investigating the mechanisms of ROP signaling in regulating the immune response in strawberries and could significantly contribute to strawberry breeding programs aimed at developing new cultivars with enhanced fruit shelf life. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

13 pages, 2712 KiB  
Article
The REPLUMLESS Transcription Factor Controls the Expression of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 Gene Involved in Shoot and Fruit Patterning of Arabidopsis thaliana
by Erzsébet Kenesi, Orsolya Beöthy-Fehér, Réka Szőllősi, Ildikó Domonkos, Ildikó Valkai and Attila Fehér
Int. J. Mol. Sci. 2024, 25(14), 8001; https://doi.org/10.3390/ijms25148001 - 22 Jul 2024
Viewed by 1232
Abstract
The promoter of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 (RLCK VI_A2) gene contains nine binding sites for the REPLUMLESS (RPL) transcription factor. In agreement, the expression of the kinase gene was strongly downregulated in the rpl-4 mutant. Comparing phenotypes of loss-of-function mutants, [...] Read more.
The promoter of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 (RLCK VI_A2) gene contains nine binding sites for the REPLUMLESS (RPL) transcription factor. In agreement, the expression of the kinase gene was strongly downregulated in the rpl-4 mutant. Comparing phenotypes of loss-of-function mutants, it was revealed that both genes are involved in stem growth, phyllotaxis, organization of the vascular tissues, and the replum, highlighting potential functional interactions. The expression of the RLCKVI_A2 gene from the constitutive 35S promoter could not complement the rpl-4 phenotypes but exhibited a dominant positive effect on stem growth and affected vascular differentiation and organization. The results also indicated that the number of vascular bundles is regulated independently from stem thickness. Although our study cannot demonstrate a direct link between the RPL and RLVKVI_A2 genes, it highlights the significance of the proper developmental regulation of the RLCKVI_A2 promoter for balanced stem development. Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure, 2nd Edition)
Show Figures

Figure 1

19 pages, 4498 KiB  
Article
Calmodulin-Domain Protein Kinase PiCDPK1 Interacts with the 14-3-3-like Protein NtGF14 to Modulate Pollen Tube Growth
by Nolan Scheible, Paige M. Henning and Andrew G. McCubbin
Plants 2024, 13(3), 451; https://doi.org/10.3390/plants13030451 - 3 Feb 2024
Cited by 2 | Viewed by 2678
Abstract
Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand [...] Read more.
Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand the role of PiCDPK1 in pollen tube extension, we designed a pull-down study to identify additional substrates of this kinase. These experiments identified 123 putative interactors. Two of the identified proteins were predicted to directly interact with PiCDPK1, and this possibility was investigated in planta. The first, NtGF14, a 14-3-3-like protein, did not produce a noticeable phenotype when overexpressed in pollen alone but partially rescued the spherical tube phenotype caused by PiCDPK1 over-expression when co-over-expressed with the kinase. The second, NtREN1, a GTPase activating protein (GAP), severely inhibited pollen tube germination when over-expressed, and its co-over-expression with PiCDPK1 did not substantially affect this phenotype. These results suggest a novel in vivo interaction between NtGF14 and PiCDPK1 but do not support the direct interaction between PiCDPK1 and NtREN1. We demonstrate the utility of the methodology used to identify potential protein interactions while confirming the necessity of additional studies to confirm their validity. Finally, additional support was found for intersection between PiCDPK1 and RopGTPase pathways to control polar growth at the pollen tube tip. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Flower Development and Plant Reproduction)
Show Figures

Figure 1

25 pages, 8060 KiB  
Article
AtRAC7/ROP9 Small GTPase Regulates A. thaliana Immune Systems in Response to B. cinerea Infection
by Ivette García-Soto, Damien Formey, Angélica Mora-Toledo, Luis Cárdenas, Wendy Aragón, Alexandre Tromas, Arianna Duque-Ortiz, Juan Francisco Jiménez-Bremont and Mario Serrano
Int. J. Mol. Sci. 2024, 25(1), 591; https://doi.org/10.3390/ijms25010591 - 2 Jan 2024
Cited by 1 | Viewed by 2298
Abstract
Botrytis cinerea is a necrotrophic fungus that can cause gray mold in over 1400 plant species. Once it is detected by Arabidopsis thaliana, several defense responses are activated against this fungus. The proper activation of these defenses determines plant susceptibility or resistance. [...] Read more.
Botrytis cinerea is a necrotrophic fungus that can cause gray mold in over 1400 plant species. Once it is detected by Arabidopsis thaliana, several defense responses are activated against this fungus. The proper activation of these defenses determines plant susceptibility or resistance. It has been proposed that the RAC/ROP small GTPases might serve as a molecular link in this process. In this study, we investigate the potential role of the Arabidopsis RAC7 gene during infection with B. cinerea. For that, we evaluated A. thaliana RAC7-OX lines, characterized by the overexpression of the RAC7 gene. Our results reveal that these RAC7-OX lines displayed increased susceptibility to B. cinerea infection, with enhanced fungal colonization and earlier lesion development. Additionally, they exhibited heightened sensitivity to bacterial infections caused by Pseudomonas syringae and Pectobacterium brasiliense. By characterizing plant canonical defense mechanisms and performing transcriptomic profiling, we determined that RAC7-OX lines impaired the plant transcriptomic response before and during B. cinerea infection. Global pathway analysis of differentially expressed genes suggested that RAC7 influences pathogen perception, cell wall homeostasis, signal transduction, and biosynthesis and response to hormones and antimicrobial compounds through actin filament modulation. Herein, we pointed out, for first time, the negative role of RAC7 small GTPase during A. thalianaB. cinerea interaction. Full article
(This article belongs to the Special Issue Plant-Fungi Interaction)
Show Figures

Figure 1

13 pages, 2222 KiB  
Communication
Proteomics Analysis of R-Ras Deficiency in Oxygen Induced Retinopathy
by Maria Vähätupa, Janika Nättinen, Ulla Aapola, Hannele Uusitalo-Järvinen, Hannu Uusitalo and Tero A. H. Järvinen
Int. J. Mol. Sci. 2023, 24(9), 7914; https://doi.org/10.3390/ijms24097914 - 26 Apr 2023
Cited by 3 | Viewed by 2557
Abstract
Small GTPase R-Ras regulates vascular permeability in angiogenesis. In the eye, abnormal angiogenesis and hyperpermeability are the leading causes of vision loss in several ischemic retinal diseases such as proliferative diabetic retinopathy (PDR), retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Oxygen-induced [...] Read more.
Small GTPase R-Ras regulates vascular permeability in angiogenesis. In the eye, abnormal angiogenesis and hyperpermeability are the leading causes of vision loss in several ischemic retinal diseases such as proliferative diabetic retinopathy (PDR), retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Oxygen-induced retinopathy (OIR) is the most widely used experimental model for these ischemic retinopathies. To shed more light on how the R-Ras regulates vascular permeability in pathological angiogenesis, we performed a comprehensive (>2900 proteins) characterization of OIR in R-Ras knockout (KO) and wild-type (WT) mice by sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics. OIR and age-matched normoxic control retinas were collected at P13, P17, and P42 from R-Ras KO and WT mice and were subjected to SWATH-MS and data analysis. The most significant difference between the R-Ras KO and WT retinas was an accumulation of plasma proteins. The pathological vascular hyperpermeability during OIR in the R-Ras KO retina took place very early, P13. This led to simultaneous hypoxic cell injury/death (ferroptosis), glycolytic metabolism as well compensatory mechanisms to counter the pathological leakage from angiogenic blood vessels in the OIR retina of R-Ras deficient mice. Full article
(This article belongs to the Special Issue Novel Insights in Retinal Diseases Pathophysiology and Therapies 2.0)
Show Figures

Graphical abstract

17 pages, 3359 KiB  
Article
The ROP2 GTPase Participates in Nitric Oxide (NO)-Induced Root Shortening in Arabidopsis
by Erzsébet Kenesi, Zsuzsanna Kolbert, Nikolett Kaszler, Éva Klement, Dalma Ménesi, Árpád Molnár, Ildikó Valkai, Gábor Feigl, Gábor Rigó, Ágnes Cséplő, Christian Lindermayr and Attila Fehér
Plants 2023, 12(4), 750; https://doi.org/10.3390/plants12040750 - 8 Feb 2023
Cited by 6 | Viewed by 2661
Abstract
Nitric oxide (NO) is a versatile signal molecule that mediates environmental and hormonal signals orchestrating plant development. NO may act via reversible S-nitrosation of proteins during which an NO moiety is added to a cysteine thiol to form an S-nitrosothiol. In plants, several [...] Read more.
Nitric oxide (NO) is a versatile signal molecule that mediates environmental and hormonal signals orchestrating plant development. NO may act via reversible S-nitrosation of proteins during which an NO moiety is added to a cysteine thiol to form an S-nitrosothiol. In plants, several proteins implicated in hormonal signaling have been reported to undergo S-nitrosation. Here, we report that the Arabidopsis ROP2 GTPase is a further potential target of NO-mediated regulation. The ROP2 GTPase was found to be required for the root shortening effect of NO. NO inhibits primary root growth by altering the abundance and distribution of the PIN1 auxin efflux carrier protein and lowering the accumulation of auxin in the root meristem. In rop2-1 insertion mutants, however, wild-type-like root size of the NO-treated roots were maintained in agreement with wild-type-like PIN1 abundance in the meristem. The ROP2 GTPase was shown to be S-nitrosated in vitro, suggesting that NO might directly regulate the GTPase. The potential mechanisms of NO-mediated ROP2 GTPase regulation and ROP2-mediated NO signaling in the primary root meristem are discussed. Full article
(This article belongs to the Special Issue Redox Biology in Plants)
Show Figures

Figure 1

24 pages, 2003 KiB  
Review
Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells
by Ehsan Ahmadpour, Farhad Babaie, Tohid Kazemi, Sirous Mehrani Moghaddam, Ata Moghimi, Ramin Hosseinzadeh, Veeranoot Nissapatorn and Abdol Sattar Pagheh
Pathogens 2023, 12(2), 253; https://doi.org/10.3390/pathogens12020253 - 4 Feb 2023
Cited by 24 | Viewed by 9071
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite. During the parasitic invasion, T. gondii creates a parasitophorous vacuole, which enables the modulation of cell functions, allowing its replication and host infection. It has effective strategies to escape the immune response [...] Read more.
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite. During the parasitic invasion, T. gondii creates a parasitophorous vacuole, which enables the modulation of cell functions, allowing its replication and host infection. It has effective strategies to escape the immune response and reach privileged immune sites and remain inactive in a controlled environment in tissue cysts. This current review presents the factors that affect host cells and the parasite, as well as changes in the immune system during host cell infection. The secretory organelles of T. gondii (dense granules, micronemes, and rhoptries) are responsible for these processes. They are involved with proteins secreted by micronemes and rhoptries (MIC, AMA, and RONs) that mediate the recognition and entry into host cells. Effector proteins (ROP and GRA) that modify the STAT signal or GTPases in immune cells determine their toxicity. Interference byhost autonomous cells during parasitic infection, gene expression, and production of microbicidal molecules such as reactive oxygen species (ROS) and nitric oxide (NO), result in the regulation of cell death. The high level of complexity in host cell mechanisms prevents cell death in its various pathways. Many of these abilities play an important role in escaping host immune responses, particularly by manipulating the expression of genes involved in apoptosis, necrosis, autophagy, and inflammation. Here we present recent works that define the mechanisms by which T. gondii interacts with these processes in infected host cells. Full article
Show Figures

Figure 1

15 pages, 5843 KiB  
Article
Analysis of Rac/Rop Small GTPase Family Expression in Santalum album L. and Their Potential Roles in Drought Stress and Hormone Treatments
by Yu Chen, Shengkun Wang, Xiaojing Liu, Dongli Wang, Yunshan Liu, Lipan Hu and Sen Meng
Life 2022, 12(12), 1980; https://doi.org/10.3390/life12121980 - 26 Nov 2022
Cited by 3 | Viewed by 2391
Abstract
Plant-specific Rac/Rop small GTPases, also known as Rop, belong to the Rho subfamily. Rac proteins can be divided into two types according to their C-terminal motifs: Type I Rac proteins have a typical CaaL motif at the C-terminal, whereas type II Rac proteins [...] Read more.
Plant-specific Rac/Rop small GTPases, also known as Rop, belong to the Rho subfamily. Rac proteins can be divided into two types according to their C-terminal motifs: Type I Rac proteins have a typical CaaL motif at the C-terminal, whereas type II Rac proteins lack this motif but retain a cysteine-containing element for membrane anchoring. The Rac gene family participates in diverse signal transduction events, cytoskeleton morphogenesis, reactive oxygen species (ROS) production and hormone responses in plants as molecular switches. S. album is a popular semiparasitic plant that absorbs nutrients from the host plant through the haustoria to meet its own growth and development needs. Because the whole plant has a high use value, due to the high production value of its perfume oils, it is known as the “tree of gold”. Based on the full-length transcriptome data of S. album, nine Rac gene members were named SaRac1-9, and we analyzed their physicochemical properties. Evolutionary analysis showed that SaRac1-7, AtRac1-6, AtRac9 and AtRac11 and OsRac5, OsRacB and OsRacD belong to the typical plant type I Rac/Rop protein, while SaRac8-9, AtRac7, AtRac8, AtRac10 and OsRac1-4 belong to the type II Rac/ROP protein. Tissue-specific expression analysis showed that nine genes were expressed in roots, stems, leaves and haustoria, and SaRac7/8/9 expression in stems, haustoria and roots was significantly higher than that in leaves. The expression levels of SaRac1, SaRac4 and SaRac6 in stems were very low, and the expression levels of SaRac2 and SaRac5 in roots and SaRac2/3/7 in haustoria were very high, which indicated that these genes were closely related to the formation of S. album haustoria. To further analyze the function of SaRac, nine Rac genes in sandalwood were subjected to drought stress and hormone treatments. These results establish a preliminary foundation for the regulation of growth and development in S. album by SaRac. Full article
Show Figures

Figure 1

20 pages, 3937 KiB  
Article
Comprehensive Analysis of Subcellular Localization, Immune Function and Role in Bacterial wilt Disease Resistance of Solanum lycopersicum Linn. ROP Family Small GTPases
by Qiong Wang, Dan Zhang, Chaochao Liu, Yuying Li and Yanni Miao
Int. J. Mol. Sci. 2022, 23(17), 9727; https://doi.org/10.3390/ijms23179727 - 27 Aug 2022
Cited by 5 | Viewed by 2298
Abstract
ROPs (Rho-like GTPases from plants) belong to the Rho-GTPase subfamily and serve as molecular switches for regulating diverse cellular events, including morphogenesis and stress responses. However, the immune functions of ROPs in Solanum lycopersicum Linn. (tomato) is still largely unclear. The tomato genome [...] Read more.
ROPs (Rho-like GTPases from plants) belong to the Rho-GTPase subfamily and serve as molecular switches for regulating diverse cellular events, including morphogenesis and stress responses. However, the immune functions of ROPs in Solanum lycopersicum Linn. (tomato) is still largely unclear. The tomato genome contains nine genes encoding ROP-type small GTPase family proteins (namely SlRop1–9) that fall into five distinct groups as revealed by phylogenetic tree. We studied the subcellular localization and immune response induction of nine SlRops by using a transient overexpression system in Nicotiana benthamiana Domin. Except for SlRop1 and SlRop3, which are solely localized at the plasma membrane, most of the remaining ROPs have additional nuclear and/or cytoplasmic distributions. We also revealed that the number of basic residues in the polybasic region of ROPs tends to be correlated with their membrane accumulation. Though nine SlRops are highly conserved at the RHO (Ras Homology) domains, only seven constitutively active forms of SlRops were able to trigger hypersensitive responses. Furthermore, we analyzed the tissue-specific expression patterns of nine ROPs and found that the expression levels of SlRop3, 4 and 6 were generally high in different tissues. The expression levels of SlRop1, 2 and 7 significantly decreased in tomato seedlings after infection with Ralstonia solanacearum (E.F. Smith) Yabuuchi et al. (GMI1000); the others did not respond. Infection assays among nine ROPs showed that SlRop3 and SlRop4 might be positive regulators of tomato bacterial wilt disease resistance, whereas the rest of the ROPs may not contribute to defense. Our study provides systematic evidence of tomato Rho-related small GTPases for localization, immune response, and disease resistance. Full article
(This article belongs to the Special Issue Plant Disease Resistance 2.0)
Show Figures

Figure 1

17 pages, 4031 KiB  
Article
Functional Characterization of Tomato ShROP7 in Regulating Resistance against Oidium neolycopersici
by Yanan Meng, Ancheng Zhang, Qing Ma and Lianxi Xing
Int. J. Mol. Sci. 2022, 23(15), 8557; https://doi.org/10.3390/ijms23158557 - 2 Aug 2022
Cited by 7 | Viewed by 2288
Abstract
ROPs (Rho-like GTPases from plants) are a unique family of small GTP-binding proteins in plants and play vital roles in numerous cellular processes, including growth and development, abiotic stress signaling, and plant defense. In the case of the latter, the role of ROPs [...] Read more.
ROPs (Rho-like GTPases from plants) are a unique family of small GTP-binding proteins in plants and play vital roles in numerous cellular processes, including growth and development, abiotic stress signaling, and plant defense. In the case of the latter, the role of ROPs as response regulators to obligate parasitism remains largely enigmatic. Herein, we isolated and identified ShROP7 and show that it plays a critical role in plant immune response to pathogen infection. Real-time quantitative PCR analysis revealed that the expression of ShROP7 was significantly increased during incompatible interactions. To establish its requirement for resistance, we demonstrate that virus-induced gene silencing (VIGS) of ShROP7 resulted in increased susceptibility of tomato to Oidium neolycopersici (On) Lanzhou strain (On-Lz). Downstream resistance signaling through H2O2 and the induction of the hypersensitive response (HR) in ShROP7-silenced plants were significantly reduced after inoculating with On-Lz. Taken together, with the identification of ShROP7-interacting candidates, including ShSOBIR1, we demonstrate that ShROP7 plays a positive regulatory role in tomato powdery mildew resistance. Full article
(This article belongs to the Special Issue Recent Advances in Plant Molecular Science in China 2022)
Show Figures

Figure 1

17 pages, 4516 KiB  
Article
RNA-Seq Provides Insights into VEGF-Induced Signaling in Human Retinal Microvascular Endothelial Cells: Implications in Retinopathy of Prematurity
by Aniket Ramshekar, Colin A. Bretz and M. Elizabeth Hartnett
Int. J. Mol. Sci. 2022, 23(13), 7354; https://doi.org/10.3390/ijms23137354 - 1 Jul 2022
Cited by 7 | Viewed by 2917
Abstract
The pathophysiology of retinopathy of prematurity (ROP) is postulated to first involve delayed intraretinal vascularization, followed by intravitreal neovascularization (IVNV). Although intravitreal agents that reduce the bioactivity of vascular endothelial growth factor (VEGF) are used to treat IVNV, concerns exist regarding their effects [...] Read more.
The pathophysiology of retinopathy of prematurity (ROP) is postulated to first involve delayed intraretinal vascularization, followed by intravitreal neovascularization (IVNV). Although intravitreal agents that reduce the bioactivity of vascular endothelial growth factor (VEGF) are used to treat IVNV, concerns exist regarding their effects on intraretinal vascularization. In an experimental ROP model, VEGF receptor 2 (VEGFR2) knockdown in retinal endothelial cells reduced IVNV and promoted intraretinal vascularization, whereas knockdown of a downstream effector, signal transducer and activator of transcription 3 (STAT3) in retinal endothelial cells only reduced IVNV. In this study, we tested the hypothesis that the different pathways involved in VEGF-triggered VEGFR2 signaling and VEGF-triggered STAT3 signaling in retinal endothelial cells would allow us to delineate signaling pathways involved in IVNV from those involved in intraretinal vascularization in ROP. To address our hypothesis, we used RNA-sequencing and pathway enrichment analysis to determine changes in the transcriptome of cultured human retinal microvascular endothelial cells (HRMECs). Of the enriched pathways, inactivation of oncostatin M signaling was predicted by either KDR or STAT3 knockdown in the presence of VEGF. Activation of kinetochore metaphase signaling was predicted by KDR knockdown, whereas inactivation was predicted by STAT3 knockdown in the presence of VEGF. Inactivation of signaling by the Rho family of GTPases was predicted by KDR knockdown, but activation was predicted by STAT3 knockdown in the presence of VEGF. Taken together, our data identified unique signaling pathway differences between VEGF-triggered VEGFR2 and VEGF-triggered STAT3 in HRMECs that might have implications in ROP. Full article
(This article belongs to the Special Issue Frontier Research on Retina)
Show Figures

Figure 1

18 pages, 6991 KiB  
Article
A Small Gtp-Binding Protein GhROP3 Interacts with GhGGB Protein and Negatively Regulates Drought Tolerance in Cotton (Gossypium hirsutum L.)
by Ziyao Hu, Jianfeng Lei, Peihong Dai, Chao Liu, Abuduweili Wugalihan, Xiaodong Liu and Yue Li
Plants 2022, 11(12), 1580; https://doi.org/10.3390/plants11121580 - 15 Jun 2022
Cited by 7 | Viewed by 2576
Abstract
As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber [...] Read more.
As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber quality. In this study, virus-induced gene silencing (VIGS) technology was used to analyze the biological function of GhROP3 in cotton drought stress tolerance. Meanwhile, we used yeast two-hybrid and bimolecular fluorescence complementation assays to examine the interaction between GhROP3 and GhGGB. GhROP3 has a high expression level in cotton true leaves and roots, and responds to drought, high salt, cold, heat stress, and exogenous abscisic acid (ABA) and auxin (IAA) treatments. Silencing GhROP3 improved the drought tolerance of cotton. The water loss rates (WLR) of detached leaves significantly reduced in silenced plants. Also, the relative water content (RWC) and total contents of chlorophyll (Chl) and proline (Pro) of leaves after drought stress and the activities of three antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) significantly increased, whereas the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) significantly reduced. In the leaves of silenced plants, the expression of genes related to ABA synthesis and its related pathway was significantly upregulated, and the expression of decomposition-related GhCYP707A gene and genes related to IAA synthesis and its related pathways was significantly downregulated. It indicated that GhROP3 was a negative regulator of cotton response to drought by participating in the negative regulation of the ABA signaling pathway and the positive regulation of the IAA signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhROP3 protein interacted with the GhGGB protein in vivo and in vitro. This study provided a theoretical basis for the in-depth investigation of the drought resistance–related molecular mechanism of the GhROP3 gene and the biological function of the GhGGB gene. Full article
(This article belongs to the Special Issue Molecular Mechanism of Resistance to Stress in Cotton)
Show Figures

Figure 1

12 pages, 2194 KiB  
Article
Phylogenetic and Expression Studies of Small GTP-Binding Proteins in Solanum lycopersicum Super Strain B
by Hassan S. Al-Zahrani, Tarek A. A. Moussa, Hameed Alsamadany, Rehab M. Hafez and Michael P. Fuller
Plants 2022, 11(5), 641; https://doi.org/10.3390/plants11050641 - 26 Feb 2022
Cited by 2 | Viewed by 2695
Abstract
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were [...] Read more.
This investigation involved a comparative analysis of the small GTPase superfamily in S. lycopersicum super strain B compared to their analogues in leguminous and other non-leguminous species. The small GTPases superfamily members were recognized by tBLASTn searches. The sequences of amino acid were aligned using Clustal Omega and the analysis of phylogeny was performed with the MEGA7 package. Protein alignments were applied for all studied species. Three-dimensional models of RABA2, ROP9, and ROP10 from Solanum lycopersicum “Super strain B” were performed. The levels of mRNA of the Rab, Arf, Rop, and Ran subfamilies were detected in aerial tissues vs. roots. Significant divergences were found in the number of members and groups comprising each subfamily of the small GTPases and Glycine max had the highest count. High expression of Rab and Arf proteins was shown in the roots of legumes whilst in non-legume plants, the highest values were recorded in aerial tissues. S. lycopersicum super strain B had the highest expression of Rab and Arf proteins in its aerial tissues, which may indicate that diazotroph strains have supreme activities in the aerial tissues of strain B and act as associated N-fixing bacteria. The phylogenies of the small GTPase superfamily of the studied plants did not reveal asymmetric evolution of the Ra, Arf, Rop, and Ran subfamilies. Multiple sequence alignments derived from each of the Rab, Arf, and Rop proteins of S. lycopersicum super strain B showed a low frequency of substitutions in their domains. GTPases superfamily members have definite functions during infection, delivery, and maintenance of N2-fixing diazotroph but show some alterations in their function among S. lycopersicum super strain B, and other species. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

11 pages, 6241 KiB  
Article
An Unexpected Regulatory Sequence from Rho-Related GTPase6 Confers Fiber-Specific Expression in Upland Cotton
by Baoxia Li, Liuqin Zhang, Jing Xi, Lei Hou, Xingxian Fu, Yan Pei and Mi Zhang
Int. J. Mol. Sci. 2022, 23(3), 1087; https://doi.org/10.3390/ijms23031087 - 19 Jan 2022
Cited by 5 | Viewed by 2187
Abstract
Cotton fibers, single seed trichomes derived from ovule epidermal cells, are the major source of global textile fibers. Fiber-specific promoters are desirable to study gene function and to modify fiber properties during fiber development. Here, we revealed that Rho-related GTPase6 (GhROP6) was expressed [...] Read more.
Cotton fibers, single seed trichomes derived from ovule epidermal cells, are the major source of global textile fibers. Fiber-specific promoters are desirable to study gene function and to modify fiber properties during fiber development. Here, we revealed that Rho-related GTPase6 (GhROP6) was expressed preferentially in developing fibers. A 1240 bp regulatory region of GhROP6, which contains a short upstream regulatory sequence, the first exon, and the partial first intron, was unexpectedly isolated and introduced into transgenic cotton for analyzing promoter activity. The promoter of GhROP6 (proChROP6) conferred a specific expression in ovule surface, but not in the other floral organs and vegetative tissues. Reverse transcription PCR analysis indicated that proGhROP6 directed full-length transcription of the fused ß-glucuronidase (GUS) gene. Further investigation of GUS staining showed that proChROP6 regulated gene expression in fibers and ovule epidermis from fiber initiation to cell elongation stages. The preferential activity was enriched in fiber cells after anthesis and reached to peak on flowering days. By comparison, proGhROP6 was a mild promoter with approximately one-twenty-fifth of the strength of the constitutive promoter CaMV35S. The promoter responded to high-dosage treatments of auxin, gibberellin and salicylic acid and slightly reduced GUS activity under the in vitro treatment. Collectively, our data suggest that the GhROP6 promoter has excellent activity in initiating fibers and has potential for bioengineering of cotton fibers. Full article
(This article belongs to the Special Issue Cotton Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3914 KiB  
Article
Calmodulin Domain Protein Kinase PiCDPK1 Regulates Pollen Tube Growth Polarity through Interaction with RhoGDI
by Nolan Scheible, Gyeong Mee Yoon and Andrew G. McCubbin
Plants 2022, 11(3), 254; https://doi.org/10.3390/plants11030254 - 19 Jan 2022
Cited by 6 | Viewed by 2709
Abstract
The pollen-specific calcium-dependent protein kinase PiCDPK1 of Petunia inflata has previously been shown to regulate polarity in tip growth in pollen tubes. Here we report the identification of a Rho Guanine Dissociation Inhibitor (PiRhoGDI1) as a PiCDPK1 interacting protein. We demonstrate that PiRhoGDI1 [...] Read more.
The pollen-specific calcium-dependent protein kinase PiCDPK1 of Petunia inflata has previously been shown to regulate polarity in tip growth in pollen tubes. Here we report the identification of a Rho Guanine Dissociation Inhibitor (PiRhoGDI1) as a PiCDPK1 interacting protein. We demonstrate that PiRhoGDI1 and PiCDPK1 interact in a yeast 2-hybrid assay, as well as in an in vitro pull-down assay, and that PiRhoGDI1 is phosphorylated by PiCDPK1 in vitro. We further demonstrate the PiRhoGDI1 is capable of rescuing the loss of growth polarity phenotype caused by over-expressing PiCDPK1 in vivo using stable transgenic plants. We confirmed that PiRhoGDI1 interacts with a pollen-expressed ROP GTPase isoform consistent with the established role of RhoGDIs in negatively regulating GTPases through their membrane removal and locking them in an inactive cytosolic complex. ROP is a central regulator of polarity in tip growth, upstream of Ca2+, and PiCDPK1 over-expression has been previously reported to lead to dramatic elevation of cytosolic Ca2+ through a positive feedback loop. The discovery that PiCDPK1 impacts ROP regulation via PiRhoGDI1 suggests that PiCDPK1 acts as RhoGDI displacement factor and leads us to propose a model which we hypothesize regulates the rapid recycling of ROP GTPase at the pollen tube tip. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

Back to TopTop