Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = RBX1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4233 KiB  
Article
Doping Effects on Magnetic and Electronic Transport Properties in (Ba1−xRbx)(Zn1−yMny)2As2 (0.1 ≤ x, y ≤ 0.25)
by Guoqiang Zhao, Yi Peng, Kenji M. Kojima, Yipeng Cai, Xiang Li, Kan Zhao, Shengli Guo, Wei Han, Yongqing Li, Fanlong Ning, Xiancheng Wang, Bo Gu, Gang Su, Sadamichi Maekawa, Yasutomo J. Uemura and Changqing Jin
Nanomaterials 2025, 15(13), 975; https://doi.org/10.3390/nano15130975 - 23 Jun 2025
Viewed by 403
Abstract
Diluted magnetic semiconductors (DMSs) represent a significant area of interest for research and applications in spintronics. Recently, DMSs derived from BaZn2As2 have garnered significant interest due to the record Curie temperature (TC) of 260 K. However, the [...] Read more.
Diluted magnetic semiconductors (DMSs) represent a significant area of interest for research and applications in spintronics. Recently, DMSs derived from BaZn2As2 have garnered significant interest due to the record Curie temperature (TC) of 260 K. However, the influence of doping on their magnetic evolution and transport characteristics has not been thoroughly investigated. This study aims to fill this gap through susceptibility and magnetization measurements, electric transport analysis, and muon spin relaxation and rotation (µSR) measurements on (Ba1−xRbx)(Zn1−yMny)2As2 (0.1 ≤ x, y ≤ 0.25, BRZMA). Key findings include the following: (1) BRZMA showed a maximum TC of 138 K, much lower than (Ba,K)(Zn,Mn)2As, because of a reduced carrier concentration. (2) A substantial electromagnetic coupling is evidenced by a negative magnetoresistance of up to 34% observed in optimally doped BRZMA. (3) A 100% static magnetic ordered volume fraction is achieved in the low-temperature region, indicating a homogeneous magnet. (4) Furthermore, a systematic and innovative methodology has been initially proposed, characterized by clear step-by-step instructions aimed at enhancing TC, grounded in robust experimental findings. The findings presented provide valuable insights into the spin–charge interplay concerning magnetic and electronic transport properties. Furthermore, they offer clear direction for the investigation of higher TC DMSs. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

14 pages, 2491 KiB  
Technical Note
A Bacterial Platform for Studying Ubiquitination Cascades Anchored by SCF-Type E3 Ubiquitin Ligases
by Zuo-Xian Pu, Jun-Li Wang, Yu-Yang Li, Luo-Yu Liang, Yi-Ting Tan, Ze-Hui Wang, Bao-Lin Li, Guang-Qin Guo, Li Wang and Lei Wu
Biomolecules 2024, 14(10), 1209; https://doi.org/10.3390/biom14101209 - 25 Sep 2024
Viewed by 1732
Abstract
Ubiquitination is one of the most important post-translational modifications in eukaryotes. The ubiquitination cascade includes ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). The E3 ligases, responsible for substrate recognition, are the most abundant and varied proteins in the cascade and [...] Read more.
Ubiquitination is one of the most important post-translational modifications in eukaryotes. The ubiquitination cascade includes ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). The E3 ligases, responsible for substrate recognition, are the most abundant and varied proteins in the cascade and the most studied. SKP1-CUL1-F-Box (SCF)-type E3 ubiquitin ligases are multi-subunit RING (Really Interesting New Gene) E3 ubiquitin ligases, composed of CUL1 (Cullin 1), RBX1 (RING BOX 1), SKP1 (S-phase Kinase-associated Protein 1), and F-box proteins. In vitro ubiquitination assays, used for studying the specific recognition of substrate proteins by E3 ubiquitin ligases, require the purification of all components involved in the cascade, and for assays with SCF-type E3 ligases, additional proteins (several SCF complex subunits). Here, the Duet expression system was used to co-express E1, E2, ubiquitin, ubiquitylation target (substrate), and the four subunits of a SCF-type E3 ligase in E. coli. When these proteins co-exist in bacterial cells, ubiquitination occurs and can be detected by Western Blot. The effectiveness of this bacterial system for detecting ubiquitination cascade activity was demonstrated by replicating both AtSCFTIR1-mediated and human SCFFBXO28-mediated ubiquitylation in bacteria. This system provides a basic but adaptable platform for the study of SCF-type E3 ubiquitin ligases. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

24 pages, 9653 KiB  
Article
Bioinformatics Analysis Reveals E6 and E7 of HPV 16 Regulate Metabolic Reprogramming in Cervical Cancer, Head and Neck Cancer, and Colorectal Cancer through the PHD2-VHL-CUL2-ELOC-HIF-1α Axis
by Adán Arizmendi-Izazaga, Napoleón Navarro-Tito, Hilda Jiménez-Wences, Adilene Evaristo-Priego, Víctor Daniel Priego-Hernández, Roberto Dircio-Maldonado, Ana Elvira Zacapala-Gómez, Miguel Ángel Mendoza-Catalán, Berenice Illades-Aguiar, Mónica Ascención De Nova Ocampo, Eric Genaro Salmerón-Bárcenas, Marco Antonio Leyva-Vázquez and Julio Ortiz-Ortiz
Curr. Issues Mol. Biol. 2024, 46(6), 6199-6222; https://doi.org/10.3390/cimb46060370 - 19 Jun 2024
Cited by 3 | Viewed by 2721
Abstract
Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell [...] Read more.
Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1β to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus. Full article
(This article belongs to the Special Issue Tumorigenesis and Tumor Microenvironment)
Show Figures

Graphical abstract

18 pages, 356 KiB  
Review
A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection
by Yifan Wang, Aaron Hunt, Larry Danziger and Emily N. Drwiega
Antibiotics 2024, 13(5), 436; https://doi.org/10.3390/antibiotics13050436 - 12 May 2024
Cited by 11 | Viewed by 3060
Abstract
Clostridioides difficile infection (CDI) is an intestinal infection that causes morbidity and mortality and places significant burden and cost on the healthcare system, especially in recurrent cases. Antibiotic overuse is well recognized as the leading cause of CDI in high-risk patients, and studies [...] Read more.
Clostridioides difficile infection (CDI) is an intestinal infection that causes morbidity and mortality and places significant burden and cost on the healthcare system, especially in recurrent cases. Antibiotic overuse is well recognized as the leading cause of CDI in high-risk patients, and studies have demonstrated that even short-term antibiotic exposure can cause a large and persistent disturbance to human colonic microbiota. The recovery and sustainability of the gut microbiome after dysbiosis have been associated with fewer CDI recurrences. Fecal microbiota transplantation (FMT) refers to the procedure in which human donor stool is processed and transplanted to a patient with CDI. It has been historically used in patients with pseudomembranous colitis even before the discovery of Clostridioides difficile. More recent research supports the use of FMT as part of the standard therapy of recurrent CDI. This article will be an in-depth review of five microbiome therapeutic products that are either under investigation or currently commercially available: Rebyota (fecal microbiota, live-jslm, formerly RBX2660), Vowst (fecal microbiota spores, live-brpk, formerly SER109), VE303, CP101, and RBX7455. Included in this review is a comparison of the products’ composition and dosage forms, available safety and efficacy data, and investigational status. Full article
14 pages, 2115 KiB  
Article
Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1
by Chunling Gao, Weiming Ouyang, Joseph Kutza, Tobias A. Grimm, Karen Fields, Carla S. R. Lankford, Franziska Schwartzkopff, Mark Paciga, Tzanko Stantchev, Linda Tiffany, Klaus Strebel and Kathleen A. Clouse
Viruses 2023, 15(11), 2160; https://doi.org/10.3390/v15112160 - 27 Oct 2023
Cited by 2 | Viewed by 1837
Abstract
Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that β-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased [...] Read more.
Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that β-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased in HIV-2-infected MDM when compared to uninfected MDM. Inhibition of CCL2 expression following HIV-2 infection occurred at both protein and mRNA levels. By microarray analysis, quantitative PCR, and Western blotting, we identified that Signal Transducer and Activator of Transcription 1 (STAT1), a critical transcription factor for inducing CCL2 gene expression, was also reduced in HIV-2-infected MDM. Blockade of STAT1 in HIV-infected MDM using a STAT1 inhibitor significantly reduced the production of CCL2. In contrast, transduction of STAT1-expressing pseudo-retrovirus restored CCL2 production in HIV-2-infected MDM. These findings support the concept that CCL2 inhibition in HIV-2-infected MDM is meditated by reduction of STAT1. Furthermore, we showed that STAT1 reduction in HIV-2-infected MDM was regulated by the CUL2/RBX1 ubiquitin E3 ligase complex-dependent proteasome pathway. Knockdown of CUL2 or RBX1 restored the expression of STAT1 and CCL2 in HIV-2-infected MDM. Taken together, our findings suggest that differential regulation of the STAT1—CCL2 axis may be one of the mechanisms underlying the different pathogenicity observed for HIV-1 and HIV-2. Full article
(This article belongs to the Special Issue Roles of Macrophages in Viral Infections)
Show Figures

Figure 1

14 pages, 2474 KiB  
Article
Brain Gene Co-Expression Network Analysis Identifies 22q13 Region Genes Associated with Autism, Intellectual Disability, Seizures, Language Impairment, and Hypotonia
by Snehal Shah, Sara M. Sarasua, Luigi Boccuto, Brian C. Dean and Liangjiang Wang
Genes 2023, 14(11), 1998; https://doi.org/10.3390/genes14111998 - 26 Oct 2023
Cited by 5 | Viewed by 2290
Abstract
Phelan–McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), [...] Read more.
Phelan–McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), developmental delays, seizures, speech delay, hypotonia, and minor dysmorphic features. It is challenging to determine individual gene contributions due to variability in deletion sizes and clinical features. We implemented a genomic data mining approach for identifying and prioritizing the candidate genes in the 22q13 region for five phenotypes: ASD, ID, seizures, language impairment, and hypotonia. Weighted gene co-expression networks were constructed using the BrainSpan transcriptome dataset of a human brain. Bioinformatic analyses of the co-expression modules allowed us to select specific candidate genes, including EP300, TCF20, RBX1, XPNPEP3, PMM1, SCO2, BRD1, and SHANK3, for the common neurological phenotypes of PMS. The findings help understand the disease mechanisms and may provide novel therapeutic targets for the precise treatment of PMS. Full article
Show Figures

Figure 1

22 pages, 3243 KiB  
Article
DCUN1D1 Is an Essential Regulator of Prostate Cancer Proliferation and Tumour Growth That Acts through Neddylation of Cullin 1, 3, 4A and 5 and Deregulation of Wnt/Catenin Pathway
by Akhona Vava, Juliano D. Paccez, Yihong Wang, Xuesong Gu, Manoj K. Bhasin, Michael Myers, Nelson C. Soares, Towia A. Libermann and Luiz F. Zerbini
Cells 2023, 12(15), 1973; https://doi.org/10.3390/cells12151973 - 31 Jul 2023
Cited by 7 | Viewed by 3193
Abstract
Defective in cullin neddylation 1 domain containing 1 (DCUN1D1) is an E3 ligase for the neddylation, a post-translational process similar to and occurring in parallel to ubiquitin proteasome pathway. Although established as an oncogene in a variety of squamous cell carcinomas, the precise [...] Read more.
Defective in cullin neddylation 1 domain containing 1 (DCUN1D1) is an E3 ligase for the neddylation, a post-translational process similar to and occurring in parallel to ubiquitin proteasome pathway. Although established as an oncogene in a variety of squamous cell carcinomas, the precise role of DCUN1D1 in prostate cancer (PCa) has not been previously explored thoroughly. Here, we investigated the role of DCUN1D1 in PCa and demonstrated that DCUN1D1 is upregulated in cell lines as well as human tissue samples. Inhibition of DCUN1D1 significantly reduced PCa cell proliferation and migration and remarkably inhibited xenograft formation in mice. Applying both genomics and proteomics approaches, we provide novel information about the DCUN1D1 mechanism of action. We identified CUL3, CUL4B, RBX1, CAND1 and RPS19 proteins as DCUN1D1 binding partners. Our analysis also revealed the dysregulation of genes associated with cellular growth and proliferation, developmental, cell death and cancer pathways and the WNT/β-catenin pathway as potential mechanisms. Inhibition of DCUN1D1 leads to the inactivation of β-catenin through its phosphorylation and degradation which inhibits the downstream action of β-catenin, reducing its interaction with Lef1 in the Lef1/TCF complex that regulates Wnt target gene expression. Together our data point to an essential role of the DCUN1D1 protein in PCa which can be explored for potential targeted therapy. Full article
(This article belongs to the Special Issue Signaling Pathways/Metabolic Reprogramming Crosstalk in Cancer Cells)
Show Figures

Figure 1

11 pages, 934 KiB  
Article
Highly Luminescent Rb-Doped Cs4PbBr6 Nanocrystals in Borogermanate Glass
by Damir Valiev, Rufina Kharisova, Anastasiia Babkina, Ksenia Zyryanova, Natalia Kuzmenko, Yevgeniy Sgibnev, Artem Shelaev and Alexander V. Baryshev
Photonics 2023, 10(7), 729; https://doi.org/10.3390/photonics10070729 - 26 Jun 2023
Cited by 3 | Viewed by 1795
Abstract
For the first time, the synthesis, luminescent and structural properties of stable perovskite-type (Cs1−xRbx)4PbBr6 (R = Cs, Rb) nanocrystals are shown. In the absence of rubidium, Cs4PbBr6 and CsPbBr3 perovskite crystals precipitate [...] Read more.
For the first time, the synthesis, luminescent and structural properties of stable perovskite-type (Cs1−xRbx)4PbBr6 (R = Cs, Rb) nanocrystals are shown. In the absence of rubidium, Cs4PbBr6 and CsPbBr3 perovskite crystals precipitate in the ZnO–Na2O–B2O3–GeO2 glass matrix. With ascending rubidium content, the precipitation of (Cs,Rb)4PbBr6 nanocrystals is replaced by the Rb4PbBr6 nanocrystals nucleation. Nucleated nanocrystals exhibit an intense green luminescence. With an increase of the rubidium content, the luminescence maximum shifts to the blue region, the luminescence quantum yield increases from 28 to 51%, and the average decay time increases from 2 to 8 ns. Several assumptions have been made about the nature of the green luminescence of perovskite-like Cs4PbBr6 and (Cs,Rb)4PbBr6 crystals in glasses. It is concluded that the most probable cause is the impurity inclusions of CsPbBr3 and (Cs,Rb)PbBr3 crystals. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Photonics)
Show Figures

Figure 1

12 pages, 2646 KiB  
Article
Properties of FAPbI3-Based Alloy Perovskite Thin Films and Their Application in Solar Cells
by Chia-Lung Tsai, S. N. Manjunatha, Sheng Hsiung Chang, Ming-Jer Jeng, Liann-Be Chang, Chun-Huan Chang, Mukta Sharma and Chi-Tsu Yuan
Processes 2023, 11(5), 1450; https://doi.org/10.3390/pr11051450 - 11 May 2023
Cited by 4 | Viewed by 3194
Abstract
Surface morphologies, light harvesting abilities, crystal structures, and excitonic properties of the formamiminium lead triiodide (FAPbI3) based alloy perovskite thin films were investigated by using the scanning electron microscopic images, absorbance spectra, X-ray diffraction patterns, photoluminescence (PL) spectra and time-resolved PL [...] Read more.
Surface morphologies, light harvesting abilities, crystal structures, and excitonic properties of the formamiminium lead triiodide (FAPbI3) based alloy perovskite thin films were investigated by using the scanning electron microscopic images, absorbance spectra, X-ray diffraction patterns, photoluminescence (PL) spectra and time-resolved PL decaying curves. Our experimental results show that the fresh CsxFA1−xPbI3, RbxFA1−xPbI3, and FAPb(SCNxI1−x)3 alloy thin films are a pure α-phase perovskite crystal, a α-phase: δ-phase mixed perovskite crystal, and a PbI2 crystal/α-phase: δ-phase mixed perovskite crystal at room temperatures, respectively. Among the three FAPbI3 based alloy perovskite solar cells, the CsxFA1−xPbI3 solar cells have the better photovoltaic responses. It is noted that the high photocurrent density is mainly due to the formation of cube-like surface morphology and the long carrier lifetime of 368 ns when the CsxFA1−xPbI3 alloy perovskite thin film is used as the light-absorbing layer. Our findings provide the relation between the properties of the FAPbI3 based alloy perovskite thin films and the photovoltaic responses of the resultant solar cells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 31839 KiB  
Article
A Photoactivated Ru (II) Polypyridine Complex Induced Oncotic Necrosis of A549 Cells by Activating Oxidative Phosphorylation and Inhibiting DNA Synthesis as Revealed by Quantitative Proteomics
by Li Zhu, Hui Liu, Yang Dou, Qun Luo, Liangzhen Gu, Xingkai Liu, Qianxiong Zhou, Juanjuan Han and Fuyi Wang
Int. J. Mol. Sci. 2023, 24(9), 7756; https://doi.org/10.3390/ijms24097756 - 24 Apr 2023
Cited by 5 | Viewed by 2786
Abstract
The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4′-pyrene-2,2′:6′,2′′-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or [...] Read more.
The ruthenium polypyridine complex [Ru(dppa)2(pytp)] (PF6)2 (termed as ZQX-1), where dppa = 4,7-diphenyl-1,10-phenanthroline and pytp = 4′-pyrene-2,2′:6′,2′′-terpyridine, has been shown a high and selective cytotoxicity to hypoxic and cisplatin-resistant cancer cells either under irradiation with blue light or upon two-photon excitation. The IC50 values of ZQX-1 towards A549 cancer cells and HEK293 health cells are 0.16 ± 0.09 µM and >100 µM under irradiation at 420 nm, respectively. However, the mechanism of action of ZQX-1 remains unclear. In this work, using the quantitative proteomics method we identified 84 differentially expressed proteins (DEPs) with |fold-change| ≥ 1.2 in A549 cancer cells exposed to ZQX-1 under irradiation at 420 nm. Bioinformatics analysis of the DEPs revealed that photoactivated ZQX-1 generated reactive oxygen species (ROS) to activate oxidative phosphorylation signaling to overproduce ATP; it also released ROS and pyrene derivative to damage DNA and arrest A549 cells at S-phase, which synergistically led to oncotic necrosis and apoptosis of A549 cells to deplete excess ATP, evidenced by the elevated level of PRAP1 and cleaved capase-3. Moreover, the DNA damage inhibited the expression of DNA repair-related proteins, such as RBX1 and GPS1, enhancing photocytotoxicity of ZQX-1, which was reflected in the inhibition of integrin signaling and disruption of ribosome assembly. Importantly, the photoactivated ZQX-1 was shown to activate hypoxia-inducible factor 1A (HIF1A) survival signaling, implying that combining use of ZQX-1 with HIF1A signaling inhibitors may further promote the photocytotoxicity of the prodrug. Full article
Show Figures

Figure 1

13 pages, 2016 KiB  
Article
Electronic, Optical, Thermoelectric and Elastic Properties of RbxCs1−xPbBr3 Perovskite
by Elmustafa Ouaaka, Mustapha Aazza, Aziz Bouymajane and Francesco Cacciola
Molecules 2023, 28(7), 2880; https://doi.org/10.3390/molecules28072880 - 23 Mar 2023
Cited by 11 | Viewed by 3151
Abstract
Inorganic halide perovskites of the type AMX3, where A is an inorganic cation, M is a metal cation, and X is a halide anion, have attracted attention for optoelectronics applications due to their better optical and electronic properties, and stability, under [...] Read more.
Inorganic halide perovskites of the type AMX3, where A is an inorganic cation, M is a metal cation, and X is a halide anion, have attracted attention for optoelectronics applications due to their better optical and electronic properties, and stability, under a moist and elevated temperature environment. In this contribution, the electronic, optical, thermoelectric, and elastic properties of cesium lead bromide, CsPbBr3, and Rb-doped CsPbBr3, were evaluated using the density functional theory (DFT). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke, and Ernzerhof (PBE) was employed for the exchange–correlation potential. The calculated value of the lattice parameter is in agreement with the available experimental and theoretical results. According to the electronic property results, as the doping content increases, so does the energy bandgap, which decreases after doping 0.75. These compounds undergo a direct band gap and present an energies gap values of about 1.70 eV (x = 0), 3.76 eV (x = 0.75), and 1.71 eV (x = 1). The optical properties, such as the real and imaginary parts of the dielectric function, the absorption coefficient, optical conductivity, refractive index, and extinction coefficient, were studied. The thermoelectric results show that after raising the temperature to 800 K, the thermal and electrical conductivities of the compound RbxCs1−xPbBr3 increases (x = 0, 0.25, 0.50 and 1). Rb0.75Cs0.25PbBr3 (x = 0.75), which has a large band gap, can work well for applications in the ultraviolet region of the spectrum, such as UV detectors, are potential candidates for solar cells; whereas, CsPbBr3 (x = 0) and RbPbBr3 (x = 1), have a narrow and direct band gap and outstanding absorption power in the visible ultraviolet energy range. Full article
(This article belongs to the Special Issue Recent Developments in Perovskite-Based Functional Materials)
Show Figures

Figure 1

18 pages, 1761 KiB  
Review
Role of SOCS and VHL Proteins in Neuronal Differentiation and Development
by Hiroshi Kanno, Shutaro Matsumoto, Tetsuya Yoshizumi, Kimihiro Nakahara, Atsuhiko Kubo, Hidetoshi Murata, Taro Shuin and Hoi-Sang U
Int. J. Mol. Sci. 2023, 24(4), 3880; https://doi.org/10.3390/ijms24043880 - 15 Feb 2023
Cited by 7 | Viewed by 4011
Abstract
The basic helix–loop–helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the [...] Read more.
The basic helix–loop–helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin–proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin–proteasome system but also act directly on JAKs to suppress the Janus kinase–signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor–vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke. Full article
(This article belongs to the Special Issue Molecules Affecting Brain Development and Nervous System)
Show Figures

Figure 1

22 pages, 354 KiB  
Review
Controversies in the Prevention and Treatment of Clostridioides difficile Infection in Adults: A Narrative Review
by Taryn B. Bainum, Kelly R. Reveles, Ronald G. Hall, Kelli Cornell and Carlos A. Alvarez
Microorganisms 2023, 11(2), 387; https://doi.org/10.3390/microorganisms11020387 - 3 Feb 2023
Cited by 18 | Viewed by 5331
Abstract
Clostridioides difficile remains a problematic pathogen resulting in significant morbidity and mortality, especially for high-risk groups that include immunocompromised patients. Both the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America (IDSA/SHEA), as well as the American College of [...] Read more.
Clostridioides difficile remains a problematic pathogen resulting in significant morbidity and mortality, especially for high-risk groups that include immunocompromised patients. Both the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America (IDSA/SHEA), as well as the American College of Gastroenterology (ACG) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) recently provided guideline updates for C. difficile infection (CDI). In this narrative review, the authors reviewed available literature regarding the prevention or treatment of CDI in adults and focused on disagreements between the IDSA/SHEA and ACG guidelines, as well as articles that have been published since the updates. Several options for primary prophylaxis are available, including probiotics and antibiotics (vancomycin, fidaxomicin). The literature supporting fidaxomicin is currently quite limited. While there are more studies evaluating probiotics and vancomycin, the optimal patient populations and regimens for their use have yet to be defined. While the IDSA/SHEA guidelines discourage metronidazole use for mild CDI episodes, evidence exists that it may remain a reasonable option for these patients. Fidaxomicin has an advantage over vancomycin in reducing recurrences, but its use is limited by cost. Despite this, recent studies suggest fidaxomicin’s cost-effectiveness as a first-line therapy, though this is highly dependent on institutional contracts and payment structures. Secondary prophylaxis should focus on non-antimicrobial options to lessen the impact on the microbiome. The oral option of fecal microbiota transplantation (FMT), SER109, and the now FDA-approved RBX2660 represent exciting new options to correct dysbiosis. Bezlotoxumab is another attractive option to prevent recurrences. Further head-to-head studies of newer agents will be needed to guide selection of the optimal therapies for CDI primary and secondary prophylaxis. Full article
(This article belongs to the Special Issue Clostridioides difficile Infections)
20 pages, 3385 KiB  
Review
The Urgent Threat of Clostridioides difficile Infection: A Glimpse of the Drugs of the Future, with Related Patents and Prospects
by Ahmed S. Alshrari, Shuaibu Abdullahi Hudu, Fayig Elmigdadi and Mohd. Imran
Biomedicines 2023, 11(2), 426; https://doi.org/10.3390/biomedicines11020426 - 1 Feb 2023
Cited by 18 | Viewed by 3722
Abstract
Clostridioides difficile infection (CDI) is an urgent threat and unmet medical need. The current treatments for CDI are not enough to fight the burden of CDI and recurrent CDI (r-CDI). This review aims to highlight the future drugs for CDI and their related [...] Read more.
Clostridioides difficile infection (CDI) is an urgent threat and unmet medical need. The current treatments for CDI are not enough to fight the burden of CDI and recurrent CDI (r-CDI). This review aims to highlight the future drugs for CDI and their related patented applications. The non-patent literature was collected from PubMed and various authentic websites of pharmaceutical industries. The patent literature was collected from free patent databases. Many possible drugs of the future for CDI, with diverse mechanisms of action, are in development in the form of microbiota-modulating agents (e.g., ADS024, CP101, RBX2660, RBX7455, SYN-004, SER-109, VE303, DAV132, MET-2, and BB128), small molecules (e.g., ridinilazole, ibezapolstat, CRS3123, DNV3837, MGB-BP-3, alanyl-L-glutamine, and TNP-2198), antibodies (e.g., IM-01 and LMN-201), and non-toxic strains of CD (e.g., NTCD-M3). The development of some therapeutic agents (e.g., DS-2969b, OPS-2071, cadazolid, misoprostol, ramoplanin, KB109, LFF571, and Ramizol) stopped due to failed clinical trials or unknown reasons. The patent literature reveals some important inventions for the existing treatments of CDI and supports the possibility of developing more and better CDI-treatment-based inventions, including patient-compliant dosage forms, targeted drug delivery, drug combinations of anti-CDI drugs possessing diverse mechanisms of action, probiotic and enzymatic supplements, and vaccines. The current pipeline of anti-CDI medications appears promising. However, it will be fascinating to see how many of the cited are successful in gaining approval from drug regulators such as the US FDA and becoming medicines for CDI and r-CDI. Full article
(This article belongs to the Special Issue Microbial Ecology in Health and Disease 2.0)
Show Figures

Figure 1

21 pages, 4273 KiB  
Article
Piperine–Chlorogenic Acid Hybrid Inhibits the Proliferation of the SK-MEL-147 Melanoma Cells by Modulating Mitotic Kinases
by Carolina Girotto Pressete, Flávia Pereira Dias Viegas, Thâmara Gaspar Campos, Ester Siqueira Caixeta, João Adolfo Costa Hanemann, Guilherme Álvaro Ferreira-Silva, Bruno Zavan, Alexandre Ferro Aissa, Marta Miyazawa, Claudio Viegas and Marisa Ionta
Pharmaceuticals 2023, 16(2), 145; https://doi.org/10.3390/ph16020145 - 19 Jan 2023
Cited by 12 | Viewed by 3204
Abstract
Melanoma is considered the most aggressive form of skin cancer, showing high metastatic potential and persistent high mortality rates despite the introduction of immunotherapy and targeted therapies. Thus, it is important to identify new drug candidates for melanoma. The design of hybrid molecules, [...] Read more.
Melanoma is considered the most aggressive form of skin cancer, showing high metastatic potential and persistent high mortality rates despite the introduction of immunotherapy and targeted therapies. Thus, it is important to identify new drug candidates for melanoma. The design of hybrid molecules, with different pharmacophore fragments combined in the same scaffold, is an interesting strategy for obtaining new multi-target and more effective anticancer drugs. We designed nine hybrid compounds bearing piperine and chlorogenic acid pharmacophoric groups and evaluated their antitumoral potential on melanoma cells with distinct mutational profiles SK-MEL-147, CHL-1 and WM1366. We identified the compound named PQM-277 (3a) to be the most cytotoxic one, inhibiting mitosis progression and promoting an accumulation of cells in pro-metaphase and metaphase by altering the expression of genes that govern G2/M transition and mitosis onset. Compound 3a downregulated FOXM1, CCNB1, CDK1, AURKA, AURKB, and PLK1, and upregulated CDKN1A. Molecular docking showed that 3a could interact with the CUL1-RBX1 complex, which activity is necessary to trigger molecular events essential for FOXM1 transactivation and, in turn, G2/M gene expression. In addition, compound 3a effectively induced apoptosis by increasing BAX/BCL2 ratio. Our findings demonstrate that 3a is an important antitumor candidate prototype and support further investigations to evaluate its potential for melanoma treatment, especially for refractory cases to BRAF/MEK inhibitors. Full article
(This article belongs to the Special Issue 10th Brazilian Symposium on Medicinal Chemistry (BrazMedChem_2022))
Show Figures

Figure 1

Back to TopTop