Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = RBC hemolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4213 KiB  
Article
Influence of Morus alba Leaves Extract on Human Erythrocytes
by Stefano Putaggio, Annamaria Russo, Giuseppe Tancredi Patanè, Antonella Calderaro, Santa Cirmi, Ivana Verboso, Giuseppina Laganà, Silvana Ficarra, Davide Barreca, Françisco Raymo and Ester Tellone
Biology 2025, 14(8), 1005; https://doi.org/10.3390/biology14081005 - 5 Aug 2025
Abstract
Morus alba L. (MA) is a member of the Moraceae family, known as “white mulberry”. Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds. Our study aims to analyze the effect [...] Read more.
Morus alba L. (MA) is a member of the Moraceae family, known as “white mulberry”. Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds. Our study aims to analyze the effect of MA extract leaves on erythrocytes, focusing on its action on metabolism and membrane integrity. The choice of erythrocytes as a study model is based on their metabolic simplicity and their easy availability. Cell viability, following exposure of the cells to the extract, was evaluated by hemolysis, methemoglobin, caspase 3 activity and flow cytofluorimetric analysis; in addition, the effect of the pretreatment with the MA was detected after incubation of erythrocytes with different stressors. The impact on cell metabolism was evaluated by measuring anion flux kinetics, ATP levels and phosphatase activity. The results obtained show a peculiar (double) effect of the extract, which, on the one hand, probably by exploiting its component with antioxidant properties, protects the cell membrane by accumulating on the bilayer. On the other hand, the alteration of anion exchange could lead to the triggering of apoptosis and consequent cell death. The hypotheses, although excluded by our data, all point toward a beneficial and protective action of the extract on the health and vitality of RBCs. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

16 pages, 3978 KiB  
Article
Cepharanthine Promotes Ca2+-Independent Premature Red Blood Cell Death Through Metabolic Insufficiency and p38 MAPK/CK1α/COX/MLKL/PKC/iNOS Signaling
by Shaymah H. Alruwaili, Jawaher Alsughayyir and Mohammad A. Alfhili
Int. J. Mol. Sci. 2025, 26(15), 7250; https://doi.org/10.3390/ijms26157250 - 27 Jul 2025
Viewed by 288
Abstract
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including [...] Read more.
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including apoptosis and autophagy, but its cytotoxicity to RBCs has not been investigated. Colorimetric and fluorometric techniques were used to assess eryptosis and hemolysis in control and CEP-treated RBCs. Cells were labeled with Fluo4/AM and annexin-V-FITC to measure Ca2+ and phosphatidylserine (PS) exposure, respectively. Forward scatter (FSC) was detected to estimate cell size, and extracellular hemoglobin along with lactate dehydrogenase and aspartate transaminase activities were assayed to quantify hemolysis. Physiological manipulation of the extracellular milieu and various signaling inhibitors were tested to dissect the underlying mechanisms of CEP-induced RBC death. CEP increased PS exposure and hemolysis indices and decreased FSC in a concentration-dependent manner with prominent membrane blebbing. Although no Ca2+ elevation was detected, chelation of intracellular Ca2+ by BAPTA-AM reduced hemolysis. Whereas SB203580, D4476, acetylsalicylic acid, necrosulfonamide, and melatonin inhibited both PS exposure and hemolysis, staurosporin, L-NAME, ascorbate, caffeine, adenine, and guanosine only prevented hemolysis. Interestingly, sucrose had a unique dual effect by exacerbating PS exposure and reversing hemolysis. Of note, blocking KCl efflux augmented PS exposure while aggravating hemolysis only under Ca2+-depleted conditions. CEP activates Ca2+-independent pathways to promote eryptosis and hemolysis. The complex cytotoxic profile of CEP can be mitigated by targeting the identified modulatory pathways to potentiate its anticancer efficacy. Full article
(This article belongs to the Special Issue Blood Cells in Human Health and Disease)
Show Figures

Figure 1

9 pages, 671 KiB  
Article
Comparative Effects of Pulsed Field and Radiofrequency Ablation on Blood Cell Parameters During Pulmonary Vein Isolation
by Lucio Addeo, Federica Di Feo, Mario Vaccariello, Alfonso Varriale, Benedetta Brescia, Davide Bonadies, Stefano Nardi, Luigi Argenziano, Vittoria Marino, Vincenza Abbate, Luigi Cocchiara, Pasquale Guarini, Laura Adelaide Dalla Vecchia and Francesco Donatelli
Biomedicines 2025, 13(8), 1828; https://doi.org/10.3390/biomedicines13081828 - 25 Jul 2025
Viewed by 442
Abstract
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers [...] Read more.
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers such as lactate dehydrogenase (LDH). Methods: We conducted a retrospective, single-center study involving 249 patients undergoing PVI: 121 treated with PFA (PulseSelect or FARAPULSE) and 128 with radiofrequency (RF) ablation (PVAC catheter). Laboratory parameters were assessed at baseline, post-procedure, and at discharge, including hemoglobin, hematocrit, red blood cell (RBC) count, platelet count, creatinine, and LDH. The primary endpoint was the variation in blood cell indices; the secondary endpoint was the evaluation of LDH and hematocrit changes. Statistical analysis included t-tests and chi-square tests. Results: Baseline characteristics and pre-procedural labs did not differ significantly between groups. No significant changes in hemoglobin, hematocrit, RBC count, platelet count, or creatinine were observed post-ablation or at discharge. However, LDH levels significantly increased in the PFA group both post-procedurally and at discharge (p < 0.001), without concurrent changes in other blood cell parameters. Conclusions: PFA and RF ablation yield comparable hematological profiles after PVI, with no significant impact on key blood cell parameters. Nonetheless, the consistent rise in LDH levels in the PFA group suggests mild, subclinical hemolysis or tissue injury due to more extensive lesions. While supporting the hematologic safety of PFA, these findings underscore the need for further studies to assess the clinical significance of these biochemical alterations, particularly in high-risk patients or extensive ablation settings. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

28 pages, 5716 KiB  
Article
Novel Benzenesulfonamide Derivatives of 5′-Aminospirotriazolotriazine Exhibit Anti-Inflammatory Activity by Suppressing Pro-Inflammatory Mediators: In Vitro and In Vivo Evaluation Using a Rat Model of Carrageenan-Induced Paw Edema
by Amany M. Hamed, Souhaila S. Enaili, Walaa I. Mohammed, Azza M. A. Abouelella, Zeyad Elsayed Eldeeb Mohana, Dina M. Monir, Safaa S. Soliman, Elsayed Eldeeb Mehana Hamouda, Hytham Mahmoud Abd Elatif and Ahmed M. El-Saghier
Biomedicines 2025, 13(7), 1732; https://doi.org/10.3390/biomedicines13071732 - 15 Jul 2025
Viewed by 839
Abstract
Background/Objectives: Inflammation is a crucial and complex mechanism that protects the body against infections. In our study, we propose to provide scientific evidence for the anti-inflammatory properties of 1,3,5-triazine derivatives. Methods: Initially, we ensured the safety of the three synthesized derivatives [...] Read more.
Background/Objectives: Inflammation is a crucial and complex mechanism that protects the body against infections. In our study, we propose to provide scientific evidence for the anti-inflammatory properties of 1,3,5-triazine derivatives. Methods: Initially, we ensured the safety of the three synthesized derivatives by administering graded doses of up to 2000 mg/kg intraperitoneally in Wistar rats. Thus, the three derivatives were considered generally safe. We also evaluated their ability to reduce carrageenan-induced rat paw edema. Results: Compounds 1, 2, and 3 demonstrated stronger anti-inflammatory activity than indomethacin (10 mg/kg), achieving maximum inhibition at the fourth hour with percentages of 96.31%, 72.08%, and 99.69%, respectively, at a dose of 200 mg/kg, compared to 57.66% for the standard drug. To explore the mechanism, levels of pro-inflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-6, CRP) and oxidative stress markers were measured in paw tissue. All three compounds significantly reduced these markers more effectively than indomethacin and enhanced antioxidant levels (SOD and GSH) beyond those achieved by the standard treatment. Additionally, the compounds reduced COX-1 and COX-2 levels to values comparable to those in the normal (non-inflamed) control group. Conclusions: Compounds 1, 2, and 3 at doses of 200 mg/kg significantly (p  < 0.05) inhibited the heat-induced hemolysis of red blood cell (RBC) membranes by 94.6%, 93.9%, and 95.2%, respectively, compared to 94.5% produced by indomethacin. Consequently, we concluded that 1,3,5-triazine derivatives are a safe antioxidant agent with significant anti-inflammatory activity. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

15 pages, 2362 KiB  
Article
Growth Inhibition and Additive Effect to Antimalarial Drugs of Brucea javanica Extracts on Asexual Blood-Stage Plasmodium falciparum
by Niwat Kangwanrangsan, Gamolthip Niramolyanun, Chonnipa Praikongkatham, Pathanin Chantree, Pongsakorn Martviset and Viriya Pankao
Pathogens 2025, 14(7), 646; https://doi.org/10.3390/pathogens14070646 - 30 Jun 2025
Viewed by 526
Abstract
Malaria is a parasitic infectious disease that is endemic in many tropical countries. Even though several effective antimalarial agents have been implemented, treatment failure still occurs, and malaria continues to cause neurological complications and death, particularly in severe or drug-resistant cases. Hence, novel [...] Read more.
Malaria is a parasitic infectious disease that is endemic in many tropical countries. Even though several effective antimalarial agents have been implemented, treatment failure still occurs, and malaria continues to cause neurological complications and death, particularly in severe or drug-resistant cases. Hence, novel therapeutic agents with distinct mechanisms of action, as well as alternative chemical compounds that can overcome resistance, are still needed to improve malaria therapy. This study aimed to investigate the antimalarial activities of Brucea javanica, a tropical plant extracts against Plasmodium falciparum, the major species associated with severe malaria. In this study, malaria parasites were treated with plant extracts using single and co-incubation methods, along with artesunate and chloroquine, and their inhibitory effect on parasite development was determined by microscopy. The results show that all tested doses of the extracts that effectively inhibited malaria parasites did not cause hemolysis of red blood cells (RBCs). The root extract (RE) and fruit extract (FE) inhibited parasite growth at IC50 values of 0.41 ± 1.14 µg/mL and 0.26 ± 1.15 µg/mL, respectively. These plant extracts significantly interrupted malaria development at the ring stage, as presented by a reduction in the conversion rate to trophozoites and schizonts. The defective parasites treated with plant extracts were characterized by nuclear clumping, leading to pyknotic cell death. Moreover, RE and FW extracts elicited an additive effect with artesunate and chloroquine, significantly reducing IC90 levels for the inhibition of parasite development. In conclusion, B. javanica extracts inhibited the asexual blood-stage development of malaria parasites. They distinctively show the additive effects of ATS and CRQ, elucidating their potential for further studies on novel formulas of antimalarial drug regimens. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

13 pages, 405 KiB  
Review
The Potential of Red Blood Cells in Regenerative Medicine: A Paradigm Shift in Cellular Therapy
by Fábio Ramos Costa, Joseph Purita, Ansar Mahmood, Rubens Martins, Bruno Costa, Bruno Lima Rodrigues, Stephany Cares Huber, Gabriel Silva Santos, Luyddy Pires, Gabriel Azzini, André Kruel and José Fábio Lana
Cells 2025, 14(11), 797; https://doi.org/10.3390/cells14110797 - 29 May 2025
Viewed by 777
Abstract
Red blood cells (RBCs) have traditionally been excluded from orthobiologic formulations due to inflammation, oxidative stress, and hemolysis concerns. However, emerging evidence suggests that RBCs may play an active role in regenerative medicine, contributing to immune modulation, vascular support, and oxidative balance. Their [...] Read more.
Red blood cells (RBCs) have traditionally been excluded from orthobiologic formulations due to inflammation, oxidative stress, and hemolysis concerns. However, emerging evidence suggests that RBCs may play an active role in regenerative medicine, contributing to immune modulation, vascular support, and oxidative balance. Their interactions with macrophages, involvement in nitric oxide signaling, and release of extracellular vesicles suggest they may influence tissue repair more than previously assumed. Despite these potential benefits, RBC retention in orthobiologic preparations like platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) remains controversial, with most protocols favoring their removal in the absence of robust translational clinical data. This review explores the biological functions of RBCs in regenerative medicine, their potential contributions to PRP and BMAC, and the challenges associated with their inclusion. While concerns about hemolysis and inflammation persist, controlled studies are needed to determine whether selective RBC retention could enhance musculoskeletal healing in some scenarios. Future research should focus on optimizing RBC processing techniques and evaluating their impact on clinical applications. Addressing these gaps will clarify whether RBCs represent an overlooked but valuable component in regenerative therapies or their exclusion remains justified. Full article
Show Figures

Graphical abstract

22 pages, 2913 KiB  
Article
Comparative Analysis of PRV-1 in Atlantic Salmon and PRV-3 in Coho Salmon: Host-Specific Immune Responses and Apoptosis in Red Blood Cells
by Laura V. Solarte-Murillo, Sebastián Salgado, Tomás Gatica, Juan Guillermo Cárcamo, Thomais Tsoulia, Maria K. Dahle and Carlos Loncoman
Microorganisms 2025, 13(5), 1167; https://doi.org/10.3390/microorganisms13051167 - 21 May 2025
Viewed by 852
Abstract
Fish red blood cells (RBCs) are nucleated, transcriptionally active, and key players in both gas transport and immune responses. They are the primary targets of Orthoreovirus piscis (PRV), the etiological agent of heart and skeletal muscle inflammation (HSMI), which includes three genotypes (PRV-1, [...] Read more.
Fish red blood cells (RBCs) are nucleated, transcriptionally active, and key players in both gas transport and immune responses. They are the primary targets of Orthoreovirus piscis (PRV), the etiological agent of heart and skeletal muscle inflammation (HSMI), which includes three genotypes (PRV-1, PRV-2, and PRV-3), linked to circulatory disorders in farmed salmon. In Chile, PRV-3 affects the coho salmon (Oncorhynchus kisutch), but host–pathogen interactions remain poorly characterized. This study compared the interactions of PRV-3 in coho salmon and PRV-1 in Atlantic salmon (Salmo salar) using RBC infection models. RBCs were isolated from healthy juvenile salmon (n = 3) inoculated with either PRV-1 (Ct = 18.87) or PRV-3 (Ct = 21.86). Poly I:C (50 µg/mL) was used as a positive control for the antiviral response. Cells were monitored for up to 14 days post-infection (dpi). PRV-3 infection in coho salmon RBCs caused significant metabolic disruption, apoptosis from 7 dpi, and correlated with increasing viral loads. In contrast, PRV-1 infection in Atlantic salmon RBCs showed limited apoptosis and maintained cell viability. Coho salmon RBCs upregulated rig-i, mx, and pkr transcripts, indicating activation of the type I interferon pathway, whereas Atlantic salmon RBCs exhibited a more attenuated response. PRV-3 induced notable morphological changes in coho salmon RBCs, although neither PRV-3 nor PRV-1 caused hemolysis. These findings highlight species-specific differences in RBC responses to PRV infection and provide new insights into the pathogenesis of PRV-3 and PRV-1. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
Show Figures

Figure 1

12 pages, 1781 KiB  
Article
Feline Erythrocytic Osmotic Fragility in Normal and Anemic Cats—A Preliminary Study
by Purin Lophaisankit, Kunanon Boonyok, Jaruwan Khonmee, Chatchanok Udomtanakunchai, Chollada Sodarat, Kannika Phongroop and Worapat Prachasilchai
Vet. Sci. 2025, 12(3), 236; https://doi.org/10.3390/vetsci12030236 - 3 Mar 2025
Viewed by 2112
Abstract
Erythrocyte osmotic fragility is an excellent parameter for evaluating the red blood cell (RBC) membrane, which may be abnormal in several pathological conditions. The flow cytometer is a powerful tool that analyzes a single cell in a solution and can detect alterations in [...] Read more.
Erythrocyte osmotic fragility is an excellent parameter for evaluating the red blood cell (RBC) membrane, which may be abnormal in several pathological conditions. The flow cytometer is a powerful tool that analyzes a single cell in a solution and can detect alterations in RBCs, providing key differential diagnostic information. Both the osmotic fragility test (OFT) and flow cytometry are valuable diagnostic tools in veterinary medicine, but their diagnostic usefulness in anemic cats has not yet been determined. This study aimed to evaluate RBC membrane strength using an OFT in non-anemic and anemic cats and to compare RBC size and density using a flow cytometer in non-anemic and anemic cats. A total of 18 cats in the non-anemic group and 18 cats in the anemic group, divided into adults and seniors, were included in this study. Blood samples were collected for a complete blood count (CBC) and blood chemistry. The remaining blood was used for OFT to evaluate 50% hemolysis from the hemolysis curve and for the flow cytometer to measure forward scatter characteristics (FSC) and side scatter characteristics (SSC). The result of OFT showed no significant difference in OF between normal and anemic cats in the adult and senior groups. In terms of flow cytometry analysis, normal and anemic cats in the adult group showed no significant difference in the FSC (p = 0.769). On the other hand, the FSCs of normal senior cats were significantly higher than those of anemic cats (p = 0.0486). The SSCs of normal cats were significantly higher than those of anemic cats in the adult group (p = 0.048). However, the SSCs of the senior group showed no significant difference (p = 0.074). Based on these results, we concluded that, in the senior group, normal cats had higher FSCs than anemic cats, and in the adult group, normal cats had higher SSCs than anemic cats. However, both normal and anemic cats exhibited similar osmotic fragility. Further studies on various diseases are suggested. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals)
Show Figures

Figure 1

18 pages, 11491 KiB  
Article
Targeting MAPK Signaling: Loureirins A and B from Dracaena Loureiri Inhibit Epithelial–Mesenchymal Transition and Invasion in Non-Small Cell Lung Cancer Cell Lines
by Xiaomin Huang, Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng, Supachai Yodkeeree and Pornngarm Dejkriengkraikul
Life 2025, 15(3), 396; https://doi.org/10.3390/life15030396 - 3 Mar 2025
Viewed by 979
Abstract
Metastasis remains the leading cause of death among patients with non-small cell lung cancer (NSCLC), emphasizing the urgent need for safer and more effective therapeutic options. Mitogen-activated protein kinase (MAPK) pathways play a crucial role in regulating EMT, migration, and invasion in NSCLC. [...] Read more.
Metastasis remains the leading cause of death among patients with non-small cell lung cancer (NSCLC), emphasizing the urgent need for safer and more effective therapeutic options. Mitogen-activated protein kinase (MAPK) pathways play a crucial role in regulating EMT, migration, and invasion in NSCLC. Targeting these molecular mechanisms has become a key strategy in inhibiting NSCLC metastasis. Loureirin A and Loureirin B, flavonoids derived from the Thai traditional herb Dracaena loureiri, have shown potential pharmacological effects; however, their roles in NSCLC metastasis remain unexplored. This study aimed to elucidate the mechanisms by which Loureirin A and Loureirin B suppress EMT, migration, and invasion in NSCLC cells via the MAPK signaling pathway. The sulforhodamine B (SRB) assay showed that Loureirin A and Loureirin B, at concentrations ranging from 0 to 140 μM, were non-toxic to both A549 and H1299 cells. Additionally, Loureirins A and B exhibited no cytotoxic effects on primary human dermal fibroblast cells and did not induce hemolysis in red blood cells (RBCs). The wound-healing and trans-well assays were used to evaluate the anti-migratory and anti-invasion properties of Loureirin A and Loureirin B in NSCLC cell lines. Gelatin zymography was employed to investigate the activity of MMP-2 (gelatinase A) and MMP-9 (gelatinase B), while Western blot analysis was used to examine the expression of EMT markers and invasive proteins, and the phosphorylation of MAPK signaling molecules. Our results demonstrate that both Loureirin A and Loureirin B significantly suppressed the migration and invasion of A549 and H1299 cells. These compounds suppressed the activity of matrix metalloproteinases MMP-2 and MMP-9 and downregulated the expression of key invasive proteins including uPA, uPAR, and MT1-MMP. Additionally, they effectively suppressed the expression of EMT markers such as N-cadherin, Vimentin, and Fibronectin. Mechanistically, Loureirin A and Loureirin B inhibited the MAPK signaling pathway by downregulating the phosphorylation of ERK, JNK, and p38 proteins. In conclusion, these findings demonstrate that Loureirin A and Loureirin B exhibit potent anti-invasive properties and no cytotoxic effect on NSCLC cell lines, suggesting their potential as promising candidates for anti-cancer drug development. Furthermore, they may pave the way for the exploration of combination therapies with other anti-cancer drugs for clinical translation. Full article
Show Figures

Figure 1

10 pages, 1702 KiB  
Brief Report
Synergistic Effects of a Novel Combination of Natural Compounds Prevent H2O2-Induced Oxidative Stress in Red Blood Cells
by Giuditta Benincasa, Paola Bontempo, Ugo Trama and Claudio Napoli
Int. J. Mol. Sci. 2025, 26(3), 1334; https://doi.org/10.3390/ijms26031334 - 5 Feb 2025
Viewed by 1331
Abstract
Novel strategies to prevent the “storage lesions” of red blood cells (RBCs) are needed to prevent the risk of adverse effects after blood transfusion. One option could be the supplementation of stored blood bags with natural compounds that may increase the basal load [...] Read more.
Novel strategies to prevent the “storage lesions” of red blood cells (RBCs) are needed to prevent the risk of adverse effects after blood transfusion. One option could be the supplementation of stored blood bags with natural compounds that may increase the basal load of antioxidant protection and the shelf life of RBCs. In this pilot study, we investigated for the first time potential synergistic effects of a triple combination of well-known anti-oxidant compounds curcumin (curc), vitamin E (vit E), and vitamin C (vit C). Briefly, we established an ex vivo model of H2O2-induced oxidative stress and measured the hemolysis ratio (HR) (%) and thiobarbituric acid reactive substances (TBARS) levels in RBCs with or without pre-exposure for 30 min with increasing concentrations of curc, vit E, and vit C and then exposed to 10 mM H2O2. for 60 min. Exposure of RBCs to a triple combination of curc, vit E, and vit C at the highest concentration (100 µM) completely prevented H2O2-induced hemolysis. Surprisingly, we found that pre-treatment of RBCs with curc 100 µM alone completely prevented hemolysis as compared to vit E and vit C alone or in combination at the same concentration. On the other hand, pre-treatment with the triple combination of curc, vit E, and vit C 100 µM was required to totally prevent lipid peroxidation, as compared to curc 100 µM alone, supporting their synergistic effects in preventing RBCs membrane peroxidation. Further experiments are ongoing to investigate the anti-aging effects of the triple combination of curc, vit E, and vit C on cold-stored bags. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

25 pages, 6701 KiB  
Article
Therapeutic Effects of Nanocoating of Apitoxin (Bee Venom) and Polyvinyl Alcohol Supplemented with Zinc Oxide Nanoparticles
by Husam Qanash, Abdulrahman S. Bazaid, Shahad F. Alharbi, Naif K. Binsaleh, Heba Barnawi, Bandar Alharbi, Ahmed Alsolami and Majed N. Almashjary
Pharmaceutics 2025, 17(2), 172; https://doi.org/10.3390/pharmaceutics17020172 - 28 Jan 2025
Cited by 1 | Viewed by 1950
Abstract
Background/Objectives: Bee venom (BV), as a natural product, is one of the foundations of the pharmaceutical industry, through which many diseases, including serious ones, can be effectively treated. The BV nanofilm is an effective antidote delivered into the human body to target the [...] Read more.
Background/Objectives: Bee venom (BV), as a natural product, is one of the foundations of the pharmaceutical industry, through which many diseases, including serious ones, can be effectively treated. The BV nanofilm is an effective antidote delivered into the human body to target the affected area and address the issue without major side effects. In this study, we investigated the intriguing therapeutic effects of apitoxin (bee venom) used in isolation, combined with the powerful properties of zinc oxide nanoparticles. Methods and Results: BV nanofilm was evaluated using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The BV extract was analyzed using mass spectrometry (MS), which identified 84 active components present at varying concentrations. BV was treated with both polyvinyl alcohol (PVA) and zinc oxide nanoparticles (ZNPs) to increase the intensity of OH and CH2 groups and to enhance the dispersion of C=O. BV has demonstrated anti-type 2 diabetes activity by inhibiting α-amylase and α-glucosidase, which are starch-degrading enzymes. The nanofilm is an active mixture of BV, PVA, and ZNPs, which exhibited the highest antidiabetic activity with IC50 values of 30.33 μg/mL and 5.55 μg/mL for the inhibition of α-amylase and α-glucosidase, compared to IC50 of 51.69 µg/mL and IC50 of 7.30 µg/mL for BV, respectively. The nanofilm also showed higher anti-inflammatory activity by inhibiting red blood cell (RBC) hemolysis, with an IC50 of 16.99 μg/mL in comparison to IC50 of 72.99 µg/mL for BV alone. The nanofilm demonstrated broad-spectrum antimicrobial activity, effectively targeting both Gram-positive (Staphylococcus aureus ATCC 6538 and Bacillus subtilis ATCC 6633) and Gram-negative bacteria (Salmonella typhi ATCC 6539, Escherichia coli ATCC 8739). Furthermore, increased antioxidant activity was recorded by inhibiting the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effect with an IC50 of 4.26 μg/mL and 19.43 μg/mL for nanofilm and BV, respectively. BV was found to be more toxic to liver tissue (HepG2 cell line) than nanofilm, with IC50 values of 18.5 ± 0.08 μg/mL and 52.27 ± 0.7 μg/mL, respectively. The BV extract displayed higher toxicity to liver tissue (2.3%) with 97.7% viability at 250 μg/mL, compared to nanofilm, which showed 0.09% toxicity and 99.9% viability at the same concentration. Conclusions: the BV nanofilm emerges as a promising alternative medicine, offering an innovative solution for treating various diseases through its high concentration of therapeutically active compounds and effortless targeting delivery. Full article
(This article belongs to the Special Issue Plant Extracts and Their Biomedical Applications)
Show Figures

Figure 1

13 pages, 2913 KiB  
Article
Investigation on the Interaction of Dendritic Core Multi-Shell Nanoparticles with Human Red Blood Cells
by Jakob Krauß, Radostina Georgieva, Miroslav Karabaliev, Moritz Hackmann, Pichayut Rerkshanandana, Saranya Chaiwaree, Ulrich Kalus, Axel Pruß, Yu Xiong and Hans Bäumler
Nanomaterials 2025, 15(3), 187; https://doi.org/10.3390/nano15030187 - 24 Jan 2025
Viewed by 1042
Abstract
The use of nanoparticles is becoming increasingly apparent in a growing number of medical fields. To exploit the full potential of these particles, it is essential to examine their behavior in the blood and their possible interactions with blood cells. Dendritic core multi-shell [...] Read more.
The use of nanoparticles is becoming increasingly apparent in a growing number of medical fields. To exploit the full potential of these particles, it is essential to examine their behavior in the blood and their possible interactions with blood cells. Dendritic core multi-shell DendroSol™ nanoparticles (DS-NPs) are able to penetrate into viable layers of human skin, but nothing is known about their interaction with blood cells. In the present study, we analyze the effect of DS-NPs on red blood cells (RBCs) using confocal laser scanning microscopy (CLSM), flow cytometry, sedimentation rate analysis, spectrophotometry, and hemolysis assays. DS-NPs labeled with Nile red (NR) were added to RBC suspensions and their accumulation in the area of the RBC membranes was demonstrated by CLSM as well as by flow cytometry. In the presence of DS-NPs, the RBCs show an increased sedimentation rate, which also confirms the binding of the NPs to the cells. Interestingly, in the presence of DS-NPs, the RBCs are stabilized against hypotonic hemolysis as well as against the hemolytic action of Triton X-100. This proven anti-hemolytic effect could be utilized to enhance the circulation time of RBCs loaded with drugs for prolonged sustained release and drug delivery with enhanced bioavailability. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

16 pages, 2581 KiB  
Article
Impact of a Palladium(II)-tris(2-carboxyethyl)phosphine Complex on Normal Cells: Toxicity and Membrane Interaction
by Hanna Pruchnik, Katarzyna Solarska-Ściuk, Anita Dudek and Aleksandra Włoch
Molecules 2025, 30(3), 476; https://doi.org/10.3390/molecules30030476 - 22 Jan 2025
Viewed by 874
Abstract
Palladium(II) complexes with tris(2-carboxyethyl)phosphine (PdTCEP) show promise for biomedical applications due to their distinct chemical characteristics. This study explored the toxicity of PdTCEP towards normal human cells and examined its interactions with model cell membranes. Two cell types were used to evaluate cytotoxicity: [...] Read more.
Palladium(II) complexes with tris(2-carboxyethyl)phosphine (PdTCEP) show promise for biomedical applications due to their distinct chemical characteristics. This study explored the toxicity of PdTCEP towards normal human cells and examined its interactions with model cell membranes. Two cell types were used to evaluate cytotoxicity: human microvascular endothelial cells (HMEC-1) and red blood cells (RBCs). In HMEC-1 cells, PdTCEP reduced survival to about 80% at 15 µM, with the most significant drop—down to 40%—occurring at 40 µM. The production of reactive oxygen species (ROS) increased in a manner dependent on both dose and time, especially after 72 h of incubation. Despite these effects, PdTCEP caused only minor hemolysis in RBCs, with hemolysis levels staying below 10% even at higher concentrations. Fluorescence anisotropy measurements showed that PdTCEP minimally affects the hydrophobic core of the lipid bilayer, with slight changes observed at concentrations above 40 µM. Generalized polarization (GP) analysis indicated a slight decrease in lipid polar head packing with increasing PdTCEP concentration. Complementary FTIR analysis supported these findings by providing detailed insights into PdTCEP-membrane interactions. This research underscores PdTCEP’s selective cytotoxicity and structural effects on membranes, suggesting its promise for more in-depth biological and pharmacological studies. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Figure 1

14 pages, 5097 KiB  
Article
Pig and Cow Blood During Cold Storage in CPDA-1 Solution: Hematology and Fluid Behavior
by Ursula Windberger and Andreas Sparer
Biophysica 2025, 5(1), 3; https://doi.org/10.3390/biophysica5010003 - 21 Jan 2025
Cited by 1 | Viewed by 1476
Abstract
Nature equipped red blood cells (RBCs) with diverse mechanical properties, which makes it possible to examine blood with different RBC properties (size, shape, aggregability, deformability). We investigated whether the shelf life of cow blood (stiff RBCs, low aggregability) is longer compared with pig [...] Read more.
Nature equipped red blood cells (RBCs) with diverse mechanical properties, which makes it possible to examine blood with different RBC properties (size, shape, aggregability, deformability). We investigated whether the shelf life of cow blood (stiff RBCs, low aggregability) is longer compared with pig blood (deformability/aggregability comparable to human) due to a delay in RBC clustering and decomposition. Blood was drawn from conscious pigs and cows in their familiar environment to reduce stress and stored 30 days at +7 °C. RBCs remained intact in cow samples whereas pig samples became hemolytic after day 20. White blood cells and platelets decreased with similar percentages in both species. Hematocrit (HCT) decreased due to RBC shrinking in bovine samples and due to RBC decay in porcine samples. Blood viscosity increased in both species although HCT decreased. In porcine samples, shear thinning decreased progressively, indicating a gradual loss of sample cohesion with storage. Yield stress and storage modulus decreased with hemolysis. In HCT-native cow samples, shear thinning, yield stress, and storage modulus showed high intraindividual variability, but the mean values did not change over the time course. In HCT-adjusted (38%) cow samples, solidification occurred after day 7, followed by a reduction in cohesion and shear thinning until the end of storage. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

14 pages, 4015 KiB  
Article
The Effect of a Secondary Stressor on the Morphology and Membrane Structure of an Already Challenged Maternal and Foetal Red Blood Cell Population
by Ágnes Ferencz, Payal Chakraborty, Csaba Papp, András Teleki, Krisztina Dugmonits, Hajnalka Orvos, Attila Gácser and Edit Hermesz
Int. J. Mol. Sci. 2025, 26(1), 333; https://doi.org/10.3390/ijms26010333 - 2 Jan 2025
Viewed by 1066
Abstract
The red blood cell (RBC) membrane is unique and crucial for maintaining structural–functional relationships. Maternal smoking induces significant changes in the morphological, rheological, and functional parameters of both maternal and foetal RBCs, mainly due to the continuous generation of the free radicals. The [...] Read more.
The red blood cell (RBC) membrane is unique and crucial for maintaining structural–functional relationships. Maternal smoking induces significant changes in the morphological, rheological, and functional parameters of both maternal and foetal RBCs, mainly due to the continuous generation of the free radicals. The major aim of this study was to follow the consequences of a secondary stressor, like fungal infection, on the already compromised RBC populations. The impact of Candida infection, a growing health concern, was investigated on four blood sample groups: mothers and their neonates originating from non-smoking versus smoking populations. Here, we searched for phenotypical and molecular markers that precisely reflected the effect of Candida infection on the RBC membrane; this included the level of hemolysis, appearance of morphological variants, formation of the lipid peroxidation marker 4-hydroxyl-nonenal, arrangement of the Band 3 molecules and activation of the Caspase 3. In most of the examined cases, the fungal infection increased the adverse symptoms induced by smoking, indicating a general stress response, likely due to an altered redox state of the cells. However, we were able to identify an atypical phenotype (clustered populations with shrinkage and membrane blebbing) in both the non-smoking and smoking populations, which might be a unique marker for Candida spp. infection. Full article
(This article belongs to the Special Issue Targeting Oxidative Stress for Disease: 2nd Edition)
Show Figures

Figure 1

Back to TopTop