Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = QTAIM approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3807 KiB  
Article
Vibrational Spectroscopic and Quantum-Chemical Study of Indole–Ketone Hydrogen-Bonded Complexes
by Branislav Jović, Nataša Negru, Dušan Dimić and Branko Kordić
Molecules 2025, 30(13), 2685; https://doi.org/10.3390/molecules30132685 - 21 Jun 2025
Viewed by 910
Abstract
This study investigates the structural and energetic properties of hydrogen-bonded complexes between indole and a range of aliphatic, cyclic, and aromatic ketones using a combined vibrational spectroscopic and quantum-chemical approach. FTIR measurements in CCl4 revealed redshifts in the N-H stretching vibration of [...] Read more.
This study investigates the structural and energetic properties of hydrogen-bonded complexes between indole and a range of aliphatic, cyclic, and aromatic ketones using a combined vibrational spectroscopic and quantum-chemical approach. FTIR measurements in CCl4 revealed redshifts in the N-H stretching vibration of indole upon complexation, with formation constants (Ka) ranging from 0.3 to 6.6 M−1. Cyclohexanone displayed the strongest binding, while benzophenone exhibited the weakest interaction. Quantum-chemical calculations, employing CREST and MMFF94 conformational sampling, along with M06-2X/6-311++G(d,p) optimizations, confirmed the formation of hydrogen bonds and additional weak interactions that govern the stability of the complex. QTAIM analysis revealed moderate closed-shell hydrogen bonds with electron densities at the bond critical points (ρ) ranging from 0.010 to 0.019 a.u. and potential energy densities (V) from −18.4 to −36.4 kJ mol−1. Multivariate regression analysis established strong correlations (R2 = 0.928 and 0.957) between experimental binding constants and theoretical descriptors, including binding energy, NBO charge on oxygen atom, ionization potential, and electrophilicity index, highlighting the interplay between geometric, electronic, and global reactivity factors. This comprehensive study underlines the predictive power of spectroscopic and quantum descriptors for assessing hydrogen bonding in biologically relevant systems. Full article
(This article belongs to the Special Issue Computational Chemistry Insights into Molecular Interactions)
Show Figures

Figure 1

28 pages, 3280 KiB  
Article
Structural, Computational, and Biomolecular Interaction Study of Europium(III) and Iron(III) Complexes with Pyridoxal-Semicarbazone Ligand
by Violeta Jevtovic, Stefan Perendija, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien, Jasmina Dimitrić Marković and Dušan Dimić
Int. J. Mol. Sci. 2025, 26(11), 5289; https://doi.org/10.3390/ijms26115289 - 30 May 2025
Viewed by 513
Abstract
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one [...] Read more.
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one deprotonated PLSC ligand and nitrato and aqua ligands. In contrast, the iron complex adopts a six-coordinate structure featuring a monoprotonated PLSC, two chlorido, and an aqua ligand. Hirshfeld surface analysis confirmed the significance of intermolecular contacts in stabilizing the crystal lattice. Theoretical geometry optimizations using DFT methods demonstrated excellent agreement with experimental bond lengths and angles, thereby validating the reliability of the chosen computational levels for subsequent quantum chemical analyses. Quantum Theory of Atoms in Molecules (QTAIM) analysis was employed to investigate the nature of metal–ligand interactions, with variations based on the identity of the donor atom and the ligand’s protonation state. The biological potential of the complexes was evaluated through spectrofluorimetric titration and molecular docking. Eu-PLSC displayed stronger binding to human serum albumin (HSA), while Fe-PLSC showed higher affinity for calf thymus DNA (CT-DNA), driven by intercalation. Thermodynamic data confirmed spontaneous and enthalpy-driven interactions. These findings support using PLSC-based metal complexes as promising candidates for future biomedical applications, particularly in drug delivery and DNA targeting. Full article
Show Figures

Figure 1

28 pages, 9047 KiB  
Article
Synergistic Density Functional Theory and Molecular Dynamics Approach to Elucidate PNIPAM–Water Interaction Mechanisms
by Noor Alomari, Santiago Aparicio, Paul Meyer, Yi Zeng, Shuang Cui, Alberto Gutiérrez and Mert Atilhan
Materials 2025, 18(11), 2498; https://doi.org/10.3390/ma18112498 - 26 May 2025
Viewed by 666
Abstract
This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(N-isopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) [...] Read more.
This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(N-isopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) and electron localization function (ELF) analyses highlight the roles of hydrogen bonding and steric hindrance. MD simulations unveil temperature-dependent hydration dynamics, with structural transitions marked by changes in the radius of gyration (Rg) and the radial distribution function (RDF), aligning with DFT findings. Our work goes beyond prior studies by combining a DFT, QTAIM and MD simulations approach across different PNIPAM monomer-to-30mer structures. It introduces a systematic quantification of pseudo-saturation thresholds and explores water clustering dynamics with structural specificity, which have not been previously reported in the literature. These novel insights establish a more complete molecular-level picture of PNIPAM hydration behavior and temperature responsiveness, emphasizing the importance of amide hydrogen and carbonyl oxygen sites in hydrogen bonding, which weakens above the lower critical solution temperature (LCST), resulting in increased hydrophobicity and paving the way for understanding water sorption mechanisms, offering guidance for future applications such as dehumidification and atmospheric water harvesting. Full article
(This article belongs to the Special Issue Development and Research on Theoretical Chemistry in Materials)
Show Figures

Figure 1

19 pages, 2363 KiB  
Article
The Effect of Central Metal Ions (Dy, Er, Ni, and V) on the Structural and HSA-Binding Properties of 2-Hydroxy-3-methoxybenzaldehyde Semicarbazone Complexes
by Violeta Jevtovic, Jelena M. Živković, Aleksandra A. Rakić, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien and Dušan Dimić
Inorganics 2025, 13(3), 95; https://doi.org/10.3390/inorganics13030095 - 20 Mar 2025
Viewed by 738
Abstract
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were [...] Read more.
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were investigated. Four binuclear and one mononuclear complex were selected from the Cambridge Structural Database. The crystallographic structures and intermolecular interactions in the solid state were analyzed, and the effect of central metal ions was elucidated. The different contributions of the most numerous contacts were explained by examining additional ligands in the structure. Density functional theory (DFT) optimizations were performed for the selected complexes, and the applicability of different computational methods was discussed. The Quantum Theory of Atoms in Molecules (QTAIMs) approach was employed to identify and quantify interactions in nickel and vanadium complexes, highlighting the role of weak intermolecular interactions between ligands in stabilizing the overall structure. Molecular docking studies of the interaction between these complexes and Human Serum Albumin (HSA) demonstrated that all compounds bind within the active pocket of the protein. The overall size and presence of aromatic rings emerged as key factors in the formation of stabilizing interactions. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

15 pages, 2686 KiB  
Article
Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods
by Andrea Pietropolli Charmet, Paolo Stoppa, Alessandra De Lorenzi and Patrizia Canton
Symmetry 2025, 17(1), 140; https://doi.org/10.3390/sym17010140 - 18 Jan 2025
Viewed by 911
Abstract
The present work deals with the computational study of HC3N··HCN··H2C2-, (HC3N)2··H2C2-, and HC3N··(H2C2 [...] Read more.
The present work deals with the computational study of HC3N··HCN··H2C2-, (HC3N)2··H2C2-, and HC3N··(H2C2)2-mixed trimers. The different equilibrium structures of the different low-lying minima on the corresponding potential energy surface (PES) were accurately determined, and the relative stabilities were computed by extrapolation procedures to the complete basis set limit. For each mixed trimer, the non-covalent interactions ruling the structure of the most stable isomer were analyzed using the QTAIM (Quantum Theory of Atoms in Molecules) approach. Additional insights into these interactions were provided by the Natural Bond Orbital (NBO) and Symmetry-Adapted Perturbation Theory (SAPT) methods. These results can be used to assist further theoretical investigations and experimental studies on the formation of larger molecules potentially relevant in astrochemistry. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

24 pages, 6883 KiB  
Article
Organic Moiety on Sn(IV) Does Matter for In Vitro Mode of Action: nBu3Sn(IV) Compounds with Carboxylato N-Functionalized 2-Quinolones Induce Anoikis-like Cell Death in A375 Cells
by Marijana P. Kasalović, Sanja Jelača, Dušan Dimić, Danijela Maksimović-Ivanić, Verica V. Jevtić, Sanja Mijatović, Tobias Rüffer, Goran N. Kaluđerović and Nebojša Đ. Pantelić
Pharmaceutics 2024, 16(12), 1529; https://doi.org/10.3390/pharmaceutics16121529 - 28 Nov 2024
Cited by 1 | Viewed by 1110
Abstract
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) [...] Read more.
Objectives: New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid (HL1) and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid (HL2) have been synthesized. Methods: Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains. A theoretical structural analysis was performed by optimization employing B3LYP-D3BJ functional and 6-311++G(d,p)/def2-TZVP(Sn) basis sets for H, C, N, O/Sn, respectively. The interactions between tin(IV) and surrounding atoms were examined by QTAIM approach. The in vitro antiproliferative activity of the synthesized compounds was evaluated by MTT and CV assays versus MCF-7 (human breast adenocarcinoma), HCT116 (human colorectal carcinoma), A375 (human melanoma), 4T1 (mouse breast carcinoma), CT26 (mouse colon carcinoma) and B16 (mouse melanoma) tumor cell lines. Results: Both synthesized compounds (nBu3SnL1 and nBu3SnL2) exerted powerful micromolar IC50 cytotoxicity values and demonstrated high selectivity toward malignant cells. Both experimental drugs affected cell adhesion and induced anchorage independent apoptosis, a favorable type of cell death with an essential role in cancer dissemination prevention. The BSA-binding affinity of the obtained organotin compounds was followed by spectrofluorometric titration and molecular docking simulations. Conclusions: The tributyltin(IV) compounds selectively induce anoikis-like cell death in A375 cells, also highlighting the importance of the organic moiety on the tin(IV) ion in the mechanism of action. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Metal Complexes and Derived Materials)
Show Figures

Figure 1

18 pages, 3144 KiB  
Article
Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems
by Violeta Jevtovic, Aleksandra Rakić, Odeh A. O. Alshammari, Munirah Sulaiman Alhar, Tahani Alenezi, Violeta Rakic and Dušan Dimić
Inorganics 2024, 12(9), 251; https://doi.org/10.3390/inorganics12090251 - 17 Sep 2024
Cited by 3 | Viewed by 1521
Abstract
Nickel transition metal complexes have shown various biological activities that depend on the ligands and geometry. In this contribution, six Ni(II) nitrate complexes with pyridoxal-semi, thiosemi, and isothiosemicarbazone ligands were examined using theoretical chemistry methods. The structures of three previously reported complexes ([Ni(PLSC)(H [...] Read more.
Nickel transition metal complexes have shown various biological activities that depend on the ligands and geometry. In this contribution, six Ni(II) nitrate complexes with pyridoxal-semi, thiosemi, and isothiosemicarbazone ligands were examined using theoretical chemistry methods. The structures of three previously reported complexes ([Ni(PLSC)(H2O)3]∙2NO3, [Ni(PLTSC)2] ∙2NO3∙H2O, and [Ni(PLITSC)(H2O)3]∙2NO3) were investigated based on Hirshfeld surface analysis, and the most important stabilization interactions in the crystal structures were outlined. These structures were optimized at the B3LYP/6-311++G(d,p)(H,C,N,O,(S))/LanL2DZ(Ni) level of theory, and the applicability was checked by comparing theoretical and experimental bond lengths and angles. The same level of theory was applied for the optimization of three additional structures, ([Ni(PLSC)2]2+, [Ni(PLTSC)(H2O)3]2+, and [Ni(PLITSC)2]2+). The interactions between selected ligands and Ni(II) were examined using the Natural Bond Orbital (NBO) and Quantum Theory of Atoms in Molecules (QTAIM) approaches. Particular emphasis was placed on interactions between oxygen, sulfur, and nitrogen donor atoms and Ni(II). Human Serum Albumin (HSA) and the DNA-binding properties of these complex cations were assessed using molecular docking simulations. The presence of water molecules and various substituents in the thermodynamics of the processes was demonstrated. The results showed significant effects of structural parameters on the stability and reactivity towards important biomolecules. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Figure 1

19 pages, 2665 KiB  
Article
Exploration of Free Energy Surface of the Au10 Nanocluster at Finite Temperature
by Francisco Eduardo Rojas-González, César Castillo-Quevedo, Peter Ludwig Rodríguez-Kessler, José Oscar Carlos Jimenez-Halla, Alejandro Vásquez-Espinal, Rajagopal Dashinamoorthy Eithiraj, Manuel Cortez-Valadez and José Luis Cabellos
Molecules 2024, 29(14), 3374; https://doi.org/10.3390/molecules29143374 - 18 Jul 2024
Viewed by 1821
Abstract
The first step in comprehending the properties of Au10 clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero [...] Read more.
The first step in comprehending the properties of Au10 clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero temperature, leaving many properties unexplored. This study explored the potential and free energy surface of the neutral Au10 nanocluster at a finite temperature, employing a genetic algorithm coupled with DFT and nanothermodynamics. Furthermore, we computed the thermal population and infrared Boltzmann spectrum at a finite temperature and compared it with the validated experimental data. Moreover, we performed the chemical bonding analysis using the quantum theory of atoms in molecules (QTAIM) approach and the adaptive natural density partitioning method (AdNDP) to shed light on the bonding of Au atoms in the low-energy structures. In the calculations, we take into consideration the relativistic effects through the zero-order regular approximation (ZORA), the dispersion through Grimme’s dispersion with Becke–Johnson damping (D3BJ), and we employed nanothermodynamics to consider temperature contributions. Small Au clusters prefer the planar shape, and the transition from 2D to 3D could take place at atomic clusters consisting of ten atoms, which could be affected by temperature, relativistic effects, and dispersion. We analyzed the energetic ordering of structures calculated using DFT with ZORA and single-point energy calculation employing the DLPNO-CCSD(T) methodology. Our findings indicate that the planar lowest energy structure computed with DFT is not the lowest energy structure computed at the DLPN0-CCSD(T) level of theory. The computed thermal population indicates that the 2D elongated hexagon configuration strongly dominates at a temperature range of 50–800 K. Based on the thermal population, at a temperature of 100 K, the computed IR Boltzmann spectrum agrees with the experimental IR spectrum. The chemical bonding analysis on the lowest energy structure indicates that the cluster bond is due only to the electrons of the 6 s orbital, and the Au d orbitals do not participate in the bonding of this system. Full article
(This article belongs to the Special Issue Clusters—between Atoms and Nanoparticles)
Show Figures

Figure 1

13 pages, 5340 KiB  
Communication
Hybrid 2D Supramolecular Organic Frameworks (SOFs) Assembled by the Cooperative Action of Hydrogen and Halogen Bonding and π⋯π Stacking Interactions
by Sergey V. Baykov, Artem V. Semenov, Sofia I. Presnukhina, Marina V. Tarasenko, Anton A. Shetnev, Antonio Frontera, Vadim P. Boyarskiy and Vadim Yu. Kukushkin
Int. J. Mol. Sci. 2024, 25(4), 2062; https://doi.org/10.3390/ijms25042062 - 8 Feb 2024
Cited by 2 | Viewed by 2108
Abstract
The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N′-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A [...] Read more.
The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N′-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A‧½(1,2-DCE), cis-A‧½(1,2-DBE), and cis-A‧½C6H14) were grown from 1,2-dichloroethane (1,2-DCE), 1,2-dibromoethane (1,2-DBE), and a n-hexane/CHCl3 mixture and then characterized by X-ray crystallography. In their structures, cis-A is self-assembled to give a hybrid 2D supramolecular organic framework (SOF) formed by the cooperative action of O–H⋯O hydrogen bonding, Cl⋯O halogen bonding, and π⋯π stacking. The self-assembled cis-A divides the space between the 2D SOF layers into infinite hollow tunnels incorporating solvent molecules. The energy contribution of each noncovalent interaction to the occurrence of the 2D SOF was verified by several theoretical approaches, including MEP and combined QTAIM and NCIplot analyses. The consideration of the theoretical data proved that hydrogen bonding (approx. −15.2 kcal/mol) is the most important interaction, followed by π⋯π stacking (approx. −11.1 kcal/mol); meanwhile, the contribution of halogen bonding (approx. −3.6 kcal/mol) is the smallest among these interactions. The structure of the isomeric compound trans-A does not exhibit a 2D SOF architecture. It is assembled by the combined action of hydrogen bonding and π⋯π stacking, without the involvement of halogen bonds. A comparison of the cis-A structures with that of trans-A indicated that halogen bonding, although it has the lowest energy in cis-A-based cocrystals, plays a significant role in the crystal design of the hybrid 2D SOF. The majority of the reported porous halogen-bonded organic frameworks were assembled via iodine and bromine-based contacts, while chlorine-based systems—which, in our case, are structure-directing—were unknown before this study. Full article
(This article belongs to the Special Issue Bonding in Supramolecular Organic Assemblies)
Show Figures

Graphical abstract

46 pages, 18097 KiB  
Article
Favipiravir Analogues as Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase, Combined Quantum Chemical Modeling, Quantitative Structure–Property Relationship, and Molecular Docking Study
by Magdalena Latosińska and Jolanta Natalia Latosińska
Molecules 2024, 29(2), 441; https://doi.org/10.3390/molecules29020441 - 16 Jan 2024
Cited by 8 | Viewed by 2724
Abstract
Our study was motivated by the urgent need to develop or improve antivirals for effective therapy targeting RNA viruses. We hypothesized that analogues of favipiravir (FVP), an inhibitor of RNA-dependent RNA polymerase (RdRp), could provide more effective nucleic acid recognition and binding processes [...] Read more.
Our study was motivated by the urgent need to develop or improve antivirals for effective therapy targeting RNA viruses. We hypothesized that analogues of favipiravir (FVP), an inhibitor of RNA-dependent RNA polymerase (RdRp), could provide more effective nucleic acid recognition and binding processes while reducing side effects such as cardiotoxicity, hepatotoxicity, teratogenicity, and embryotoxicity. We proposed a set of FVP analogues together with their forms of triphosphate as new SARS-CoV-2 RdRp inhibitors. The main aim of our study was to investigate changes in the mechanism and binding capacity resulting from these modifications. Using three different approaches, QTAIM, QSPR, and MD, the differences in the reactivity, toxicity, binding efficiency, and ability to be incorporated by RdRp were assessed. Two new quantum chemical reactivity descriptors, the relative electro-donating and electro-accepting power, were defined and successfully applied. Moreover, a new quantitative method for comparing binding modes was developed based on mathematical metrics and an atypical radar plot. These methods provide deep insight into the set of desirable properties responsible for inhibiting RdRp, allowing ligands to be conveniently screened. The proposed modification of the FVP structure seems to improve its binding ability and enhance the productive mode of binding. In particular, two of the FVP analogues (the trifluoro- and cyano-) bind very strongly to the RNA template, RNA primer, cofactors, and RdRp, and thus may constitute a very good alternative to FVP. Full article
Show Figures

Graphical abstract

12 pages, 2827 KiB  
Article
Comparative Analysis of Nickel–Phosphine Complexes with Cumulated Double Bond Ligands: Structural Insights and Electronic Interactions via ETS-NOCV and QTAIM Approaches
by Tímea R. Kégl and Tamás Kégl
Molecules 2024, 29(2), 324; https://doi.org/10.3390/molecules29020324 - 9 Jan 2024
Viewed by 1842
Abstract
This study presents a comprehensive analysis of nickel–phosphine complexes, specifically Ni(PH3)2(OCCH2), Ni(PH3)2(H2CCO), Ni(PH3)2(H2CCCH2), Ni(PH3)2(NNCH2), and Ni(PH3 [...] Read more.
This study presents a comprehensive analysis of nickel–phosphine complexes, specifically Ni(PH3)2(OCCH2), Ni(PH3)2(H2CCO), Ni(PH3)2(H2CCCH2), Ni(PH3)2(NNCH2), and Ni(PH3)2(η1-H2CNN). Utilizing ETS-NOCV analysis, we explored orbital energy decomposition and the Hirshfeld charges of the ligands, providing insights into the electronic structures and donor–acceptor interactions within these complexes. The interactions in the ketene and allene complexes exhibit similar deformation densities and NOCV orbital shapes to those calculated for Ni(PH3)2(NNCH2), indicating consistent interaction characteristics across these complexes. The total interaction energy for all η2 complexes is observed to be over 60 kcal/mol, slightly exceeding that of the analogous carbon dioxide complex reported earlier. Furthermore, the study highlights the stronger back-donation as compared to donor interactions across all η2 complexes. This is further corroborated by Hirshfeld analysis, revealing the charge distribution dynamics within the ligand fragments. The research offers new perspectives on the electron distribution and interaction energies in nickel–phosphine complexes, contributing to a deeper understanding of their catalytic and reactive behaviors. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

21 pages, 2656 KiB  
Article
Implicit and Explicit Solvent Effects on the Global Reactivity and the Density Topological Parameters of the Preferred Conformers of Caespitate
by Andrea Moreno-Ceballos, María Eugenia Castro, Norma A. Caballero, Liliana Mammino and Francisco J. Melendez
Computation 2024, 12(1), 5; https://doi.org/10.3390/computation12010005 - 3 Jan 2024
Cited by 5 | Viewed by 3244
Abstract
In the search to cover the urgent need to combat infectious diseases, natural products have gained attention in recent years. The caespitate molecule, isolated from the plant Helichrysum caespititium of the Asteraceae family, is used in traditional African medicine. Caespitate is an acylphloroglucinol [...] Read more.
In the search to cover the urgent need to combat infectious diseases, natural products have gained attention in recent years. The caespitate molecule, isolated from the plant Helichrysum caespititium of the Asteraceae family, is used in traditional African medicine. Caespitate is an acylphloroglucinol with biological activity. Acylphloroglucinols have attracted attention for treating tuberculosis due to their structural characteristics, highlighting the stabilizing effect of their intramolecular hydrogen bonds (IHBs). In this work, a conformational search for the caespitate was performed using the MM method. Posteriorly, DFT calculations with the APFD functional were used for full optimization and vibrational frequencies, obtaining stable structures. A population analysis was performed to predict the distribution of the most probable conformers. The calculations were performed in the gas phase and solution using the implicit SMD model for water, chloroform, acetonitrile, and DMSO solvents. Additionally, the multiscale ONIOM QM1/QM2 model was used to simulate the explicit solvent. The implicit and explicit solvent effects were evaluated on the global reactivity indexes using the conceptual-DFT approach. In addition, the QTAIM approach was applied to analyze the properties of the IHBs of the most energetically and populated conformers. The obtained results indicated that the most stable and populated conformer is in the gas phase, and chloroform has an extended conformation. However, water, acetonitrile, and DMSO have a hairpin shape. The optimized structures are well preserved in explicit solvent and the interaction energies for the IHBs were lower in explicit than implicit solvents due to non-covalent interactions formed between the solvent molecules. Finally, both methodologies, with implicit and explicit solvents, were validated with 1H and 13C NMR experimental data. In both cases, the results agreed with the experimental data reported in the CDCl3 solvent. Full article
(This article belongs to the Special Issue Calculations in Solution)
Show Figures

Figure 1

14 pages, 4389 KiB  
Proceeding Paper
The Thiadiazole Ring (THD) Is a Building Block for Potential Inhibitors of the SARS-CoV-2 Main Protease (Mpro): Theoretical Look into the Structure, Reactivity, and Binding Profile of Three 1,3,4-THD Derivatives toward Mpro
by Dileep Chikkur Shanthakumar, Lohith Tumakuru Nagarajappa, Bienfait Kabuyaya Isamura, Mofeli Benedict Leoma, Kabelo Phuti Mokgopa, Sridhar Mandayam Anandalwar, Sahana Doreswamy and Srikantamurthy Ningaiah
Eng. Proc. 2023, 59(1), 94; https://doi.org/10.3390/engproc2023059094 - 21 Dec 2023
Viewed by 1319
Abstract
Thiadiazole (THD) derivatives are famous for their exceptional chemical properties and versatile biological activities. In this work, we report computational investigations of the structure, reactivity, and binding affinity of three 1,3,4-THD derivatives (THDs) toward the SARS-CoV-2 main protease (Mpro). Hirshfeld surface (HS) analyses [...] Read more.
Thiadiazole (THD) derivatives are famous for their exceptional chemical properties and versatile biological activities. In this work, we report computational investigations of the structure, reactivity, and binding affinity of three 1,3,4-THD derivatives (THDs) toward the SARS-CoV-2 main protease (Mpro). Hirshfeld surface (HS) analyses are carried out in conjunction with topological calculations in the context of the quantum theory of atoms in molecules (QTAIM) and reduced density gradient (RDG) to unravel the nature and magnitude of noncovalent interactions that contribute to maintaining these THDs. The three approaches consistently indicate that the titled THDs are mainly stabilized by weak intramolecular H…H, C-H…π, C-H…N, and N-H..H interactions in their monomeric forms, while their dimers also exhibit intermolecular π…π stacking and T-shaped contacts. In addition, Hirshfeld atomic charges, frontier molecular orbitals (FMOs), Fukui functions, and molecular electrostatic potential (MEP) reveal that the pyrrolic H atom (ring F) and the imidazole N atom (ring E) are the preferred binding sites for nucleophilic and electrophilic attacks, respectively. Finally, docking and molecular dynamics simulations demonstrate the remarkable binding profile of THDs toward the Mpro, which can be related to potential inhibitory activity. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

18 pages, 9037 KiB  
Article
A Holistic View of the Interactions between Electron-Deficient Systems: Clustering of Beryllium and Magnesium Hydrides and Halides
by Otilia Mó, M. Merced Montero-Campillo, Manuel Yáñez, Ibon Alkorta and José Elguero
Molecules 2023, 28(22), 7507; https://doi.org/10.3390/molecules28227507 - 9 Nov 2023
Cited by 2 | Viewed by 1544
Abstract
In the search for common bonding patterns in pure and mixed clusters of beryllium and magnesium derivatives, the most stable dimers and trimers involving BeX2 and MgX2 (X = H, F, Cl) have been studied in the gas phase using B3LYP [...] Read more.
In the search for common bonding patterns in pure and mixed clusters of beryllium and magnesium derivatives, the most stable dimers and trimers involving BeX2 and MgX2 (X = H, F, Cl) have been studied in the gas phase using B3LYP and M06-2X DFT methods and the G4 ab initio composite procedure. To obtain some insight into their structure, stability, and bonding characteristics, we have used two different energy decomposition formalisms, namely MBIE and LMO-EDA, in parallel with the analysis of the electron density with the help of QTAIM, ELF, NCIPLOT, and AdNDP approaches. Some interesting differences are already observed in the dimers, where the stability sequence observed for the hydrides differs entirely from that of the fluorides and chlorides. Trimers also show some peculiarities associated with the presence of compact trigonal cyclic structures that compete in stability with the more conventional hexagonal and linear forms. As observed for dimers, the stability of the trimers changes significantly from hydrides to fluorides or chlorides. Although some of these clusters were previously explored in the literature, the novelty of this work is to provide a holistic approach to the entire series of compounds by using chemical bonding tools, allowing us to understand the stability trends in detail and providing insights for a significant number of new, unexplored structures. Full article
(This article belongs to the Special Issue Computational Chemistry Insights into Molecular Interactions)
Show Figures

Graphical abstract

14 pages, 2480 KiB  
Article
Theoretical Modeling of B12N12 Nanocage for the Effective Removal of Paracetamol from Drinking Water
by Kainat, Sana Gul, Qaisar Ali, Momin Khan, Munir Ur Rehman, Mohammad Ibrahim, Abdullah F. AlAsmari, Fawaz Alasmari and Metab Alharbi
Computation 2023, 11(9), 183; https://doi.org/10.3390/computation11090183 - 14 Sep 2023
Cited by 10 | Viewed by 2492
Abstract
In our current investigation, we employed a B12N12 nanocage to extract paracetamol from water utilizing a DFT approach. We explored three distinct positions of paracetamol concerning its interaction with the B12N12 nanocage, designated as complex-1 (BNP-1), complex-2 [...] Read more.
In our current investigation, we employed a B12N12 nanocage to extract paracetamol from water utilizing a DFT approach. We explored three distinct positions of paracetamol concerning its interaction with the B12N12 nanocage, designated as complex-1 (BNP-1), complex-2 (BNP-2), and complex-3 (BNP-3), under both aqueous and gaseous conditions. The optimized bond distances exhibited strong interactions between the nanocage and the paracetamol drug in BNP-1 and BNP-3. Notably, BNP-1 and BNP-3 displayed substantial chemisorption energies, measuring at −27.94 and −15.31 kcal/mol in the gas phase and −30.69 and −15.60 kcal/mol in the aqueous medium, respectively. In contrast, BNP-2 displayed a physiosorbed nature, indicating weaker interactions with values of −6.97 kcal/mol in the gas phase and −4.98 kcal/mol in the aqueous medium. Our analysis of charge transfer revealed significant charge transfer between the B12N12 nanocage and paracetamol. Additionally, a Quantum Theory of Atoms in Molecules (QTAIM) analysis confirmed that the O─B bond within BNP-1 and BNP-3 exhibited a strong covalent and partial bond, encompassing both covalent and electrostatic interactions. In contrast, the H─N bond within BNP-2 displayed a weaker hydrogen bond. Further investigation through Noncovalent Interaction (NCI) and Reduced Density Gradient (RDG) analyses reinforced the presence of strong interactions in BNP-1 and BNP-3, while indicating weaker interactions in BNP-2. The decrease in the electronic band gap (Eg) demonstrated the potential of B12N12 as a promising adsorbent for paracetamol. Examining thermodynamics, the negative values of ∆H (enthalpy change) and ∆G (Gibbs free energy change) pointed out the exothermic and spontaneous nature of the adsorption process. Overall, our study underscores the potential of B12N12 as an effective adsorbent for eliminating paracetamol from wastewater. Full article
Show Figures

Graphical abstract

Back to TopTop