Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = QED effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5285 KiB  
Article
Integrative Genomic and in Silico Analysis Reveals Mitochondrially Encoded Cytochrome C Oxidase III (MT—CO3) Overexpression and Potential Neem-Derived Inhibitors in Breast Cancer
by Oluwaseun E. Agboola, Samuel S. Agboola, Oluwatoyin M. Oyinloye, Abimbola E. Fadugba, Esther Y. Omolayo, Zainab A. Ayinla, Foluso O. Osunsanmi, Oluranti E. Olaiya, Folake O. Olojo, Basiru O. Ajiboye and Babatunji E. Oyinloye
Genes 2025, 16(5), 546; https://doi.org/10.3390/genes16050546 - 30 Apr 2025
Viewed by 640
Abstract
Background: The increasing global incidence of breast cancer calls for the identification of new therapeutic targets and the assessment of possible neem-derived inhibitors by means of computational modeling and integrated genomic research. Methods: Originally looking at 59,424 genes throughout 42 samples, we investigated [...] Read more.
Background: The increasing global incidence of breast cancer calls for the identification of new therapeutic targets and the assessment of possible neem-derived inhibitors by means of computational modeling and integrated genomic research. Methods: Originally looking at 59,424 genes throughout 42 samples, we investigated gene expression data from The Cancer Genome Atlas—Breast Cancer (TCGA-BRCA) dataset. We chose 286 genes for thorough investigation following strict screening for consistent expression. R’s limma package was used in differential expression analysis. The leading candidate’s protein modeling was done with Swiss-ADME and Discovery Studio. Molecular docking studies, including 132 neem compounds, were conducted utilizing AutoDock Vina. Results: Among the 286 examined, mitochondrially encoded cytochrome C oxidase III (MT—CO3) turned out to be the most greatly overexpressed gene, showing consistent elevation across all breast cancer samples. Protein modeling revealed a substantial hydrophobic pocket (volume: 627.3 Å3) inside the structure of MT—CO3. Docking investigations showed five interesting neem-derived inhibitors: 7-benzoylnimbocinol, nimolicinol, melianodiol, isonimocinolide, and stigmasterol. Strong binding affinities ranging from −9.2 to −11.5 kcal/mol and diverse interactions with MT—CO3, mostly involving the residues Phe214, Arg221, and Trp58, these molecules displayed. With hydrophobic interactions dominant across all chemicals, fragment contribution analysis revealed that scaffold percentage greatly influences binding effectiveness. Stigmasterol revealed greater drug-likeness (QED = 0.79) despite minimal interaction variety, while 7-benzoylnimbocinol presented the best-balanced physicochemical profile. Conclusion: Connecting traditional medicine with current genomics and computational biology, this work proposes a methodology for structure-guided drug design and development using neem-derived chemicals and finds MT—CO3 as a potential therapeutic target for breast cancer. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 6001 KiB  
Article
Numerical Evaluation of a Soliton Pair with Long-Range Interaction
by Joachim Wabnig, Josef Resch, Dominik Theuerkauf, Fabian Anmasser and Manfried Faber
Universe 2025, 11(4), 113; https://doi.org/10.3390/universe11040113 - 30 Mar 2025
Viewed by 264
Abstract
We determine the interaction energy of electric monopole pairs, sources and sinks of a Coulombic field. These charges are represented by topological solitons of finite size and mass, described by a field of SO(3) rotations without any divergences. Such monopoles feel, at large [...] Read more.
We determine the interaction energy of electric monopole pairs, sources and sinks of a Coulombic field. These charges are represented by topological solitons of finite size and mass, described by a field of SO(3) rotations without any divergences. Such monopoles feel, at large distances, a pure Coulombic interaction. A crucial test for the physical interpretation of these monopoles is a classical running of the charge at small distances, expected from the finite soliton size. We investigate in detail a first observation of the increase in the effective charge at distances of a few soliton radii in this purely Coulombic system and compare it with the running of the coupling in perturbative QED. Full article
(This article belongs to the Special Issue Quantum Field Theory, 2nd Edition)
Show Figures

Figure 1

16 pages, 328 KiB  
Review
Dynamical Casimir Effect: 55 Years Later
by Viktor V. Dodonov
Physics 2025, 7(2), 10; https://doi.org/10.3390/physics7020010 - 29 Mar 2025
Viewed by 5270
Abstract
The paper represents a brief review of the publications in 2020 to 2024 related to the phenomena combined under the name of dynamical Casimir effect. Full article
13 pages, 280 KiB  
Article
Intervention to Prevent Recurrent Intestinal Parasitic Infections in People Living with HIV in Selected Parts of Eastern Cape, South Africa
by Ifeoma Anozie, Mojisola Clara Hosu, Teke Apalata and Dominic T. Abaver
Trop. Med. Infect. Dis. 2024, 9(12), 289; https://doi.org/10.3390/tropicalmed9120289 - 27 Nov 2024
Viewed by 1147
Abstract
Interactions between parasites and hosts are not fully understood, though the dynamic pattern of infection and reinfection in humans varies with different demographic variables and behavioral changes. A community-based non-equivalent control group post-test-only design, an aspect of quasi-experimental design (QED), was carried out [...] Read more.
Interactions between parasites and hosts are not fully understood, though the dynamic pattern of infection and reinfection in humans varies with different demographic variables and behavioral changes. A community-based non-equivalent control group post-test-only design, an aspect of quasi-experimental design (QED), was carried out between March 2019 and February 2020. For the extraction of data from respondents, structural questionnaires were filled. Their CD4 count and viral load from the database of the National Health Laboratory Services, Mthatha were recorded. The method applied for the identification of intestinal parasites was a direct examination of the stool and the use of concentration methods. The post-test analysis showed that the intervention sites that received THEdS (Treatment, Health education, and Sanitation) bundle had a cure proportion of 60% and a re-infection proportion of 40%. The post-test results on control sites (treatment-only group) showed that the cure proportion was 51.4% and the re-infection proportion was 48.6%. The viral load significantly reduced from 377 to 44 copies/mL with a significant increment in CD4 count from 244 to 573 (cells µL) and (p-value) = 0.002. The combination of THEdS is an effective measure to reduce infection and reinfection of intestinal parasites. The THEdS bundle is a sustainable control and prevention method for the control of helminthes and protozoan associated with unsanitary environment and poor personal hygiene among immune-compromised individuals like HIV/AIDS patients. Full article
19 pages, 3381 KiB  
Review
TIME REFRACTION and SPACETIME OPTICS
by José Tito Mendonça
Symmetry 2024, 16(11), 1548; https://doi.org/10.3390/sym16111548 - 19 Nov 2024
Cited by 6 | Viewed by 1991
Abstract
A review of recent advances in spacetime optics is given, with special emphasis on time refraction. This is a basic optical process, occurring at a temporal discontinuity or temporal boundary, which is able to produce various different effects, such as frequency shifts, energy [...] Read more.
A review of recent advances in spacetime optics is given, with special emphasis on time refraction. This is a basic optical process, occurring at a temporal discontinuity or temporal boundary, which is able to produce various different effects, such as frequency shifts, energy amplification, time reflection, and photon emission. If, instead of a single discontinuity, we have two reverse temporal boundaries, we can form a temporal beam splitter, where temporal interferences can occur. It will also be shown that, in the presence of an axis of symmetry, such as a magnetic field, the temporal beam splitter can induce a rotation of the initial polarization state, similar to a Faraday rotation. Recent work on time crystals, superluminal fronts, and superfluid light will be reviewed. Time gates based on spacetime optical effects will be discussed. We also mention recent work on optical metamaterials. Finally, the quantum properties of time refraction, which imply the emission of photon from vacuum, are considered, while similar problems in high-energy QED associated with electron–positron pairs are briefly mentioned. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry: Feature Review Papers 2024)
Show Figures

Figure 1

10 pages, 280 KiB  
Review
Pseudo-Quantum Electrodynamics: 30 Years of Reduced QED
by Eduardo C. Marino, Leandro O. Nascimento, Van Sérgio Alves and Danilo T. Alves
Entropy 2024, 26(11), 925; https://doi.org/10.3390/e26110925 - 30 Oct 2024
Cited by 1 | Viewed by 1148
Abstract
Charged quasiparticles, which are constrained to move on a plane, interact by means of electromagnetic (EM) fields which are not subject to this constraint, living, thus, in three-dimensional space. We have, consequently, a hybrid situation where the particles of a given system and [...] Read more.
Charged quasiparticles, which are constrained to move on a plane, interact by means of electromagnetic (EM) fields which are not subject to this constraint, living, thus, in three-dimensional space. We have, consequently, a hybrid situation where the particles of a given system and the EM fields (through which they interact) live in different dimensions. Pseudo-Quantum Electrodynamics (PQED) is a U(1) gauge field theory that, despite being strictly formulated in two-dimensional space, precisely describes the real EM interaction of charged particles confined to a plane. PQED is completely different from QED(2 + 1), namely, Quantum Electrodynamics of a planar gauge field. It produces, for instance, the correct 1/r Coulomb potential between static charges, whereas QED(2 + 1) produces lnr potential. In spite of possessing a nonlocal Lagrangian, it has been shown that PQED preserves both causality and unitarity, as well as the Huygens principle. PQED has been applied successfully to describe the EM interaction of numerous systems containing charged particles constrained to move on a plane. Among these are p-electrons in graphene, silicene, and transition-metal dichalcogenides; systems exhibiting the Valley Quantum Hall Effect; systems inside cavities; and bosonization in (2 + 1)D. Here, we present a review article on PQED (also known as Reduced Quantum Electrodynamics). Full article
(This article belongs to the Special Issue PQED: 30 Years of Reduced Quantum Electrodynamics)
24 pages, 1486 KiB  
Article
Finite Nuclear Size Effect on the Relativistic Hyperfine Splittings of 2s and 2p Excited States of Hydrogen-like Atoms
by Katharina Lorena Franzke and Uwe Gerstmann
Foundations 2024, 4(4), 513-536; https://doi.org/10.3390/foundations4040034 - 1 Oct 2024
Cited by 2 | Viewed by 2142
Abstract
Hyperfine splittings play an important role in quantum information and spintronics applications. They allow for the readout of the spin qubits, while at the same time providing the dominant mechanism for the detrimental spin decoherence. Their exact knowledge is thus of prior relevance. [...] Read more.
Hyperfine splittings play an important role in quantum information and spintronics applications. They allow for the readout of the spin qubits, while at the same time providing the dominant mechanism for the detrimental spin decoherence. Their exact knowledge is thus of prior relevance. In this work, we analytically investigate the relativistic effects on the hyperfine splittings of hydrogen-like atoms, including finite-size effects of the nucleis’ structure. We start from exact solutions of Dirac’s equation using different nuclear models, where the nucleus is approximated by (i) a point charge (Coulomb potential), (ii) a homogeneously charged full sphere, and (iii) a homogeneously charged spherical shell. Equivalent modelling has been done for the distribution of the nuclear magnetic moment. For the 1s ground state and 2s excited state of the one-electron systems H1, H2, H3, and He+3, the calculated finite-size related hyperfine shifts are quite similar for the different structure models and in excellent agreement with those estimated by comparing QED and experiment. This holds also in a simplified approach where relativistic wave functions from a Coulomb potential combined with spherical-shell distributed nuclear magnetic moments promises an improved treatment without the need for an explicit solution of Dirac’s equation within the nuclear core. Larger differences between different nuclear structure models are found in the case of the anisotropic 2p3/2 orbitals of hydrogen, rendering these excited states as promising reference systems for exploring the proton structure. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

23 pages, 940 KiB  
Review
Overview of BK(∗)ℓℓ Theoretical Calculations and Uncertainties
by Farvah Mahmoudi and Yann Monceaux
Symmetry 2024, 16(8), 1006; https://doi.org/10.3390/sym16081006 - 7 Aug 2024
Cited by 6 | Viewed by 1220
Abstract
The search for New Physics (NP) beyond the Standard Model (SM) has been a central focus of particle physics, including in the context of B-meson decays involving bs transitions. These transitions, mediated by flavour-changing neutral currents, are highly [...] Read more.
The search for New Physics (NP) beyond the Standard Model (SM) has been a central focus of particle physics, including in the context of B-meson decays involving bs transitions. These transitions, mediated by flavour-changing neutral currents, are highly sensitive to small NP effects due to their suppression in the SM. While direct searches at colliders have not yet led to NP discoveries, indirect probes through semi-leptonic decays have revealed anomalies in observables such as the branching fraction B(BKμμ) and the angular observable P5(BKμμ). In order to assess the observed tensions, it is essential to ensure an accurate SM prediction. In this review, we examine the theoretical basis of the BK() decays, addressing in particular key uncertainties arising from local and non-local form factors. We also discuss the impact of QED corrections to the Wilson coefficients, as well as the effect of CKM matrix elements on the predictions and the tension with the experimental measurements. We discuss the most recent results, highlighting ongoing efforts to refine predictions and to constrain potential signs of NP in these critical decay processes. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

16 pages, 329 KiB  
Article
The Effective Potential of Scalar Pseudo-Quantum Electrodynamics in (2 + 1)D
by Leandro O. Nascimento, Carlos A. P. C. Junior and José R. Santos
Condens. Matter 2024, 9(2), 25; https://doi.org/10.3390/condmat9020025 - 30 May 2024
Viewed by 1702
Abstract
The description of the electron–electron interactions in two-dimensional materials has a dimensional mismatch, where electrons live in (2 + 1)D while photons propagate in (3 + 1)D. In order to define an action in (2 + 1)D, one may perform a dimensional reduction [...] Read more.
The description of the electron–electron interactions in two-dimensional materials has a dimensional mismatch, where electrons live in (2 + 1)D while photons propagate in (3 + 1)D. In order to define an action in (2 + 1)D, one may perform a dimensional reduction of quantum electrodynamics in (3 + 1)D (QED4) into pseudo-quantum electrodynamics (PQED). The main difference between this model and QED4 is the presence of a pseudo-differential operator in the Maxwell term. However, besides the Coulomb repulsion, electrons in a material are subjected to several microscopic interactions, which are inherent in a many-body system. These are expected to reduce the range of the Coulomb potential, leading to a short-range interaction. Here, we consider the coupling to a scalar field in PQED for explaining such a mechanism, which resembles the spontaneous symmetry breaking (SSB) in Abelian gauge theories. In order to do so, we consider two cases: (i) by coupling the quantum electrodynamics to a Higgs field in (3 + 1)D and, thereafter, performing the dimensional reduction; and (ii) by coupling a Higgs field to the gauge field in PQED and, subsequently, calculating its effective potential. In case (i), we obtain a model describing electrons interacting through the Yukawa potential and, in case (ii), we show that SSB does not occur at one-loop approximation. The relevance of the model for describing electronic interactions in two-dimensional materials is also addressed. Full article
(This article belongs to the Special Issue PQED: 30 Years of Reduced Quantum Electrodynamics)
Show Figures

Figure 1

23 pages, 4590 KiB  
Review
What Is the “Hydrogen Bond”? A QFT-QED Perspective
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2024, 25(7), 3846; https://doi.org/10.3390/ijms25073846 - 29 Mar 2024
Cited by 11 | Viewed by 2022
Abstract
In this paper we would like to highlight the problems of conceiving the “Hydrogen Bond” (HB) as a real short-range, directional, electrostatic, attractive interaction and to reframe its nature through the non-approximated view of condensed matter offered by a Quantum Electro-Dynamic (QED) perspective. [...] Read more.
In this paper we would like to highlight the problems of conceiving the “Hydrogen Bond” (HB) as a real short-range, directional, electrostatic, attractive interaction and to reframe its nature through the non-approximated view of condensed matter offered by a Quantum Electro-Dynamic (QED) perspective. We focus our attention on water, as the paramount case to show the effectiveness of this 40-year-old theoretical background, which represents water as a two-fluid system (where one of the two phases is coherent). The HB turns out to be the result of the electromagnetic field gradient in the coherent phase of water, whose vacuum level is lower than in the non-coherent (gas-like) fraction. In this way, the HB can be properly considered, i.e., no longer as a “dipolar force” between molecules, but as the phenomenological effect of their collective thermodynamic tendency to occupy a lower ground state, compatible with temperature and pressure. This perspective allows to explain many “anomalous” behaviours of water and to understand why the calculated energy associated with the HB should change when considering two molecules (water-dimer), or the liquid state, or the different types of ice. The appearance of a condensed, liquid, phase at room temperature is indeed the consequence of the boson condensation as described in the context of spontaneous symmetry breaking (SSB). For a more realistic and authentic description of water, condensed matter and living systems, the transition from a still semi-classical Quantum Mechanical (QM) view in the first quantization to a Quantum Field Theory (QFT) view embedded in the second quantization is advocated. Full article
Show Figures

Graphical abstract

27 pages, 2182 KiB  
Review
X-ray Polarization from Magnetar Sources
by Roberto Taverna  and Roberto Turolla 
Galaxies 2024, 12(1), 6; https://doi.org/10.3390/galaxies12010006 - 10 Feb 2024
Cited by 13 | Viewed by 3120
Abstract
The launch of the IXPE telescope in late 2021 finally made polarization measurements in the 2–8keV band a reality, more than 40 years after the pioneering observations of the OSO-8 satellite. In the first two years of operations, IXPE targeted more [...] Read more.
The launch of the IXPE telescope in late 2021 finally made polarization measurements in the 2–8keV band a reality, more than 40 years after the pioneering observations of the OSO-8 satellite. In the first two years of operations, IXPE targeted more than 60 sources, including four magnetars, neutron stars with magnetic fields in the petaGauss range. In this paper we summarize the IXPE main findings and discuss their implications for the physics of ultra-magnetized neutron stars. Polarimetric observations confirmed theoretical predictions, according to which X-ray radiation from magnetar sources is highly polarized, up to ≈80%, the highest value detected so far. This provides an independent confirmation that magnetars are indeed endowed with a super-strong magnetic field and that the twisted magnetosphere scenario is the most likely explanation for their soft X-ray emission. Polarization measurements allowed us to probe the physical conditions of the star’s outermost layers, showing that the cooler surface regions are in a condensed state, with no atmosphere on top. Although no smoking-gun of vacuum QED effects was found, the phase-dependent behavior of the polarization angle strongly hints that vacuum birefringence is indeed at work in magnetar magnetospheres. Full article
(This article belongs to the Special Issue The 10th Anniversary of Galaxies: The Astrophysics of Neutron Stars)
Show Figures

Figure 1

32 pages, 5109 KiB  
Review
Quantum Electrodynamics Coherence and Hormesis: Foundations of Quantum Biology
by Pierre Madl and Paolo Renati
Int. J. Mol. Sci. 2023, 24(18), 14003; https://doi.org/10.3390/ijms241814003 - 12 Sep 2023
Cited by 10 | Viewed by 4089
Abstract
Background: “Quantum biology” (QB) is a promising theoretical approach addressing questions about how living systems are able to unfold dynamics that cannot be solved on a chemical basis or seem to violate some fundamental laws (e.g., thermodynamic yield, morphogenesis, adaptation, autopoiesis, memory, teleology, [...] Read more.
Background: “Quantum biology” (QB) is a promising theoretical approach addressing questions about how living systems are able to unfold dynamics that cannot be solved on a chemical basis or seem to violate some fundamental laws (e.g., thermodynamic yield, morphogenesis, adaptation, autopoiesis, memory, teleology, biosemiotics). Current “quantum” approaches in biology are still very basic and “corpuscular”, as these rely on a semi-classical and approximated view. We review important considerations of theory and experiments of the recent past in the field of condensed matter, water, physics of living systems, and biochemistry to join them by creating a consistent picture applicable for life sciences. Within quantum field theory (QFT), the field (also in the matter field) has the primacy whereby the particle, or “quantum”, is a derivative of it. The phase of the oscillation and not the number of quanta is the most important observable of the system. Thermodynamics of open systems, symmetry breaking, fractals, and quantum electrodynamics (QED) provide a consistent picture of condensed matter, liquid water, and living matter. Coherence, resonance-driven biochemistry, and ion cyclotron resonance (Liboff–Zhadin effect) emerge as crucial hormetic phenomena. We offer a paradigmatic approach when dealing with living systems in order to enrich and ultimately better understand the implications of current research activities in the field of life sciences. Full article
Show Figures

Graphical abstract

17 pages, 368 KiB  
Article
Reduced QED with Few Planes and Fermion Gap Generation
by Eduard V. Gorbar, Valery P. Gusynin and Maxim R. Parymuda
Entropy 2023, 25(9), 1317; https://doi.org/10.3390/e25091317 - 9 Sep 2023
Cited by 3 | Viewed by 1272
Abstract
The formalism of reduced quantum electrodynamics is generalized to the case of heterostructures composed of a few atomically thick layers, and the corresponding effective (2+1)-dimensional gauge theory is formulated. This dimensionally reduced theory describes charged fermions confined to N planes and contains N [...] Read more.
The formalism of reduced quantum electrodynamics is generalized to the case of heterostructures composed of a few atomically thick layers, and the corresponding effective (2+1)-dimensional gauge theory is formulated. This dimensionally reduced theory describes charged fermions confined to N planes and contains N vector fields with Maxwell’s action modified by non-local form factors whose explicit form is determined. Taking into account the polarization function, the explicit formulae for the screened electromagnetic interaction are presented in the case of two and three layers. For a heterostructure with two atomically thick layers and charged fermions described by the massless Dirac equation, the dynamical gap generation of the excitonic type is studied. It is found that additional screening due to the second layer increases the value of the critical coupling constant for the gap generation compared to that in graphene. Full article
(This article belongs to the Special Issue PQED: 30 Years of Reduced Quantum Electrodynamics)
Show Figures

Figure 1

20 pages, 3093 KiB  
Article
Ancilla-Assisted Generation of Photons from Vacuum via Time-Modulation of Extracavity Qubit
by Marcos V. S. de Paula, William W. T. Sinesio and Alexandre V. Dodonov
Entropy 2023, 25(6), 901; https://doi.org/10.3390/e25060901 - 6 Jun 2023
Cited by 3 | Viewed by 1974
Abstract
We propose a scheme for the generation of photons from a vacuum via time-modulation of a quantum system indirectly coupled to the cavity field through some ancilla quantum subsystem. We consider the simplest case when the modulation is applied to an artificial two-level [...] Read more.
We propose a scheme for the generation of photons from a vacuum via time-modulation of a quantum system indirectly coupled to the cavity field through some ancilla quantum subsystem. We consider the simplest case when the modulation is applied to an artificial two-level atom (we call ‘t-qubit’, that can be located even outside the cavity), while the ancilla is a stationary qubit coupled via the dipole interaction both to the cavity and t-qubit. We find that tripartite entangled states with a small number of photons can be generated from the system ground state under resonant modulations, even when the t-qubit is far detuned from both the ancilla and the cavity, provided its bare and modulation frequencies are properly adjusted. We attest our approximate analytic results by numeric simulations and show that photon generation from vacuum persists in the presence of common dissipation mechanisms. Full article
Show Figures

Figure 1

17 pages, 1925 KiB  
Article
Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur
by Pierre Madl, Roberto Germano, Alberto Tedeschi and Herbert Lettner
Int. J. Mol. Sci. 2023, 24(4), 4099; https://doi.org/10.3390/ijms24044099 - 17 Feb 2023
Cited by 1 | Viewed by 2509
Abstract
Malassezia spp. are dimorphic, lipophilic fungi that are part of the normal human cutaneous commensal microbiome. However, under adverse conditions, these fungi can be involved in various cutaneous diseases. In this study, we analysed the effect of ultra-weak fractal electromagnetic (uwf-EMF) field exposure [...] Read more.
Malassezia spp. are dimorphic, lipophilic fungi that are part of the normal human cutaneous commensal microbiome. However, under adverse conditions, these fungi can be involved in various cutaneous diseases. In this study, we analysed the effect of ultra-weak fractal electromagnetic (uwf-EMF) field exposure (12.6 nT covering 0.5 to 20 kHz) on the growth dynamics and invasiveness of M. furfur. The ability to modulate inflammation and innate immunity in normal human keratinocytes was also investigated. Using a microbiological assay, it was possible to demonstrate that, under the influence of uwf-EMF, the invasiveness of M. furfur was drastically reduced (d = 2.456, p < 0.001), while at the same time, its growth dynamic after 72 h having been in contact with HaCaT cells both without (d = 0.211, p = 0.390) and with (d = 0.118, p = 0.438) uwf-EM exposure, were hardly affected. Real-time PCR analysis demonstrated that a uwf-EMF exposure is able to modulate human-β-defensin-2 (hBD-2) in treated keratinocytes and at the same time reduce the expression of proinflammatory cytokines in human keratinocytes. The findings suggest that the underlying principle of action is hormetic in nature and that this method might be an adjunctive therapeutic tool to modulate the inflammatory properties of Malassezia in related cutaneous diseases. The underlying principle of action becomes understandable by means of quantum electrodynamics (QED). Given that living systems consist mainly of water and within the framework of QED, this water, as a biphasic system, provides the basis for electromagnetic coupling. The oscillatory properties of water dipoles modulated by weak electromagnetic stimuli not only affect biochemical processes, but also pave the way for a more general understanding of the observed nonthermal effects in biota. Full article
Show Figures

Graphical abstract

Back to TopTop