Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = Po river delta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5180 KB  
Article
Establishing a Geological Knowledge Base for Braided River Deltas Using Google Earth
by Xiaoyu Yu, Mengjiao Dou and Shaohua Li
Appl. Sci. 2025, 15(11), 6186; https://doi.org/10.3390/app15116186 - 30 May 2025
Viewed by 677
Abstract
This study quantifies morphological features of global braided river deltas using Google Earth imagery, analyzing eight systems (e.g., Yukon–Kuskokwim, Poyang Lake, Lena River deltas). Methods include listwise deletion for missing data (retaining 87% of Poyang Lake delta samples) and sensitivity analysis (threshold changes [...] Read more.
This study quantifies morphological features of global braided river deltas using Google Earth imagery, analyzing eight systems (e.g., Yukon–Kuskokwim, Poyang Lake, Lena River deltas). Methods include listwise deletion for missing data (retaining 87% of Poyang Lake delta samples) and sensitivity analysis (threshold changes ≤2.4%). Nonparametric tests (Kruskal–Wallis, H = 12.73, p = 0.005) show significant differences in bifurcation angles across deltas, with the wave-dominated Po River (59.2°) having an 18% higher 80% threshold the than tide-dominated Poyang Lake (50.1°, p = 0.003). Key quantitative results include the following: 1.65% of bifurcation angles cluster at 30–60°, differing from fan deltas (p < 0.01); wavelength–amplitude relationships are nonlinear (R2 = 0.537–0.913), with positive slopes indicating a high sediment supply (e.g., Yukon–Kuskokwim) and negative slope channel avulsion (e.g., Poyang Lake); bifurcation spacing correlates with the sediment supply—54% of Poyang Lake spacings < 2000 m (dense networks) vs. 80% of Lena River spacings < 15,000 m (stable channels). The resulting dataset enables global, remote-sensing-based comparisons, providing thresholds for sedimentary modeling and reservoir prediction. Moderate missing data (≤13%) minimally affect results, though high-missingness cases need further analysis. This study replaces empirical rules with statistical validation, showing that morphometric differences reflect depositional dynamics, which are critical for reservoir heterogeneity assessments. Full article
Show Figures

Figure 1

27 pages, 1953 KB  
Article
Surface Water Contaminants (Metals, Nutrients, Pharmaceutics, Endocrine Disruptors, Bacteria) in the Danube River and Black Sea Basins, SE Romania
by Antoaneta Ene, Liliana Teodorof, Carmen Lidia Chiţescu, Adrian Burada, Cristina Despina, Gabriela Elena Bahrim, Aida Mihaela Vasile, Daniela Seceleanu-Odor and Elena Enachi
Appl. Sci. 2025, 15(9), 5009; https://doi.org/10.3390/app15095009 - 30 Apr 2025
Cited by 2 | Viewed by 1965
Abstract
The assessment of surface water quality of the Danube River and Black Sea was performed taking into account the amounts determined for heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn), nutrients (compounds of N and P, chlorophyll a), emerging contaminants [...] Read more.
The assessment of surface water quality of the Danube River and Black Sea was performed taking into account the amounts determined for heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn), nutrients (compounds of N and P, chlorophyll a), emerging contaminants (CECs) (pharmaceutics and endocrine disruptors—19 quantified compounds, out of 30 targeted chemicals), heterotrophic bacteria and total coliforms, in thirty-two locations from the lower Danube sector (starting with km 375 up to the river mouths), the Danube Delta Biosphere Reserve (three Danube branches—Chilia, Sulina, and Sf. Gheorghe) and the Romanian coastal area of the Black Sea. The heavy metals levels were found in the following ranges: 3.0–6.5 μg/L As; 0.51–1.32 μg/L Cd; 21.6–61.2 μg/L Cr; 10.2–28.6 μg/L Cu; 196–351 μg/L Mn; 12.3–47.67 μg/L Ni; 5.2–15.5 μg/L Pb; 44–74 μg/L Zn; 0.01–0.08 μg/L Hg. The nutrient concentrations vary in the intervals: 0.04–0.45 mg/L N-NH4; 0.01–0.06 mg/L N-NO2; 0.07–1.9 mg/L N-NO3; 1.0–3.2 mg/L N total; 0.01–0.05 mg/L P-PO4; 0.02–0.27 mg/L P total, and 0.8–17.3 μg/L chlorophyll a. The concentrations of CECs from various classes (sulfamethoxazole, trimethoprim, ciprofloxacin, flumequine, amoxicillin, cefuroxime, dicloxacillin, carbamazepine, pravastatin, erythromycin, piroxicam, ketoprofen, diclofenac, naproxen, enilconazole (imazalil), clotrimazole, drospirenone, 17α-ethinylestradiol, and bisphenol A) were compared with values reported for European rivers and the Danube River water in various river sectors. The highest detection frequencies were registered for bisphenol A (100%), sulfamethoxazole (96%), carbamazepine and diclofenac (87%), trimethoprim (78%), pravastatin (46%), and imazalil (34%). Bisphenol A exhibited the largest concentrations (342 ng/L), followed by diclofenac (132 ng/L), carbamazepine (38 ng/L), and sulfamethoxazole (36 ng/L). For most of the contaminants, Black Sea coastal water showed lower concentrations than the Danube water and good ecological status for surface water. Correlations between CECs and total coliforms suggest insufficient treated wastewater effluents as a common contamination source and possible use of CECs as indirect fecal pollution indicator in aquatic systems. This is the first study carried out in the connected system Danube River–Danube Delta–Black Sea for a large palette of toxicants classes and microbial pollutants, which will serve as a baseline for future monitoring of water quality in the region. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

18 pages, 4857 KB  
Article
Effects of Restoration Through Nature-Based Solution on Benthic Biodiversity: A Case Study in a Northern Adriatic Lagoon
by Michele Mistri, Matteo Albéri, Enrico Chiarelli, Cinzia Cozzula, Federico Cunsolo, Nedime Irem Elek, Fabio Mantovani, Michele Padoan, Maria Grazia Paletta, Marco Pezzi, Kassandra Giulia Cristina Raptis, Andrea Augusto Sfriso, Adriano Sfriso, Virginia Strati and Cristina Munari
Water 2025, 17(3), 366; https://doi.org/10.3390/w17030366 - 27 Jan 2025
Viewed by 960
Abstract
In the Caleri lagoon, a coastal lagoon in the Po River Delta, Northern Adriatic, the transplant of the dwarf eelgrass Zostera noltei was used as a nature-based solution to attempt the ecological restoration of a previously depleted lagoon area. A total of 135 [...] Read more.
In the Caleri lagoon, a coastal lagoon in the Po River Delta, Northern Adriatic, the transplant of the dwarf eelgrass Zostera noltei was used as a nature-based solution to attempt the ecological restoration of a previously depleted lagoon area. A total of 135 15-cm-diameter sods were transplanted, with the donor site at the Venice lagoon. Using unmanned aerial vehicles (UAVs), eelgrass transplants were mapped and monitored with great precision. After two years, the area covered by eelgrass increased from the initial 2.5 m2 to 60 m2. Changes in the community structure and on the frequency of biological traits of macrobenthos occurred at the transplant site, with a higher frequency of epifaunal predators and herbivores, and of organisms with longer life spans and larger body sizes. Sensitive and indifferent taxa were always higher in the transplant site than in the bare bottom control site, where opportunistic taxa continued to dominate. Ecological quality status measured through M-AMBI and HBFI indices showed a clear improvement in the transplant site. The rapid changes in benthos demonstrate that even relatively small-scale transplantation of dwarf eelgrass can restore faunal communities very rapidly. Full article
(This article belongs to the Special Issue Research on River Environmental Flows and Habitat Restoration)
Show Figures

Figure 1

33 pages, 11680 KB  
Article
A Spatial–Seasonal Study on the Danube River in the Adjacent Danube Delta Area: Case Study—Monitored Heavy Metals
by Catalina Topa, Gabriel Murariu, Valentina Calmuc, Madalina Calmuc, Maxim Arseni, Cecila Serban, Carmen Chitescu and Lucian Georgescu
Water 2024, 16(17), 2490; https://doi.org/10.3390/w16172490 - 2 Sep 2024
Cited by 6 | Viewed by 2779
Abstract
Monitoring and protecting flowing watercourses is a complex and challenging task that requires the collaboration and coordination of various stakeholders such as governments, industries, farmers, consumers and environmental groups. The study of the dynamics of the concentration of polluting factors and especially the [...] Read more.
Monitoring and protecting flowing watercourses is a complex and challenging task that requires the collaboration and coordination of various stakeholders such as governments, industries, farmers, consumers and environmental groups. The study of the dynamics of the concentration of polluting factors and especially the concentrations of heavy metals and highlighting a seasonal variation is a necessary element from this point of view. In this article, we present the results of our analyses carried out in two measurement campaigns executed in 10 monitoring points along the Danube River, between Braila city and Isaccea city in the pre-deltaic area, during the summer season and autumn season 2022. The importance of this area is given by the fact that the Danube Delta is part of the UNESCO heritage, and the monitoring of polluting factors is a necessity in the desire to protect this area. The data measured during the July and August 2022 campaign cover a wide range of chemical species: Phosphate, CCO, CBO5, NH4+, N-NO2, N-NO3, N-Total, P-PO4 3−, SO42−, Cl, phenols, as well as metals with a harmful effect: Al, As, Cd, Cr, Fe. The study includes an evaluation based on the statistical approach of the results to highlight the significant correlations and differences identified between the two data sets. Next, to highlight the obtained results, a numerical model was considered using HEC-RAS and ESRI ArcGIS applications in a two-dimensional unsteady flow model in order to obtain the non-homogenous concentrations’ distributions in the studied area. These two-dimensional models have been less studied in the specialized literature. In this way, interesting results could be obtained, and prediction methods regarding the dynamics of metal concentrations could be structured. The data obtained were used for the terrain model from the USGS service, and the flows of the Danube and its two tributaries were simulated using the data provided by the national services. In this work, we present the results obtained for the dynamics of the concentrations of the metals Al, As, Cd, Cr and Fe and the evaluation of the specific absorption coefficients for the explanation and correlation with the results of the measurements. Except for the numerical model presented, we would like to highlight the existence of some contributions of the main tributaries of the Danube in the study area. Such a systematic study has not been carried out due to conditions imposed by the border authorities. From this point of view, this study has an element of originality. The study is part of a more complex project in which the spatio-temporal distribution of the polluting factors in the water was evaluated, and the habitats in the study area were inventoried—especially those of community interest. In this way, we were able to expose the self-purification capacity of the Danube and highlight the existence of a concentration reduction gradient along the course of the river. The aspects related to the influence of the distribution of polluting factors on the state of health will be the subject of another article. Full article
Show Figures

Figure 1

25 pages, 3630 KB  
Article
Index-Based Groundwater Quality Assessment of Nestos River Deltaic Aquifer System, Northeastern Greece
by George Kampas, Andreas Panagopoulos, Ioannis Gkiougkis, Christos Pouliaris, Fotios-Konstantinos Pliakas, Vasiliki Kinigopoulou and Ioannis Diamantis
Water 2024, 16(2), 352; https://doi.org/10.3390/w16020352 - 21 Jan 2024
Cited by 2 | Viewed by 2285
Abstract
The Nestos River delta is one of the most important and sensitive basins in Greece and Europe due to its ecosystem functions, combining intensive agricultural production with low-enthalpy geothermal energy and important ecotopes. High water quality is of paramount importance to the sustainability [...] Read more.
The Nestos River delta is one of the most important and sensitive basins in Greece and Europe due to its ecosystem functions, combining intensive agricultural production with low-enthalpy geothermal energy and important ecotopes. High water quality is of paramount importance to the sustainability of the system. Systematic and continuous assessment of water quality needs to be carried out in a way that is easy and quick for decision makers and non-expert societal partners to comprehend. In this way, decisions may be made more rapidly, and involved water users may be sensitized to rational water use. To this end, this paper presents the assessment of groundwater quality in the Nestos River’s western delta with the use of Poseidon (PoS), a versatile, index-based method. Groundwater samples collected from 24 and 22 wells tapping the unconfined and the confined aquifers, respectively, in four time periods (May and October 2019 and 2020) were analyzed. Using the PoS index, groundwater samples were classified according to their quality status, highlighting the parameters driving quality degradation issues, thus assisting water managers in obtaining an overview of quality status and evolution through datasets that were often large. PoS index is applied in the study area for the first time and provides a groundwater quality assessment through a unique score representative of the overall water quality status regardless of processes (anthropogenic or natural) or any kind of pressures. Full article
Show Figures

Figure 1

22 pages, 7537 KB  
Article
High-Resolution Real-Time Coastline Detection Using GNSS RTK, Optical, and Thermal SfM Photogrammetric Data in the Po River Delta, Italy
by Massimo Fabris, Mirco Balin and Michele Monego
Remote Sens. 2023, 15(22), 5354; https://doi.org/10.3390/rs15225354 - 14 Nov 2023
Cited by 10 | Viewed by 2826
Abstract
High-resolution coastline detection and monitoring are challenging on a global scale, especially in flat areas where natural events, sea level rise, and anthropic activities constantly modify the coastal environment. While the coastline related to the 0-level contour line can be extracted from accurate [...] Read more.
High-resolution coastline detection and monitoring are challenging on a global scale, especially in flat areas where natural events, sea level rise, and anthropic activities constantly modify the coastal environment. While the coastline related to the 0-level contour line can be extracted from accurate Digital Terrain Models (DTMs), the detection of the real-time, instantaneous coastline, especially at low tide, is a challenge that warrants further study and evaluation. In order to investigate an efficient combination of methods that allows to contribute to the knowledge in this field, this work uses topographic total station measurements, Global Navigation Satellite System Real-Time Kinematic (GNSS RTK) technique, and the Structure from Motion (SfM) approach (using a low-cost drone equipped with optical and thermal cameras). All the data were acquired at the beginning of 2022 and refer to the areas of Boccasette and Barricata, in the Po River Delta (Northeastern of Italy). The real-time coastline obtained from the GNSS data was validated using the topographic total station measurements; the correspondent polylines obtained from the photogrammetric data (using both automatic extraction and manual restitutions by visual inspection of orhophotos) were compared with the GNSS data to evaluate the performances of the different techniques. The results provided good agreement between the real-time coastlines obtained from different approaches. However, using the optical images, the accuracy was strictly connected with the radiometric changes in the photos and using thermal images, both manual and automatic polylines provided differences in the order of 1–2 m. Multi-temporal comparison of the 0-level coastline with those obtained from a LiDAR survey performed in 2018 provided the detection of the erosion and accretion areas in the period 2018–2022. The investigation on the two case studies showed a better accuracy of the GNSS RTK method in the real-time coastline detection. It can be considered as reliable ground-truth reference for the evaluation of the photogrammetric coastlines. While GNSS RTK proved to be more productive and efficient, optical and thermal SfM provided better results in terms of morphological completeness of the data. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology Ⅱ)
Show Figures

Figure 1

15 pages, 1930 KB  
Article
Drought-Induced Salinity Intrusion Affects Nitrogen Removal in a Deltaic Ecosystem (Po River Delta, Northern Italy)
by Maria Pia Gervasio, Elisa Soana, Fabio Vincenzi, Monia Magri and Giuseppe Castaldelli
Water 2023, 15(13), 2405; https://doi.org/10.3390/w15132405 - 29 Jun 2023
Cited by 13 | Viewed by 3988
Abstract
In the summer of 2022, the Po River Delta (Northern Italy), a eutrophication hotspot, was severely affected by high temperatures, exceptional lack of rainfall and saline water intrusion. The effect of saline intrusion on benthic nitrogen dynamics, and in particular the N removal [...] Read more.
In the summer of 2022, the Po River Delta (Northern Italy), a eutrophication hotspot, was severely affected by high temperatures, exceptional lack of rainfall and saline water intrusion. The effect of saline intrusion on benthic nitrogen dynamics, and in particular the N removal capacity, was investigated during extreme drought conditions. Laboratory incubations of intact sediment cores were used to determine denitrification and DNRA rates at three sites along a salinity gradient in the Po di Goro, an arm of the Po River Delta. Denitrification was found to be the main process responsible for nitrate reduction in freshwater and slightly saline sites, whereas DNRA predominated in the most saline site, highlighting a switch in N cycling between removal and recycling. These results provide evidence that salinity is a key factor in regulating benthic N metabolism in transitional environments. In a climate change scenario, salinity intrusion, resulting from long periods of low river discharge, may become an unrecognized driver of coastal eutrophication by promoting the dissimilatory nitrate reduction to ammonium and N recycling of bioactive nitrogen within the ecosystem, rather than its permanent removal by denitrification. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

14 pages, 17128 KB  
Article
A Predictive Model for the Bioaccumulation of Okadaic Acid in Mytilus galloprovincialis Farmed in the Northern Adriatic Sea: A Tool to Reduce Product Losses and Improve Mussel Farming Sustainability
by Fabrizio Capoccioni, Laura Bille, Federica Colombo, Lidia Contiero, Arianna Martini, Carmine Mattia, Riccardo Napolitano, Nicolò Tonachella, Marica Toson and Domitilla Pulcini
Sustainability 2023, 15(11), 8608; https://doi.org/10.3390/su15118608 - 25 May 2023
Cited by 5 | Viewed by 2180
Abstract
Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), [...] Read more.
Over the last decades, harmful dinoflagellate (Dinophysis spp.) blooms have increased in frequency, duration, and severity in the Mediterranean Sea. Farmed bivalves, by ingesting large amounts of phytoplankton, can become unsafe for human consumption due to the bioaccumulation of okadaic acid (OA), causing Diarrhetic Shellfish Poisoning (DSP). Whenever the OA concentration in shellfish farmed in a specific area exceeds the established legal limit (160 μg·kg−1 of OA equivalents), harvesting activities are compulsorily suspended. This study aimed at developing a machine learning (ML) predictive model for OA bioaccumulation in Mediterranean mussels (Mytilus galloprovincialis) farmed in the coastal area off the Po River Delta (Veneto, Italy), based on oceanographic data measured through remote sensing and data deriving from the monitoring activities performed by official veterinarian authorities to verify the bioaccumulation of OA in the shellfish production sites. LightGBM was used as an ML algorithm. The results of the classification algorithm on the test set showed an accuracy of 82%. Further analyses showed that false negatives were mainly associated with relatively low levels of toxins (<100 μg·kg−1), since the algorithm tended to classify low concentrations of OA as negative samples, while true positives had higher mean values of toxins (139 μg·kg−1). The results of the model could be used to build up an online early warning system made available to shellfish farmers of the study area, aimed at increasing the economic and environmental sustainability of these production activities and reducing the risk of massive product losses. Full article
(This article belongs to the Special Issue New Trends and Perspectives in Sustainable Aquaculture)
Show Figures

Figure 1

21 pages, 2681 KB  
Article
Effects of Organic Enrichment on Bioturbation Attributes: How Does the Macrofauna Community Respond in Two Different Sedimentary Impacted Areas?
by Seyed Ehsan Vesal, Federica Nasi, Rocco Auriemma and Paola Del Negro
Diversity 2023, 15(3), 449; https://doi.org/10.3390/d15030449 - 17 Mar 2023
Cited by 7 | Viewed by 2732
Abstract
We assessed the influence of different organic matter (OM) inputs associated with terrigenous/freshwater allochthonous and sewage derive on bioturbation and irrigation potential community indices (BPc and IPc) of the soft-bottom macrofauna community. The macrofauna was sampled from two different sedimentary [...] Read more.
We assessed the influence of different organic matter (OM) inputs associated with terrigenous/freshwater allochthonous and sewage derive on bioturbation and irrigation potential community indices (BPc and IPc) of the soft-bottom macrofauna community. The macrofauna was sampled from two different sedimentary impacted areas, in front of the Po River Delta (northern Adriatic Sea) and sewage discharge diffusion zone (Gulf of Trieste). The highest values of BPc and IPc were observed at the northward sampling stations of the prodelta and the stations 25 m distance in front of the main sewage outfall. Species richness showed high values in the prodelta likely due to the OM positive effect from the delta, and it increased with increasing distance from the pipeline due to the effect of OM from the sewage discharge. The bioturbation indices differed due to the presence of surface deposit feeders and the injection depth (from 2 to 5 cm) with limited movement at the station located northwards in the prodelta and 25 m distance in the diffusion zone. We infer that the difference in bioturbation indices was likely due to the effects of grain-size composition and the degree of organic enrichment in both study areas. Full article
(This article belongs to the Special Issue Ecology and Biogeography of Marine Benthos)
Show Figures

Figure 1

11 pages, 1423 KB  
Article
Characterization of Large Microplastic Debris in Beach Sediments in the Po Delta Area
by Luca Cozzarini, Joana Buoninsegni, Corinne Corbau and Vanni Lughi
Microplastics 2023, 2(1), 147-157; https://doi.org/10.3390/microplastics2010011 - 3 Mar 2023
Cited by 7 | Viewed by 3412
Abstract
The use of single-use or disposable plastic objects has massively increased during the last few decades, and plastic has become the main type of litter found in marine environments. The Adriatic Sea is seriously prone to marine litter pollution, and it collects about [...] Read more.
The use of single-use or disposable plastic objects has massively increased during the last few decades, and plastic has become the main type of litter found in marine environments. The Adriatic Sea is seriously prone to marine litter pollution, and it collects about one-third of all the freshwater flowing into the Mediterranean, mainly via the river Po. This study investigated the type and composition of large microplastic debris collected in different sites in the Po Delta area. Visual classification was performed by relevant criteria, while chemical composition was assessed by infrared spectroscopy. The main plastic fraction is composed of polyolefin (76%), followed by polystyrene (19%). This proportion roughly matches global plastic production, rescaled after excluding plastics with negative buoyancy: all the identified compounds have a specific gravity lower than that of the seawater. Fragments (irregularly shaped debris) represent the most abundant category fraction (85%), followed by pellets, which represent roughly 10% of the total. Overall, the results provided an insight into large microplastic pollution in beach sediments in the Po delta area. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

21 pages, 5977 KB  
Article
An Integrated InSAR and GNSS Approach to Monitor Land Subsidence in the Po River Delta (Italy)
by Massimo Fabris, Mattia Battaglia, Xue Chen, Andrea Menin, Michele Monego and Mario Floris
Remote Sens. 2022, 14(21), 5578; https://doi.org/10.3390/rs14215578 - 4 Nov 2022
Cited by 33 | Viewed by 7390
Abstract
Land subsidence affects many areas of the world, posing a serious threat to human structures and infrastructures. It can be effectively monitored using ground-based and remote sensing techniques, such as the Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). GNSS [...] Read more.
Land subsidence affects many areas of the world, posing a serious threat to human structures and infrastructures. It can be effectively monitored using ground-based and remote sensing techniques, such as the Global Navigation Satellite System (GNSS) and Interferometric Synthetic Aperture Radar (InSAR). GNSS provides high precision measurements, but in a limited number of points, and is time-consuming, while InSAR allows one to obtain a very large number of measurement points, but only in areas characterized by a high and constant reflectivity of the signal. The aim of this work is to propose an approach to combine the two techniques, overcoming the limits of each of them. The approach was applied in the Po River Delta (PRD), an area located in Northern Italy and historically affected by land subsidence. Ground-based GNSS data from three continuous stations (CGNSS) and 46 non-permanent sites (NPS) measured in 2016, 2018, and 2020, and Sentinel-1 and COSMO-SkyMed SAR data acquired from 2016 to 2020, were considered. In the first phase of the method, InSAR processing was calibrated and verified through CGNSS measurements; subsequently, the calibrated interferometric data were used to validate the GNSS measurements of the NPS. In the second phase, the datasets were integrated to provide an efficient monitoring system, extracting high-resolution deformation maps. The results showed a good agreement between the different sources of data, a high correlation between the displacement rate and the age of the emerged surfaces composed of unconsolidated fine sediments, and high land subsidence rates along the coastal area (up to 16–18 mm/year), where the most recent deposits outcrop. The proposed approach makes it possible to overcome the disadvantages of each technique by providing more complete and detailed information for a better understanding of the ongoing phenomenon. Full article
Show Figures

Figure 1

19 pages, 4324 KB  
Article
Isotope Geochemistry for Seafood Traceability and Authentication: The Northern Adriatic Manila Clams Case Study
by Valentina Brombin, Claudio Natali, Gianluca Frijia, Katharina Schmitt, Martina Casalini and Gianluca Bianchini
Foods 2022, 11(19), 3054; https://doi.org/10.3390/foods11193054 - 1 Oct 2022
Cited by 7 | Viewed by 2975
Abstract
In Italy, the production of manila clams (Ruditapes philippinarum, Adams and Reeve, 1850) is mainly localized in northern Adriatic lagoons in the Po River delta, where shellfish farming provides important socio-economic revenue. However, in our globalized world, the seafood market is [...] Read more.
In Italy, the production of manila clams (Ruditapes philippinarum, Adams and Reeve, 1850) is mainly localized in northern Adriatic lagoons in the Po River delta, where shellfish farming provides important socio-economic revenue. However, in our globalized world, the seafood market is threated by fraudulent activities, in which agri-food products whose provenance is not certified are sold, posing a risk to consumer health. Multi-isotope ratio analysis is commonly used to trace the provenance of goods produced in different countries with different climatic and environmental conditions. Here, we investigated the reliability of this approach in terms of tracing the exact provenance of manila clams harvested in three Adriatic northern lagoons that are close to each other. We also verified the origin of samples bought at a local supermarket with a certificate of provenance. We carried out elemental analyses of carbon (C), nitrogen (N), and sulfur (S) and the respective isotopic ratios (13C/12C; 15N/14N; 34S/32S) on manila clam tissues, plus isotopic analyses of carbon (13C/12C), oxygen (18O/16O), and strontium (87Sr/86Sr) on manila clam shells. Each isotopic parameter can be used to identify the marine and continental contributions of water and/or nutrient supplies occurring in the lagoons. Therefore, the combination of isotopic parameters in a linear discriminant analysis (LDA) allowed for the identification of the lagoons in which the manila clams were produced. Full article
(This article belongs to the Special Issue Food Origin Analysis with Isotope Fingerprints)
Show Figures

Graphical abstract

17 pages, 1739 KB  
Article
Before-During-After Biomonitoring Assessment for a Pipeline Construction in a Coastal Lagoon in the Northern Adriatic Sea (Italy)
by Federica Cacciatore, Ginevra Moltedo, Valentina Bernarello, Malgorzata Formalewicz, Barbara Catalano, Giacomo Martuccio, Maura Benedetti, Maria Teresa Berducci, Giulio Sesta, Gianluca Franceschini, Daniela Berto, Chiara Maggi, Francesco Regoli, Massimo Gabellini and Claudia Virno Lamberti
Environments 2022, 9(7), 81; https://doi.org/10.3390/environments9070081 - 29 Jun 2022
Cited by 3 | Viewed by 4747
Abstract
During 2006–2008, a pipeline was buried in Vallona lagoon in the Northern Adriatic Sea (Italy). A Before-During-After environmental monitoring programme was scheduled to monitor possible alterations. Bioaccumulation of metal(loid)s, BTs (butyltins) and HMW-PAHs (High Molecular Weight Polycyclic Aromatic Hydrocarbons), and biological responses (Condition [...] Read more.
During 2006–2008, a pipeline was buried in Vallona lagoon in the Northern Adriatic Sea (Italy). A Before-During-After environmental monitoring programme was scheduled to monitor possible alterations. Bioaccumulation of metal(loid)s, BTs (butyltins) and HMW-PAHs (High Molecular Weight Polycyclic Aromatic Hydrocarbons), and biological responses (Condition index, air Survival—LT50, Acetylcholinesterase, Micronuclei—MN, acyl-CoA oxidase, catalase, malondialdehyde—MDA, and the total oxyradical scavenging capacity—TOSCA) were investigated in Manila clams (Ruditapes philippinarum) from November 2005 to June 2015. In opera (IO) results showed higher levels of HMW-PAHs (73 ± 13 ng/g), BTs (90 ± 38 ng Sn/g) and increasing levels of Pb (6.7 ± 0.7 mg/kg) and Zn (73.6 ± 6.08 mg/kg) probably linked to works. Other contaminant alterations, especially metal(loid)s, before (AO) and after (PO) the burial, were attributed to a general condition of the area and mostly unrelated to works. In addition, LT50, MN and TOSCA showed alterations, probably due to hotspots occurring in IO. TOSCA and MDA increases, right after the burial, were considered delayed responses of IO, whilst other biological responses detected later were connected to the general condition of the area. Comparisons between results of Principal Component Analyses (PCAs) highlighted partial overlapping of AO and IO, whilst PO differed only for contaminants. Visual correlations between PCAs highlighted the biomarkers’ latter response. Full article
Show Figures

Graphical abstract

29 pages, 57631 KB  
Article
Analysis of the Periodic Component of Vertical Land Motion in the Po Delta (Northern Italy) by GNSS and Hydrological Data
by Eleonora Vitagliano, Enza Vitale, Giacomo Russo, Leonardo Piccinini, Massimo Fabris, Domenico Calcaterra and Rosa Di Maio
Remote Sens. 2022, 14(5), 1126; https://doi.org/10.3390/rs14051126 - 24 Feb 2022
Cited by 6 | Viewed by 3223
Abstract
Nowadays, several methodologies, implemented for satellite or terrestrial surveys, reveal that daily and weekly site-positioning time series can exhibit linear trends plus seasonal oscillations. Such periodic components affect the evaluation of subsidence rates and, thus, they must be recognized and properly modelled. In [...] Read more.
Nowadays, several methodologies, implemented for satellite or terrestrial surveys, reveal that daily and weekly site-positioning time series can exhibit linear trends plus seasonal oscillations. Such periodic components affect the evaluation of subsidence rates and, thus, they must be recognized and properly modelled. In this work, the periodic component of vertical land motion in Po Delta (Northern Italy) is estimated by a multi-component and multi-source procedure recently proposed by some of the authors for studying land subsidence in delta areas. First, land vertical motion data, acquired in the central part of the Po Delta over a six-year time interval, were compared with hydro-meteorological and climate datasets collected from nineteen stations distributed over the entire Delta. Then, four physically based models of the test site were implemented to verify the water pressure- and water mass-dependent processes inferred from the analytical phase. Modelling results show that the annual ground oscillation is better explained by soil moisture change, although river water mass variation gives a relevant contribution to land deformation, especially in the wet periods. Finally, to account for intra-annual processes, the joint contributions of all the inferred sources were treated as a nonlinear problem and solved applying the generalized reduced gradient method. The obtained combination is well supported by statistical parameters and provides the best agreement with the geodetic observations. Full article
Show Figures

Graphical abstract

24 pages, 16975 KB  
Article
Anatomy of Anthropically Controlled Natural Lagoons through Geophysical, Geological, and Remote Sensing Observations: The Valli Di Comacchio (NE Italy) Case Study
by Jarbas Bonetti, Fabrizio Del Bianco, Leonardo Schippa, Alina Polonia, Giuseppe Stanghellini, Nicola Cenni, Stefano Draghetti, Francesco Marabini and Luca Gasperini
Remote Sens. 2022, 14(4), 987; https://doi.org/10.3390/rs14040987 - 17 Feb 2022
Cited by 3 | Viewed by 3577
Abstract
Newly collected morphobathymetric and seismic reflection data from the Valli di Comacchio coastal lagoons, south of the Po River delta (Northeast Italy), combined with historical, remote sensing, and geodetic data highlight a complex geological evolution during the Holocene, strongly affected by anthropic control. [...] Read more.
Newly collected morphobathymetric and seismic reflection data from the Valli di Comacchio coastal lagoons, south of the Po River delta (Northeast Italy), combined with historical, remote sensing, and geodetic data highlight a complex geological evolution during the Holocene, strongly affected by anthropic control. All data allowed us to define the present-day depositional environment of the lagoons and reconstruct their recent (late Pleistocene/Holocene) geo-history. We focused on the effects of the anthropic impacts in modifying the pristine environments created by the Holocene transgression along the Adriatic Sea coast, at the mouth of a major river. They include land reclamation works, artificial damming, channel excavations, fluvial diversions, and a recent (last decades) increase in subsidence rate due to gas and water withdrawals. Despite the development of economic activities, which promoted occupation and exploitation of this area in the last millennia, the post-Glacial evolution of the lagoons shows the important role of inherited morphological features, such as sand ridges and barriers. This complex and relatively well-documented evolution makes the Comacchio lagoons a unique example of deep connections between natural processes and long-term human controls, offering insights into the management policies of these important and delicate environments challenged by global changes. Full article
Show Figures

Graphical abstract

Back to TopTop