Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Platelet-Poor Plasma (PPP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1858 KiB  
Article
Antibacterial Effect of Canine Leucocyte Platelet-Rich Plasma (L-PRP) and Canine Platelet-Poor Plasma (PPP) Against Methicillin-Sensitive and Methicillin-Resistant Staphylococcus pseudintermedius
by Roberta Perego, Gabriele Meroni, Piera Anna Martino, Eva Spada, Luciana Baggiani and Daniela Proverbio
Vet. Sci. 2024, 11(12), 670; https://doi.org/10.3390/vetsci11120670 - 20 Dec 2024
Viewed by 1154
Abstract
Staphylococcus pseudintermedius (SP) is a commensal and opportunistic pathogen of skin and mucosal surfaces, isolated from healthy dogs and from canine pyoderma cases. It has recently gained attention due to its increasing antibiotic resistance. Platelet-rich plasma (PRP) is a biological product, obtained through [...] Read more.
Staphylococcus pseudintermedius (SP) is a commensal and opportunistic pathogen of skin and mucosal surfaces, isolated from healthy dogs and from canine pyoderma cases. It has recently gained attention due to its increasing antibiotic resistance. Platelet-rich plasma (PRP) is a biological product, obtained through a blood centrifugation process, which has antibacterial properties evidenced by in vitro and in vivo studies conducted in both the human and veterinary field. This in vitro study evaluated the antimicrobial effect of canine non-activated and activated leucocyte-rich PRP (L-PRP) and platelet-poor plasma (PPP) against two strains of SP isolated from dogs with pyoderma: one a multidrug-resistant strain (MDR) and one a non-MDR strain. Twenty healthy un-sedated adult blood donor dogs were enrolled for L-PRP and PPP production via a closed semi-automatic system for veterinary use. The evaluation of antimicrobial effect was performed using the micro-inhibition in broth method, exposing SP strains to 10 L-PRP, 10 activated L-PRP and 10 PPP samples, respectively. Bacterial growth was evaluated using CFU count at three timepoints (immediately after incubation T0, after 1 h T1 and after 2 h T2). L-PRP and PPP had a significant antimicrobial effect at all three timepoints which was similar against both non-MDR and MDR SP strains. Activation appeared to reduce the duration of the antimicrobial effect in L-PRP. More studies are necessary to confirm these preliminary results. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

33 pages, 2617 KiB  
Review
Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing
by Peter A. Everts, José Fábio Lana, Robert W. Alexander, Ignacio Dallo, Elizaveta Kon, Mary A. Ambach, André van Zundert and Luga Podesta
Int. J. Mol. Sci. 2024, 25(14), 7914; https://doi.org/10.3390/ijms25147914 - 19 Jul 2024
Cited by 22 | Viewed by 6601
Abstract
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and [...] Read more.
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell–cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix. Full article
Show Figures

Figure 1

14 pages, 4119 KiB  
Article
Plasma Gel Matrix as a Promising Carrier of Epigallocatechin Gallate for Regenerative Medicine
by Takashi Ushiki, Tomoharu Mochizuki, Mami Osawa, Katsuya Suzuki, Tetsuhiro Tsujino, Taisuke Watanabe, Carlos Fernando Mourão and Tomoyuki Kawase
J. Funct. Biomater. 2024, 15(4), 98; https://doi.org/10.3390/jfb15040098 - 10 Apr 2024
Viewed by 1998
Abstract
Plasma gel (PG) is a protein matrix prepared from platelet-poor plasma and can be utilized as a drug carrier for controlled release. We previously demonstrated its applicability as a carrier of polyphosphate. Epigallocatechin-3-gallate (EGCG) is the main flavonoid found in green tea and [...] Read more.
Plasma gel (PG) is a protein matrix prepared from platelet-poor plasma and can be utilized as a drug carrier for controlled release. We previously demonstrated its applicability as a carrier of polyphosphate. Epigallocatechin-3-gallate (EGCG) is the main flavonoid found in green tea and functions as a strong antioxidant. To explore the applicability of PG as an EGCG carrier, we examined the release of EGCG from the PG matrix using an in vitro system. Pooled platelet-poor plasma (PPP) was prepared from four healthy adult male donors, mixed with EGCG, and heated at 75 °C for 10 or 20 min to prepare the PG matrix. The PG–EGCG matrix was incubated in PBS at 37 °C, and the EGCG released into PBS was determined using spectrophotometry. The antioxidant capacity was determined based on the principle of the iodine decolorization reaction. EGCG precipitated and incorporated into the PG matrix during thermal preparation. Trypsin, used to simulate the in vivo degradation of PG, released EGCG from the PG matrix over time. The released EGCG maintained its antioxidant capacity during incubation. These results indicate that thermally prepared PG matrices can be utilized as a promising EGCG carrier in the fields of tissue engineering and regenerative medicine. Full article
Show Figures

Figure 1

18 pages, 2067 KiB  
Article
Plasma and Platelet Brain-Derived Neurotrophic Factor (BDNF) Levels in Bipolar Disorder Patients with Post-Traumatic Stress Disorder (PTSD) or in a Major Depressive Episode Compared to Healthy Controls
by Valerio Dell’Oste, Lionella Palego, Laura Betti, Sara Fantasia, Davide Gravina, Andrea Bordacchini, Virginia Pedrinelli, Gino Giannaccini and Claudia Carmassi
Int. J. Mol. Sci. 2024, 25(6), 3529; https://doi.org/10.3390/ijms25063529 - 20 Mar 2024
Cited by 5 | Viewed by 2617
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling mental disorder arising after traumatism exposure, often revealing critical and complex courses when comorbidity with bipolar disorder (BD) occurs. To search for PTSD or depression biomarkers that would help clinicians define BD presentations, this study [...] Read more.
Post-traumatic stress disorder (PTSD) is a highly disabling mental disorder arising after traumatism exposure, often revealing critical and complex courses when comorbidity with bipolar disorder (BD) occurs. To search for PTSD or depression biomarkers that would help clinicians define BD presentations, this study aimed at preliminarily evaluating circulating brain-derived-neurotrophic factor (BDNF) levels in BD subjects with PTSD or experiencing a major depressive episode versus controls. Two bloodstream BDNF components were specifically investigated, the storage (intraplatelet) and the released (plasma) ones, both as adaptogenic/repair signals during neuroendocrine stress response dynamics. Bipolar patients with PTSD (n = 20) or in a major depressive episode (n = 20) were rigorously recruited together with unrelated healthy controls (n = 24) and subsequently examined by psychiatric questionnaires and blood samplings. Platelet-poor plasma (PPP) and intraplatelet (PLT) BDNF were measured by ELISA assays. The results showed markedly higher intraplatelet vs. plasma BDNF, confirming platelets’ role in neurotrophin transport/storage. No between-group PPP-BDNF difference was reported, whereas PLT-BDNF was significantly reduced in depressed BD patients. PLT-BDNF negatively correlated with mood scores but not with PTSD items like PPP-BDNF, which instead displayed opposite correlation trends with depression and manic severity. Present findings highlight PLT-BDNF as more reliable at detecting depression than PTSD in BD, encouraging further study into BDNF variability contextually with immune-inflammatory parameters in wider cohorts of differentially symptomatic bipolar patients. Full article
Show Figures

Figure 1

14 pages, 5051 KiB  
Article
Exploring the Utility of Circulating Endothelial Cell-Derived Extracellular Vesicles as Markers of Health and Damage of Vasal Endothelium in Systemic Sclerosis Patients Treated with Iloprost
by Giuseppe Argentino, Bianca Olivieri, Alessandro Barbieri, Ruggero Beri, Caterina Bason, Simonetta Friso and Elisa Tinazzi
Biomedicines 2024, 12(2), 295; https://doi.org/10.3390/biomedicines12020295 - 27 Jan 2024
Cited by 6 | Viewed by 1629
Abstract
Endothelial cell-derived extracellular vesicles (eEVs) are released from endothelial cells, signifying endothelial integrity. Systemic Sclerosis (SSc) is a rare disease causing skin and organ fibrosis with early vascular damage. Iloprost, an SSc treatment, might affect eEV release, showing long-term benefits. We aimed to [...] Read more.
Endothelial cell-derived extracellular vesicles (eEVs) are released from endothelial cells, signifying endothelial integrity. Systemic Sclerosis (SSc) is a rare disease causing skin and organ fibrosis with early vascular damage. Iloprost, an SSc treatment, might affect eEV release, showing long-term benefits. We aimed to study eEVs in SSc, potentially serving as disease markers and linked to Iloprost’s impact on organ involvement. We included 54 SSc patients and 15 healthy donors. Using flow cytometry on platelet-poor plasma (PPP) with specific antibodies (CD144, CD146, AnnexinV), we detected endothelial extracellular vesicles. Results showed fewer eEVs from apoptotic or normal cells in SSc patients than healthy controls. Specifically, patients with diffuse cutaneous SSc and lung issues had reduced eEVs from apoptotic endothelial cells (CD146+ AnnV+). No notable differences were seen in CD144 endothelial markers between patients and controls. After 1-day Iloprost infusion, there was an increase in eEVs, but not after 5 days. These findings suggest circulating eEVs reflect endothelial health/damage, crucial in early SSc stages. A 1-day Iloprost infusion seems effective in repairing endothelial damage, critical in scleroderma vasculopathy. Differences in marker outcomes may relate to CD146’s surface expression and CD144’s junctional location in endothelial cells. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

12 pages, 4030 KiB  
Article
Plasma Gel Made of Platelet-Poor Plasma: In Vitro Verification as a Carrier of Polyphosphate
by Masayuki Nakamura, Hideo Masuki, Hideo Kawabata, Taisuke Watanabe, Takao Watanabe, Tetsuhiro Tsujino, Kazushige Isobe, Yutaka Kitamura, Carlos Fernando Mourão and Tomoyuki Kawase
Biomedicines 2023, 11(11), 2871; https://doi.org/10.3390/biomedicines11112871 - 24 Oct 2023
Cited by 4 | Viewed by 2947
Abstract
Plasma gel (PG) is a blood-derived biomaterial that can be prepared by heating or chemical cross-linking without the aid of intrinsic coagulation activity and has gradually been applied in the field of esthetic surgery. To explore the applicability of PG in regenerative therapy [...] Read more.
Plasma gel (PG) is a blood-derived biomaterial that can be prepared by heating or chemical cross-linking without the aid of intrinsic coagulation activity and has gradually been applied in the field of esthetic surgery. To explore the applicability of PG in regenerative therapy or tissue engineering, in this study, we focused on the advantages of the heating method and verified the retention capacity of the resulting PG for polyphosphate (polyP), a polyanion that contributes to hemostasis and bone regeneration. Pooled platelet-poor plasma (PPP) was prepared from four healthy male adult donors, mixed with synthetic polyP, and heated at 75 °C for 10 or 30 min to prepare PG in microtubes. The PG was incubated in PBS at 37 °C, and polyP levels in the extra-matrix PBS were determined by the fluorometric method every 24 h. The microstructure of PG was examined using scanning electron microscopy. In the small PG matrices, almost all of the added polyP (~100%) was released within the initial 24 h. In contrast, in the large PG matrices, approximately 50% of the polyP was released within the initial 24 h and thereafter gradually released over time. Owing to its simple chemical structure, linear polyP cannot be theoretically retained in the gel matrices used in this study. However, these findings suggest that thermally prepared PG matrices can be applied as carriers of polyP in tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Future Trends in Regenerative Medicine)
Show Figures

Graphical abstract

17 pages, 1612 KiB  
Article
Variation of Circulating Brain-Derived Neurotrophic Factor (BDNF) in Depression: Relationships with Inflammatory Indices, Metabolic Status and Patients’ Clinical Features
by Valentina Falaschi, Lionella Palego, Donatella Marazziti, Laura Betti, Laura Musetti, Alessandra Maglio, Valerio Dell’Oste, Simona Sagona, Antonio Felicioli, Barbara Carpita, Alberto Brogi, Federico Mucci, Enrico Massimetti, Liliana Dell’Osso and Gino Giannaccini
Life 2023, 13(7), 1555; https://doi.org/10.3390/life13071555 - 13 Jul 2023
Cited by 6 | Viewed by 2657
Abstract
This study seeks to offer a contribution to the method of subtyping major depressed patients by exploring the possible relationships between circulating brain-derived neurotrophic factor (BDNF), different peripheral inflammatory/metabolic markers in the blood and clinical characteristics. Thirty-nine patients, thoroughly diagnosed according to the [...] Read more.
This study seeks to offer a contribution to the method of subtyping major depressed patients by exploring the possible relationships between circulating brain-derived neurotrophic factor (BDNF), different peripheral inflammatory/metabolic markers in the blood and clinical characteristics. Thirty-nine patients, thoroughly diagnosed according to the DSM-5 criteria, underwent a comprehensive set of evaluations encompassing structured interviews, rating scales and a panel of blood tests. Correlation and comparison analyses were carried out by means of non-parametric statistical tests. Concurrently, a principal component analysis was performed to explain biochemical variance. The findings of our research unveiled that leukocyte counts, their ratios and other inflammatory parameters are positively correlated with depression scores. Moreover, we found variations within the BDNF pools of depressed patients. Specifically, higher levels of platelet-poor plasma BDNF (PPP-BDNF) were correlated with augmented inflammatory markers in patients showing specific episode characteristics, whereas reduced platelet BDNF (PLT-BDNF) provided a better indication of the changes that were linked to a diagnosis of long-term depression. Our findings suggest that PPP-BDNF and PLT-BDNF might differentiate depression conditions. They also imply usefulness in appraising peripheral biomarker profiles in patients for a deeper characterization of major depressive episodes. At the same time, it is plausible that they might constitute novel avenues for developing more tailored therapeutic strategies for patients with MDs. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

12 pages, 6726 KiB  
Article
Formation of Hydroxyapatite-Based Hybrid Materials in the Presence of Platelet-Poor Plasma Additive
by Ilya E. Glazov, Valentina K. Krut’ko, Tatiana V. Safronova, Nikita A. Sazhnev, Natalia R. Kil’deeva, Roman A. Vlasov, Olga N. Musskaya and Anatoly I. Kulak
Biomimetics 2023, 8(3), 297; https://doi.org/10.3390/biomimetics8030297 - 9 Jul 2023
Cited by 3 | Viewed by 1797
Abstract
Biomaterials based on hydroxyapatite with controllable composition and properties are promising in the field of regenerative bone replacement. One approach to regulate the phase composition of the materials is the introduction of biopolymer-based additives into the synthesis process. The purpose of present study [...] Read more.
Biomaterials based on hydroxyapatite with controllable composition and properties are promising in the field of regenerative bone replacement. One approach to regulate the phase composition of the materials is the introduction of biopolymer-based additives into the synthesis process. The purpose of present study was to investigate the formation of hydroxyapatite-based hybrid materials in the presence of 6–24% platelet-poor plasma (PPP) additive, at a [Ca2+]/[PO43−] ratio of 1.67, pH 11, and varying maturing time from 4 to 9 days. The mineral component of the materials comprised 53% hydroxyapatite/47% amorphous calcium phosphate after 4 days of maturation and 100% hydroxyapatite after 9 days of maturation. Varying the PPP content between 6% and 24% brought about the formation of materials with rather defined contents of amorphous calcium phosphate and biopolymer component and the desired morphology, ranging from typical apatitic conglomerates to hybrid apatite-biopolymer fibers. The co-precipitated hybrid materials based on hydroxyapatite, amorphous calcium phosphate, and PPP additive exhibited increased solubility in SBF solution, which defines their applicability for repairing rhinoplastic defects. Full article
(This article belongs to the Special Issue Biomimetic Platform for Tissue Regeneration 2.0)
Show Figures

Figure 1

17 pages, 2328 KiB  
Article
PRGF Membrane with Tailored Optical Properties Preserves the Cytoprotective Effect of Plasma Rich in Growth Factors: In Vitro Model of Retinal Pigment Epithelial Cells
by Eduardo Anitua, Francisco Muruzabal, María de la Fuente, Susana Del Olmo-Aguado, Mohammad H. Alkhraisat and Jesús Merayo-Lloves
Int. J. Mol. Sci. 2023, 24(13), 11195; https://doi.org/10.3390/ijms241311195 - 7 Jul 2023
Cited by 3 | Viewed by 1677
Abstract
The present study evaluates the ability of a novel plasma rich in growth factors (PRGF) membrane with improved optical properties to reduce oxidative stress in retinal pigment epithelial cells (ARPE-19 cells) exposed to blue light. PRGF was obtained from three healthy donors and [...] Read more.
The present study evaluates the ability of a novel plasma rich in growth factors (PRGF) membrane with improved optical properties to reduce oxidative stress in retinal pigment epithelial cells (ARPE-19 cells) exposed to blue light. PRGF was obtained from three healthy donors and divided into four main groups: (i) PRGF membrane (M-PRGF), (ii) PRGF supernatant (S-PRGF), (iii) platelet-poor plasma (PPP) membrane diluted 50% with S-PRGF (M-PPP 50%), and (iv) M-PPP 50% supernatant (S-PPP 50%). ARPE-19 cells were exposed to blue light and then incubated with the different PRGF-derived formulations or control for 24 and 48 h under blue light exposure. Mitochondrial and cell viability, reactive oxygen species (ROS) production, and heme oxygenase-1 (HO-1) and ZO-1 expression were evaluated. Mitochondrial viability and cell survival were significantly increased after treatment with the different PRGF-derived formulations. ROS synthesis and HO-1 expression were significantly reduced after cell treatment with any of the PRGF-derived formulations. Furthermore, the different PRGF-derived formulations significantly increased ZO-1 expression in ARPE-19 exposed to blue light. The new PRGF membrane with improved optical properties and its supernatant (M-PPP 50% and S-PPP 50%) protected and reversed blue light-induced oxidative stress in ARPE-19 cells at levels like those of a natural PRGF membrane and its supernatant. Full article
(This article belongs to the Special Issue Advanced Research in Retina 2.0)
Show Figures

Figure 1

34 pages, 22996 KiB  
Article
Effects of Therapeutic Platelet-Rich Plasma on Overactive Bladder via Modulating Hyaluronan Synthesis in Ovariectomized Rat
by Jian-He Lu, Kuang-Shun Chueh, Tai-Jui Juan, Jing-Wen Mao, Rong-Jyh Lin, Yi-Chen Lee, Mei-Chen Shen, Ting-Wei Sun, Hung-Yu Lin and Yung-Shun Juan
Int. J. Mol. Sci. 2023, 24(9), 8242; https://doi.org/10.3390/ijms24098242 - 4 May 2023
Cited by 6 | Viewed by 3014
Abstract
Postmenopausal women who have ovary hormone deficiency (OHD) may experience urological dysfunctions, such as overactive bladder (OAB) symptoms. This study used a female Sprague Dawley rat model that underwent bilateral ovariectomy (OVX) to simulate post-menopause in humans. The rats were treated with platelet-rich [...] Read more.
Postmenopausal women who have ovary hormone deficiency (OHD) may experience urological dysfunctions, such as overactive bladder (OAB) symptoms. This study used a female Sprague Dawley rat model that underwent bilateral ovariectomy (OVX) to simulate post-menopause in humans. The rats were treated with platelet-rich plasma (PRP) or platelet-poor plasma (PPP) after 12 months of OVX to investigate the therapeutic effects of PRP on OHD-induced OAB. The OVX-treated rats exhibited a decrease in the expression of urothelial barrier-associated proteins, altered hyaluronic acid (hyaluronan; HA) production, and exacerbated bladder pathological damage and interstitial fibrosis through NFƘB/COX-2 signaling pathways, which may contribute to OAB. In contrast, PRP instillation for four weeks regulated the inflammatory fibrotic biosynthesis, promoted cell proliferation and matrix synthesis of stroma, enhanced mucosal regeneration, and improved urothelial mucosa to alleviate OHD-induced bladder hyperactivity. PRP could release growth factors to promote angiogenic potential for bladder repair through laminin/integrin-α6 and VEGF/VEGF receptor signaling pathways in the pathogenesis of OHD-induced OAB. Furthermore, PRP enhanced the expression of HA receptors and hyaluronan synthases (HAS), reduced hyaluronidases (HYALs), modulated the fibroblast-myofibroblast transition, and increased angiogenesis and matrix synthesis via the PI3K/AKT/m-TOR pathway, resulting in bladder remodeling and regeneration. Full article
Show Figures

Figure 1

12 pages, 1070 KiB  
Article
Action of Platelet-Rich Plasma on In Vitro Cellular Bioactivity: More than Platelets
by Maider Beitia, Diego Delgado, Jon Mercader, Pello Sánchez, Leonor López de Dicastillo and Mikel Sánchez
Int. J. Mol. Sci. 2023, 24(6), 5367; https://doi.org/10.3390/ijms24065367 - 10 Mar 2023
Cited by 27 | Viewed by 3191
Abstract
Platelet-rich plasma (PRP) is a biological therapy in which one of the mechanisms of action is the stimulation of biological processes such as cell proliferation. The size of PRP’s effect depends on multiple factors, one of the most important being the composition of [...] Read more.
Platelet-rich plasma (PRP) is a biological therapy in which one of the mechanisms of action is the stimulation of biological processes such as cell proliferation. The size of PRP’s effect depends on multiple factors, one of the most important being the composition of PRP. The aim of this study was to analyze the relationship between cell proliferation and the levels of certain growth factors (IGF-1, HGF, PDGF, TGF-β and VEG) in PRP. First, the composition and effect on cell proliferation of PRP versus platelet-poor plasma (PPP) were compared. Subsequently, the correlation between each growth factor of PRP and cell proliferation was evaluated. Cell proliferation was higher in cells incubated with lysates derived from PRP compared to those cultured with lysates derived from PPP. In terms of composition, the levels of PDGF, TGF-β, and VEGF were significantly higher in PRP. When analyzing the PRP growth factors, IGF-1 was the only factor that correlated significantly with cell proliferation. Of those analyzed, the level of IGF-1 was the only one that did not correlate with platelet levels. The magnitude of PRP’s effect depends not only on platelet count but also on other platelet-independent molecules. Full article
Show Figures

Figure 1

11 pages, 639 KiB  
Article
Overall Hemostatic Potential Assay Detects Risk of Progression to Post-Thrombotic Syndrome in Anticoagulated Patients following Deep Vein Thrombosis
by Blake McLeod, Hui Yin Lim, Harshal Nandurkar, Prahlad Ho and Julie Wang
Diagnostics 2022, 12(12), 3165; https://doi.org/10.3390/diagnostics12123165 - 14 Dec 2022
Cited by 7 | Viewed by 1967
Abstract
Deep vein thrombosis (DVT) frequently leads to post-thrombotic syndrome (PTS) which is challenging to predict and prevent. Identifying those at high risk of developing PTS may help to focus preventative strategies. Adults were recruited within 3 months of DVT diagnosis. Blood was sampled [...] Read more.
Deep vein thrombosis (DVT) frequently leads to post-thrombotic syndrome (PTS) which is challenging to predict and prevent. Identifying those at high risk of developing PTS may help to focus preventative strategies. Adults were recruited within 3 months of DVT diagnosis. Blood was sampled during the therapeutic anticoagulation phase. Overall hemostatic potential (OHP) assay, a spectrophotometric assay, was performed on platelet-poor plasma (PPP). In this assay, fibrin formation is triggered by small amounts of thrombin and termed the overall coagulation potential (OCP). Simultaneously, thrombin and tissue plasminogen activator are added to PPP and the resulting fibrin aggregation curve is the overall hemostatic potential (OHP). Fibrinolysis is expressed by the parameter overall fibrinolytic potential (OFP%). Patients were followed up at regular intervals. PTS was diagnosed if the Villalta score was ≥5 at least 3 months after the DVT diagnosis. Results were obtained from 190 patients (53.7% male, mean age 56.9 years). PTS developed in 62 (32.6%) patients. Patients with PTS displayed significantly higher median OCP (45.8 vs. 38.8 units, p = 0.010), OHP (12.8 vs. 9.2 units, p = 0.005) and significantly lower OFP (74.1 vs. 75.6%, p = 0.050). PTS patients had higher neutrophil/lymphocyte ratios (NLR) (2.3 vs. 1.9, p = 0.007). After multivariate analysis, proximal DVT location, history of varicose veins, NLR ≥ 2.6, OHP > 13.0 units and weight >108 kg were independent predictors for PTS. The c-statistic of the multivariate model was 0.77. This pilot study suggests that OHP testing while patients are still anticoagulated may assist in the prediction of PTS development and could assist in prognostication and targeting of preventative measures. However, larger prospective studies are needed to confirm these findings. Full article
(This article belongs to the Collection Vascular Diseases Diagnostics)
Show Figures

Figure 1

24 pages, 4896 KiB  
Article
Evaluation of the Regenerative Potential of Platelet-Lysate and Platelet-Poor Plasma Derived from the Cord Blood Units in Corneal Wound Healing Applications: An In Vitro Comparative Study on Corneal Epithelial Cells
by Panagiotis Mallis, Efstathios Michalopoulos, Eirini Faidra Sarri, Elena Papadopoulou, Vasiliki Theodoropoulou, Michalis Katsimpoulas and Catherine Stavropoulos-Giokas
Curr. Issues Mol. Biol. 2022, 44(10), 4415-4438; https://doi.org/10.3390/cimb44100303 - 22 Sep 2022
Cited by 7 | Viewed by 2808
Abstract
Background: Cord blood platelet lysate (CB-PL) and cord blood platelet poor plasma (CB-PPP) have been applied with success in wound healing applications. Pathologies such as Sjogrens’s Syndrome (SS) and chronic graft versus host disease (cGVHD) can lead to severe ophthalmology issues. The application [...] Read more.
Background: Cord blood platelet lysate (CB-PL) and cord blood platelet poor plasma (CB-PPP) have been applied with success in wound healing applications. Pathologies such as Sjogrens’s Syndrome (SS) and chronic graft versus host disease (cGVHD) can lead to severe ophthalmology issues. The application of CB-PL and CB-PPP may be strongly considered for damaged cornea healing. This study aimed to the evaluation of the beneficial properties of CB-PL and CB-PPP in corneal wound healing applications. Methods: Initially, the CB-PL and CB-PPP were produced from donated cord blood units (CBUs), followed by biochemical analysis. Corneal epithelial cells (CECs) were isolated from wistar rats and then cultured with medium containing 20% v/v either of CB-PL or CB-PPP. To define the impact of CB-PL and CB-PPP, biochemical, morphological analysis, scratch-wound assays, and immunoassays in CECs were performed. Results: CB-PL and CB-PPP were characterized by good biochemical parameters, regarding their quality characteristics and biomolecule content. CECs’ morphological features did not change after their cultivation with CB-PL or CB-PPP. A scratch wound assay and molecular analysis of CECs expanded with CB-PL indicated higher migratory capacity compared to those cultured with CB-PPP. Conclusion: CB-PL and CB-PPP exhibited good properties with respect to cell migration and proliferation, and could be considered an alternative source for eye drop production, to possibly be used in cornea wound healing applications. Full article
Show Figures

Figure 1

17 pages, 2623 KiB  
Article
The Occurrence of Hyperactivated Platelets and Fibrinaloid Microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
by Jean M. Nunes, Arneaux Kruger, Amy Proal, Douglas B. Kell and Etheresia Pretorius
Pharmaceuticals 2022, 15(8), 931; https://doi.org/10.3390/ph15080931 - 27 Jul 2022
Cited by 47 | Viewed by 25908
Abstract
We have previously demonstrated that platelet-poor plasma (PPP) obtained from patients with Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is characterized by a hypercoagulable state and contains hyperactivated platelets and considerable numbers of already-formed amyloid fibrin(ogen) or fibrinaloid microclots. Due to the substantial overlap [...] Read more.
We have previously demonstrated that platelet-poor plasma (PPP) obtained from patients with Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is characterized by a hypercoagulable state and contains hyperactivated platelets and considerable numbers of already-formed amyloid fibrin(ogen) or fibrinaloid microclots. Due to the substantial overlap in symptoms and etiology between Long COVID/PASC and ME/CFS, we investigated whether coagulopathies reflected in Long COVID/PASC—hypercoagulability, platelet hyperactivation, and fibrinaloid microclot formation—were present in individuals with ME/CFS and gender- and age-matched healthy controls. ME/CFS samples showed significant hypercoagulability as judged by thromboelastography of both whole blood and platelet-poor plasma. The area of plasma images containing fibrinaloid microclots was commonly more than 10-fold greater in untreated PPP from individuals with ME/CFS than in that of healthy controls. A similar difference was found when the plasma samples were treated with thrombin. Using fluorescently labelled PAC-1, which recognizes glycoprotein IIb/IIIa, and CD62P, which binds P-selectin, we observed hyperactivation of platelets in ME/CFS hematocrit samples. Using a quantitative scoring system, the ME/CFS platelets were found to have a mean spreading score of 2.72 ± 1.24 vs. 1.00 (activation with pseudopodia formation) for healthy controls. We conclude that ME/CFS is accompanied by substantial and measurable changes in coagulability, platelet hyperactivation, and fibrinaloid microclot formation. However, the fibrinaloid microclot load was not as great as was previously noted in Long COVID/PASC. Fibrinaloid microclots, in particular, may contribute to many ME/CFS symptoms, such as fatigue, seen in patients with ME/CFS, via the (temporary) blockage of microcapillaries and hence ischemia. Furthermore, fibrinaloid microclots might damage the endothelium. The discovery of these biomarkers represents an important development in ME/CFS research. It also points to possible uses for treatment strategies using known drugs and/or nutraceuticals that target systemic vascular pathology and endothelial inflammation. Full article
(This article belongs to the Special Issue Anticoagulants and Antiplatelet Drugs)
Show Figures

Figure 1

27 pages, 4264 KiB  
Article
Therapeutic Effect of Platelet-Rich Plasma Improves Bladder Overactivity in the Pathogenesis of Ketamine-Induced Ulcerative Cystitis in a Rat Model
by Kuang-Shun Chueh, Kuan-Hua Huang, Jian-He Lu, Tai-Jui Juan, Shu-Mien Chuang, Rong-Jyh Lin, Yi-Chen Lee, Cheng-Yu Long, Mei-Chen Shen, Ting-Wei Sun and Yung-Shun Juan
Int. J. Mol. Sci. 2022, 23(10), 5771; https://doi.org/10.3390/ijms23105771 - 21 May 2022
Cited by 11 | Viewed by 3819
Abstract
The present study attempted to elucidate whether intravesical instillation of platelet-rich plasma (PRP) could decrease bladder inflammation and ameliorate bladder hyperactivity in ketamine ulcerative cystitis (KIC) rat model. Female Sprague Dawley (S-D) rats were randomly divided into control group, ketamine-treated group, ketamine with [...] Read more.
The present study attempted to elucidate whether intravesical instillation of platelet-rich plasma (PRP) could decrease bladder inflammation and ameliorate bladder hyperactivity in ketamine ulcerative cystitis (KIC) rat model. Female Sprague Dawley (S-D) rats were randomly divided into control group, ketamine-treated group, ketamine with PRP treated group, and ketamine with platelet-poor plasma (PPP) treated group. Cystometry and micturition frequency/volume studies were performed to investigate bladder function. The morphological change of bladder was investigated by Mason’s trichrome staining. Western blotting analysis were carried out to examine the protein expressions of inflammation, urothelial differentiation, proliferation, urothelial barrier function, angiogenesis and neurogenesis related proteins. The results revealed that treatment with ketamine significantly deteriorated bladder capacity, decreased voiding function and enhanced bladder overactivity. These pathological damage and interstitial fibrosis may via NF-κB/COX-2 signaling pathways and muscarinic receptor overexpression. PRP treatment decreased inflammatory fibrotic biosynthesis, attenuated oxidative stress, promoted urothelial cell regeneration, and enhanced angiogenesis and neurogenesis, thereafter recovered bladder dysfunction and ameliorate the bladder hyperactivity in KIC rat model. These findings suggested that the PRP therapy may offer new treatment options for those clinical KIC patients. Full article
Show Figures

Figure 1

Back to TopTop