Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Pi-SAR-L2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3133 KiB  
Article
Wastewater Impact on Surface Water Quality and Suitability of Water Reuse in Agriculture Using a Comprehensive Methodology Based on PCA and Specific Indices
by Iulia Ajtai, Anda Anton, Carmen Roba, Camelia Botezan, Ioana Piștea, Marius Oprea and Călin Baciu
Water 2025, 17(13), 2011; https://doi.org/10.3390/w17132011 - 4 Jul 2025
Viewed by 374
Abstract
Effluents from wastewater treatment plants (WWTPs) represent a potential pollution risk to surface waters. Moreover, the growing practice of using treated wastewater for irrigation has recently received increased attention in terms of its suitability, raising concerns about its impact on soil health, agricultural [...] Read more.
Effluents from wastewater treatment plants (WWTPs) represent a potential pollution risk to surface waters. Moreover, the growing practice of using treated wastewater for irrigation has recently received increased attention in terms of its suitability, raising concerns about its impact on soil health, agricultural productivity, and human well-being. The aim of this study is to apply a comprehensive approach to assess the impact of wastewater from a Romanian WWTP on surface water quality and its suitability for irrigation practices. For this purpose, a set of physico-chemical parameters were analyzed, and a Water Quality Index (WQI) was developed based on Principal Component Analysis (PCA). The irrigation suitability of the effluent was further assessed using key parameters (electrical conductivity—EC; total dissolved solids—TDSs; turbidity; Biochemical Oxygen Demand—BOD5) and specific irrigation indices (Sodium Adsorption Ratio—SAR; Permeability Index—PI; Residual Sodium Carbonate—RSC; Sodium percentage—%Na; Kelly’s ratio—KR). The results for the surface water quality indicated high contents of Na+ (10.2–42.5 mg/L), Cl (11.9–48.4 mg/L), and SO42− (10.7–68.5 mg/L) downstream of the wastewater discharge point. The WQI, which reflects overall water quality for environmental health, showed excellent water quality, with a mean of 34 upstream and 47 downstream, suggesting the potential impact of treated wastewater discharge downstream. However, the irrigation indices revealed elevated sodium levels in the effluent, with %Na (up to 86%) categorizing 70% of the samples as unsuitable, while KR (up to 6.2) classified all samples as unsuitable. These findings suggest that despite a low impact on the river water, elevated sodium levels in effluent may limit suitability for irrigation, highlighting the importance of monitoring effluent water reuse. Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

24 pages, 7329 KiB  
Article
Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches
by Zineb Mansouri, Haythem Dinar, Abdeldjalil Belkendil, Omar Bakelli, Tarek Drias, Amine Aymen Assadi, Lotfi Khezami and Lotfi Mouni
Water 2025, 17(11), 1698; https://doi.org/10.3390/w17111698 - 3 Jun 2025
Cited by 1 | Viewed by 537
Abstract
This study focuses on assessing the hydrogeochemical characteristics and irrigation suitability of groundwater in the Ras El Aioun and Merouana districts, using an integrated approach that combines physicochemical analysis, machine learning (ML), and Geographic Information Systems (GISs). Thirty groundwater samples were collected in [...] Read more.
This study focuses on assessing the hydrogeochemical characteristics and irrigation suitability of groundwater in the Ras El Aioun and Merouana districts, using an integrated approach that combines physicochemical analysis, machine learning (ML), and Geographic Information Systems (GISs). Thirty groundwater samples were collected in June 2023 and subjected to extensive analyses, including major ions (Ca2+, Mg2+, Na+, K+, HCO3, Cl, SO42−), pH, TDS, alkalinity, and hardness. Hydrochemical facies analysis revealed that the Ca-HCO3 type was dominant (93.33%), with some samples exceeding FAO limits, particularly for Na+, K+, SO42−, Cl, Mg2+, and HCO3. Assessment of groundwater irrigation suitability revealed generally favorable conditions based on three key parameters: all samples (100%) were classified as excellent based on the Sodium Adsorption Ratio (SAR < 10), 70% showed good-to-permissible status by Sodium Percentage (Na% < 60), and 83.3% were within safe limits for Residual Sodium Carbonate (RSC < 1.25 meq/L). However, the Permeability Index (PI > 75%) categorized 96.7% of samples as unsuitable for long-term irrigation due to potential soil permeability reduction. Additionally, Total Hardness (TH < 75 mg/L) indicated predominantly soft water characteristics (90% of samples), particularly in the central study area, suggesting possible limitations for certain agricultural applications that require mineral-rich water. GIS-based spatial analysis showed that irrigation suitability was higher in the eastern and western regions than in the central zone. Advanced machine learning algorithms provide superior predictive capability for water quality parameters by effectively modeling complex, non-linear feature interactions that conventional statistical approaches frequently fail to capture. Three ML models—Support Vector Regression (SVR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were used to predict the Irrigation Water Quality Index (IWQI). XGBoost outperformed the others (RMSE = 2.83, R2 = 0.957), followed by RF (RMSE = 3.12, R2 = 0.93) and SVR (RMSE = 3.45, R2 = 0.92). Integrating ML and GIS improved groundwater quality assessment and provided a robust framework for sustainable irrigation management. These findings provide critical insights for optimizing agricultural water use in water-scarce regions. Full article
(This article belongs to the Special Issue Global Water Resources Management)
Show Figures

Figure 1

22 pages, 64606 KiB  
Article
Spatial Variations and Regulating Processes of Groundwater Geochemistry in an Urbanized Valley Basin on Tibetan Plateau
by Wanping Wang, Shilong Zhang, Shengbin Wang, Chumeng Zhang, Guoqiang Zhang, Jie Wang, Liwei Wang, Hongjie Yang, Wenxu Hu, Yuqing Zhang, Ning Wang and Yong Xiao
Appl. Sci. 2024, 14(21), 9804; https://doi.org/10.3390/app14219804 - 27 Oct 2024
Cited by 2 | Viewed by 1103
Abstract
Groundwater resource is crucial for the development of agriculture and urban communities in valley basins of arid and semiarid regions. This research investigated the groundwater chemistry of a typical urbanized valley basin on the Tibetan Plateau to understand the hydrochemical status, quality, and [...] Read more.
Groundwater resource is crucial for the development of agriculture and urban communities in valley basins of arid and semiarid regions. This research investigated the groundwater chemistry of a typical urbanized valley basin on the Tibetan Plateau to understand the hydrochemical status, quality, and controlling mechanisms of groundwater in arid urbanized valley basins. The results show groundwater is predominantly fresh and slightly alkaline across the basin, with approximately 54.17% of HCO3-Ca type. About 12.5% and 33.33% of sampled groundwaters are with the hydrochemical facies of Cl-Mg·Ca type and Cl-Na type, respectively. Groundwater is found with the maximum TDS, NO3, NO2, and F content of 3066 mg/L, 69.33 mg/L, 0.04 mg/L, and 3.12 mg/L, respectively. Groundwater quality is suitable for domestic usage at all sampling sites based on EWQI assessment but should avoid direct drinking at some sporadic sites in the urban area. The exceeding nitrogen and fluoride contaminants would pose potential health hazards to local residents, but high risks only existed for infants. Both minors and adults are at medium risk of these exceedingly toxic contaminants. Groundwater quality of predominant sites in the basin is suitable for long-term irrigation according to the single indicator of EC, SAR, %Na, RSC, KR, PI, and PS and integrated irrigation quality assessment of USSL, Wilcox, and Doneen diagram assessment. But sodium hazard, alkalinity hazard, and permeability problem should be a concern in the middle-lower stream areas. Groundwater chemistry in the basin is predominantly governed by water-rock interaction (silicate dissolution) across the basin in natural and sporadically by evaporation. Human activities have posed disturbances to groundwater chemistry and inputted nitrogen, fluoride, and salinity into groundwater. The elevated nitrogen contaminants in groundwater are from both agricultural activities and municipal sewage. While the elevated fluoride and salinity in groundwater are only associated with municipal sewage. It is imperative to address the potential anthropogenic contaminants to safeguard groundwater resources from the adverse external impacts of human settlements within these urbanized valley basins. Full article
Show Figures

Figure 1

15 pages, 2838 KiB  
Article
Distribution of SARS-CoV-2 Genomes in Wastewaters and the Associated Potential Infection Risk for Plant Workers in Typical Urban and Peri-Urban Communities of the Buffalo City Region, South Africa
by Balisa Ngqwala, Luyanda Msolo, Kingsley Ehi Ebomah, Nolonwabo Nontongana and Anthony Ifeanyi Okoh
Viruses 2024, 16(6), 871; https://doi.org/10.3390/v16060871 - 29 May 2024
Viewed by 1280
Abstract
The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater has been reported in several studies and similar research can be used as a proxy for an early warning of potential Coronavirus disease 2019 (COVID-19) outbreaks. This study focused on profiling [...] Read more.
The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater has been reported in several studies and similar research can be used as a proxy for an early warning of potential Coronavirus disease 2019 (COVID-19) outbreaks. This study focused on profiling the incidence of SARS-CoV-2 genomes in wastewater samples obtained from facilities located in the Buffalo City Municipality. Raw samples were collected weekly using the grab technique for a period of 48 weeks. Ribonucleic acids were extracted from the samples, using the QIAGEN Powersoil Total RNA Extraction kit, and extracted RNA samples were further profiled for the presence of SARS-CoV-2 genomes using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) technique. Furthermore, various environmental matrices were utilized to estimate the potential health risk to plant operators associated with exposure to SARS-CoV-2 viral particles using the quantitative microbiological risk assessment (QMRA) model. Our findings revealed the prevalence of SARS-CoV-2 genomes with concentrations that ranged from 0.22 × 103 to 17.60 × 103 genome copies per milliliter (GC/mL). Different exposure scenarios were employed for the QMRA model, and the findings indicate a probability of infection (P(i)) ranging from 0.93% to 37.81% across the study sites. Similarly, the P(i) was highly significant (p < 0.001) for the 20 mL volumetric intake as compared to other volumetric intake scenarios, and high P(i) was also observed in spring, autumn, and winter for all WWTPs. The P(i) was significantly different (p < 0.05) with respect to the different seasons and with respect to different volume scenarios. Full article
(This article belongs to the Special Issue Molecular Epidemiology of SARS-CoV-2, 3rd Edition)
Show Figures

Figure 1

21 pages, 4662 KiB  
Article
Thapsigargin and Tunicamycin Block SARS-CoV-2 Entry into Host Cells via Differential Modulation of Unfolded Protein Response (UPR), AKT Signaling, and Apoptosis
by Abeer Al Otaibi, Sindiyan Al Shaikh Mubarak, Fatimah Al Hejji, Abdulrahman Almasaud, Haya Al Jami, Jahangir Iqbal, Ali Al Qarni, Naif Khalaf Al Harbi and Ahmed Bakillah
Cells 2024, 13(9), 769; https://doi.org/10.3390/cells13090769 - 30 Apr 2024
Cited by 2 | Viewed by 3010
Abstract
Background: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER [...] Read more.
Background: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. Methods: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. Results: TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA’s attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. Conclusions: These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection. Full article
Show Figures

Figure 1

16 pages, 4666 KiB  
Article
Development of an Optimized Process for Functional Recombinant SARS-CoV-2 Spike S1 Receptor-Binding Domain Protein Produced in the Baculovirus Expression Vector System
by Mohamed Boumaiza, Ameni Chaabene, Ines Akrouti, Meriem Ben Zakour, Hana Askri, Said Salhi, Wafa Ben Hamouda, Soumaya Marzouki, Chaouki Benabdessalem, Melika Ben Ahmed, Khaled Trabelsi and Samia Rourou
Trop. Med. Infect. Dis. 2023, 8(11), 501; https://doi.org/10.3390/tropicalmed8110501 - 16 Nov 2023
Cited by 3 | Viewed by 2996
Abstract
To map the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and evaluate immune response variations against this virus, it is essential to set up efficient serological tests locally. The SARS-CoV-2 immunogenic proteins were very expensive and not affordable for lower- middle-income [...] Read more.
To map the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and evaluate immune response variations against this virus, it is essential to set up efficient serological tests locally. The SARS-CoV-2 immunogenic proteins were very expensive and not affordable for lower- middle-income countries (LMICs). For this purpose, the commonly used antigen, receptor-binding domain (RBD) of spike S1 protein (S1RBD), was produced using the baculovirus expression vector system (BEVS). In the current study, the expression of S1RBD was monitored using Western blot under different culture conditions. Different parameters were studied: the multiplicity of infection (MOI), cell density at infection, and harvest time. Hence, optimal conditions for efficient S1RBD production were identified: MOI 3; cell density at infection 2–3 × 106 cells/mL; and time post-infection (tPI or harvest time) of 72 h and 72–96 h, successively, for expression in shake flasks and a 7L bioreactor. A high production yield of S1RBD varying between 4 mg and 70 mg per liter of crude cell culture supernatant was achieved, respectively, in the shake flasks and 7L bioreactor. Moreover, the produced S1RBD showed an excellent antigenicity potential against COVID-19 (Wuhan strain) patient sera evaluated by Western blot. Thus, additional serological assays, such as in-house ELISA and seroprevalence studies based on the purified S1RDB, were developed. Full article
(This article belongs to the Special Issue COVID-19 Variants, Vaccines and New Waves)
Show Figures

Figure 1

24 pages, 18505 KiB  
Article
Groundwater Quality and Suitability Assessment for Irrigation Using Hydrogeochemical Characteristics and Pollution Indices: A Case Study of North Al-Quwayiyah Governorate, Central Saudi Arabia
by Haya M. Alogayell, Eman Mohamed M. EL-Bana and Mohamed Abdelfattah
Water 2023, 15(18), 3321; https://doi.org/10.3390/w15183321 - 21 Sep 2023
Cited by 10 | Viewed by 2594
Abstract
The present work focuses on a comprehensive hydrochemical assessment of groundwater within a shallow aquifer located in the central region of Saudi Arabia. This aquifer serves as the principal source of groundwater supply for agricultural irrigation purposes. A total of twelve groundwater samples [...] Read more.
The present work focuses on a comprehensive hydrochemical assessment of groundwater within a shallow aquifer located in the central region of Saudi Arabia. This aquifer serves as the principal source of groundwater supply for agricultural irrigation purposes. A total of twelve groundwater samples were systematically collected and subjected to thorough analysis to determine various physicochemical parameters. These parameters encompassed electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), as well as concentrations of major ions. Analysis of major ion analysis was employed to elucidate the chemical attributes of groundwater within the research area. This approach facilitated an understanding of the geochemical evolution and the potential suitability of the groundwater for agriculture irrigation. The recorded range of electrical conductivity (EC) for the groundwater in this region falls between 3283 and 11,000 µS/cm, with an average value of 6709.4 µS/cm. The pH levels of the groundwater exhibited a slightly alkaline nature, ranging from 7.8 to 8.6. All sampled wells exhibited brackish water conditions (TDS > 1000 mg/L) based on TDS concentrations. The findings of this investigation demonstrated that the average ion concentration followed the order: Na+ > Ca+ > Mg2+ > K+ and Cl > SO42− > HCO3 > NO32−. Applying Piper’s classification system, the groundwater samples were classified into two predominant categories: Ca-Cl and mix-Ca-Mg-Cl. The predominance of Ca2+ and Mg2+ over alkalis indicated mixed groundwater facies influenced by processes of reverse ion exchange and extensive interactions between water and rock formations. The distinct chemical characteristics of the groundwater were attributed to a combination of factors, including the percolation of irrigation-returned water, chemical transformations within the vadose zone, and extensive interactions with subsurface lithology. Despite major ion concentrations surpassing the permissible limits outlined by the World Health Organization (WHO) for drinking water, the assessment of quality indices was conducted to ascertain the suitability of the groundwater for irrigation purposes. These quality indices encompassed the permeability index (PI), magnesium hazard (MH), Kelly’s ratio (KR), sodium-adsorption ratio (SAR), residual sodium carbonate (RSC), sodium percentage (Na%), and magnesium ratio (MR). A meticulous evaluation of groundwater quality for agricultural utilization indicated that all sampled groundwater sources were deemed suitable for irrigation purposes. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

13 pages, 868 KiB  
Article
Humoral Response after a Fourth Dose with mRNA-1273 in Healthcare Workers with and without a History of SARS-CoV-2 Infection and Previously Vaccinated with Two Doses of BBIBP-CorV Plus BNT162b2 Vaccine
by Juan C. Gómez de la Torre, Miguel Hueda-Zavaleta, José Alonso Cáceres-DelAguila, Cecilia Muro-Rojo, Nathalia De La Cruz-Escurra and Vicente A. Benítes-Zapata
Vaccines 2023, 11(5), 894; https://doi.org/10.3390/vaccines11050894 - 25 Apr 2023
Cited by 1 | Viewed by 1845
Abstract
There is limited information on the kinetics of the humoral response elicited by a fourth dose with a heterologous mRNA1273 booster in patients who previously received a third dose with BNT162b2 and two doses of BBIBP-CorV as the primary regimen. We conducted a [...] Read more.
There is limited information on the kinetics of the humoral response elicited by a fourth dose with a heterologous mRNA1273 booster in patients who previously received a third dose with BNT162b2 and two doses of BBIBP-CorV as the primary regimen. We conducted a prospective cohort study to assess the humoral response using Elecsys® anti-SARS-CoV-2 S (anti-S-RBD) of 452 healthcare workers (HCWs) in a private laboratory in Lima, Peru at 21, 120, 210, and 300 days after a third dose with a BNT162b2 heterologous booster in HCW previously immunized with two doses of BBIBP-CorV, depending on whether or not they received a fourth dose with the mRNA1273 heterologous vaccine and on the history of previous SARS infection -CoV-2. Of the 452 HCWs, 204 (45.13%) were previously infected (PI) with SARS-CoV-2, and 215 (47.57%) received a fourth dose with a heterologous mRNA-1273 booster. A total of 100% of HCWs presented positive anti-S-RBD 300 days after the third dose. In HCWs receiving a fourth dose, GMTs 2.3 and 1.6 times higher than controls were observed 30 and 120 days after the fourth dose. No statistically significant differences in anti-S-RBD titers were observed in those HCWs PI and NPI during the follow-up period. We observed that HCWs who received a fourth dose with the mRNA1273 and those previously infected after the third dose with BNT162b2 (during the Omicron wave) presented higher anti-S-RBD titers (5734 and 3428 U/mL, respectively). Further studies are required to determine whether patients infected after the third dose need a fourth dose. Full article
(This article belongs to the Special Issue Antibody Response to Infection and Vaccination)
Show Figures

Figure 1

26 pages, 7378 KiB  
Article
Detection of Groundwater Quality Changes in Minia Governorate, West Nile River
by Elsayed M. Ramadan, Abir M. Badr, Fadi Abdelradi, Abdelazim Negm and Ahmed M. Nosair
Sustainability 2023, 15(5), 4076; https://doi.org/10.3390/su15054076 - 23 Feb 2023
Cited by 5 | Viewed by 3876
Abstract
The need for freshwater supplies is increasingly rising according to the increase in the inhabitants’ expansion and economic growth. Available water resources are reduced by pollution and overpumping. This research’s prime objective is to study changes in the water quality of the Pleistocene [...] Read more.
The need for freshwater supplies is increasingly rising according to the increase in the inhabitants’ expansion and economic growth. Available water resources are reduced by pollution and overpumping. This research’s prime objective is to study changes in the water quality of the Pleistocene aquifer in Minia Governorate. Historical hydro-chemical data of the groundwater in two years 2009 and 2019 were used to study the changes in the groundwater quality of the Pleistocene aquifer under the impact of the recharge and discharge processes. The Nile River, and the Al-Ibrahimia and Bahr Youssef Canals are considered the main sources of aquifer recharge. Collected data from 53 groundwater wells in the Pleistocene aquifer were used to calculate the sodium adsorption ratio (SAR), sodium percentage (Na%), Kelly index (KI), Soluble Sodium Percentage (SSP), magnesium ratio (MR%), permeability index (PI) and chloro-alkaline index (CAI). These data were used to evaluate and detect the quality and changes in groundwater through the years 2009 and 2019 using spatial mapping in the geographic information system (GIS). The values of SAR, KI and Na% varied between 0.06–1.22, 0.02–0.57 meq/L and 3.7–37.63%, respectively, in the year 2009, but these values changed to 0.4–0.75, 0.16–0.28 meq/L and 15.07–23.44% in the year 2019. The calculated MR and PI values indicate that 100% of the groundwater samples were in the “suitable” category. The calculated SSP reflects no changes in groundwater alkalinity between the years 2009 and 2019. The hydro-chemical analysis of the studied groundwater (G.W.) samples shows high pollution levels caused by Pb and Fe in some parts of the study area. Pb was found to be >40 µg/L in the middle parts, whereas Fe was found with high levels in 27% of the studied groundwater samples. The localities of these samples were affected by pollution from the industrial wastewater from the sugar factory of Abou-Qarqas city (e.g., El-Moheet drain), the fertilizer leaching process and pesticides seeping into groundwater from soils and agricultural wastewater. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

13 pages, 828 KiB  
Article
Severe COVID-19 Illness and α1-Antitrypsin Deficiency: COVID-AATD Study
by Juan Luis Rodríguez Hermosa, Gianna Vargas Centanaro, María Estela González Castro, Marc Miravitlles, Lourdes Lázaro-Asegurado, Beatriz María Jiménez-Rodríguez, Rosanel Amaro Rodríguez, Rosaly Moreno Méndez, María Torres-Duran, José María Hernández-Pérez, Ana María Humanes-Navarro and Myriam Calle Rubio
Biomedicines 2023, 11(2), 516; https://doi.org/10.3390/biomedicines11020516 - 10 Feb 2023
Cited by 10 | Viewed by 2437
Abstract
Background: Epidemiologic studies have reported that the geographical distribution of the prevalence of allelic variants of serine protein inhibitor-A1 (SERPINA1) and severe cases of COVID-19 were similar. Methods: A multicenter, cross-sectional, observational study to evaluate the frequency of alpha-1 antitrypsin deficiency (AATD) in [...] Read more.
Background: Epidemiologic studies have reported that the geographical distribution of the prevalence of allelic variants of serine protein inhibitor-A1 (SERPINA1) and severe cases of COVID-19 were similar. Methods: A multicenter, cross-sectional, observational study to evaluate the frequency of alpha-1 antitrypsin deficiency (AATD) in patients with COVID-19 and whether it was associated with having suffered severe COVID-19. Results: 2022 patients who had laboratory-confirmed SARS-CoV-2 infection. Mutations associated with AATD were more frequent in severe COVID versus non-severe (23% vs. 18.8%, p = 0.022). The frequency of Pi*Z was 37.8/1000 in severe COVID versus 17.5/1000 in non-severe, p = 0.001. Having an A1AT level below 116 was more frequent in severe COVID versus non-severe (29.5% vs. 23.1, p = 0.003). Factors associated with a higher likelihood of severe COVID-19 were being male, older, smoking, age-associated comorbidities, and having an A1AT level below 116 mg/dL [OR 1.398, p = 0.003], and a variant of the SERPINA1 gene that could affect A1AT protein [OR 1.294, p = 0.022]. Conclusions: These observations suggest that patients with AATD should be considered at a higher risk of developing severe COVID-19. Further studies are needed on the role of A1AT in the prognosis of SARS-CoV-2 infection and its possible therapeutic role. Full article
Show Figures

Figure 1

20 pages, 8932 KiB  
Article
Possible Factors Driving Groundwater Quality and Its Vulnerability to Land Use, Floods, and Droughts Using Hydrochemical Analysis and GIS Approaches
by Sherif Ahmed Abu El-Magd, Hanaa Ahmed, Quoc Bao Pham, Nguyen Thi Thuy Linh, Duong Tran Anh, Ismail Elkhrachy and Ahmed M. Masoud
Water 2022, 14(24), 4073; https://doi.org/10.3390/w14244073 - 13 Dec 2022
Cited by 13 | Viewed by 3254
Abstract
Land use and climate change always induce significant changes in various parameters of the hydrologic cycle (e.g., surface runoff, infiltration, evapotranspiration). The Wadi El-Assiuti downstream area in the Eastern Desert of Egypt is one of the most promising areas for development that is [...] Read more.
Land use and climate change always induce significant changes in various parameters of the hydrologic cycle (e.g., surface runoff, infiltration, evapotranspiration). The Wadi El-Assiuti downstream area in the Eastern Desert of Egypt is one of the most promising areas for development that is suffering from insufficient water availability and inadequate water quality for different purposes. The main goal of this research is to evaluate the changes in groundwater quality, land use, and climate in association with geology and flooding during three periods within the years 1997–2019 in the downstream portion of Wadi El-Assiuti in the Eastern Desert of Egypt, using spatiotemporal variation associated with groundwater hydrochemical analysis and GIS techniques. About 133 groundwater samples were collected to examine groundwater quality changes over time. Different groundwater quality indices were calculated, and the results show that TDS levels of groundwater in the study area ranged between 1080–2780 mg/L, 672–4564 mg/L, and 811–6084 mg/L, while SAR levels varied within 6.15–15.34, 1.83–28.87, and 1.43–30.57 for the years 1997, 2007, and 2019, respectively. Both RSBC and SSP values exhibited significantly increasing trends over time. KR values were within 1.36–4.06 in 1997, 0.58–14.09 in 2007, and 0.35–14.92 in 2019; MAR values were within 6.9–45.2 in 1997, 20.79–71.5 in 2007, and 17.71–75.81 in 2019; and PI values were within 60.16–83 in 1997, 45.56–101.03 in 2007, and 42.51–148.88 in 2019. Across the entire study area, ongoing land use changes increased from 1.1% in 1997 to 4.1% in 2019. Findings pointed to the significant contribution of the deep Nubian Sandstone Aquifer to the groundwater aquifer at Wadi El-Assiuti through fractures and deep faults. Given the climatic conditions from 1997–2019, these changes may have affected water quality in shallow aquifers, especially with increasing evaporation. Realizing the spatiotemporal variation of the aquifer recharge system, land use development, and climate change clearly would help in water resource management. This study revealed that flooding events, deep-seated geologic structures, and land use development associated with human activities have the highest impact on groundwater quality. Full article
(This article belongs to the Special Issue The Impact of Climate Change and Land Use on Water Resources)
Show Figures

Figure 1

22 pages, 4744 KiB  
Article
Hydrogeochemical Studies to Assess the Suitability of Groundwater for Drinking and Irrigation Purposes: The Upper East Region of Ghana Case Study
by Franklin Obiri-Nyarko, Stephen Junior Asugre, Sandra Vincentia Asare, Anthony Appiah Duah, Anthony Yaw Karikari, Jolanta Kwiatkowska-Malina and Grzegorz Malina
Agriculture 2022, 12(12), 1973; https://doi.org/10.3390/agriculture12121973 - 22 Nov 2022
Cited by 11 | Viewed by 2704
Abstract
Groundwater is increasingly being used to help meet the Sustainable Development Goals (SDGs) 2 and 6 in many parts of the world, including Ghana. Against this background, hydrogeochemical and multivariate statistical studies were conducted to determine the physicochemical characteristics and suitability of groundwater [...] Read more.
Groundwater is increasingly being used to help meet the Sustainable Development Goals (SDGs) 2 and 6 in many parts of the world, including Ghana. Against this background, hydrogeochemical and multivariate statistical studies were conducted to determine the physicochemical characteristics and suitability of groundwater in some agrarian communities in the Upper East Region of Ghana for drinking and irrigational farming. Additional analyses were also performed to identify potential health risks associated with the groundwater use and to better understand the hydrogeochemical processes controlling groundwater evolution for its effective management. The results showed that the groundwater is typically fresh; moderate to very hard in character; undersaturated with calcite, dolomite, halite, and gypsum; and supersaturated with quartz and amorphous silica. The physicochemical characteristics of the groundwater are controlled by both anthropogenic and natural activities/processes, such as fertilizer application, irrigation return flows, rock weathering, and forward/reverse cation exchange. The total dissolved solids (TDS) (165–524 mg/L), electrical conductivity (EC) (275–873 μS/cm), sodium percentage (Na%; 9.05–17.74%), magnesium ratios (MR) (29.25–53.3%), permeability index (PI) (36.6–74.6%), and sodium adsorption ratio (SAR) (0.20–0.51) point to the possibility of using the groundwater for irrigation, however, with some salinity control. The water quality and health risk analysis also revealed that the groundwater can be used for drinking; however, the high concentrations of fluoride, which can cause noncarcinogenic health issues such as dental and skeletal fluorosis in both adults and children, must be reduced to the WHO required level of 1.5 mg/L. Full article
Show Figures

Figure 1

20 pages, 2579 KiB  
Article
Dysregulated Neutrophil Phenotype and Function in Hospitalised Non-ICU COVID-19 Pneumonia
by Kylie B. R. Belchamber, Onn S. Thein, Jon Hazeldine, Frances S. Grudzinska, Aduragbemi A. Faniyi, Michael J. Hughes, Alice E. Jasper, Kay Por Yip, Louise E. Crowley, Sebastian T. Lugg, Elizabeth Sapey, Dhruv Parekh, David R. Thickett and Aaron Scott
Cells 2022, 11(18), 2901; https://doi.org/10.3390/cells11182901 - 16 Sep 2022
Cited by 14 | Viewed by 4760
Abstract
Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may [...] Read more.
Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity. Full article
(This article belongs to the Special Issue New Insights into Neutrophil Biology)
Show Figures

Figure 1

23 pages, 3818 KiB  
Article
Hydrogeochemistry of Shallow Groundwater and Suitability to Irrigation: The Case of the Karfiguéla Paddy Field in Burkina Faso
by Sauret Élie Serge Gaëtan, Compaoré Hillary Marie Michelle, Kissou Ouindinboudé Jacques, Yaméogo Poulouma Louis and Sermé Idriss
Water 2022, 14(16), 2574; https://doi.org/10.3390/w14162574 - 20 Aug 2022
Cited by 3 | Viewed by 2916
Abstract
Shallow groundwater is often exposed to multiple sources of pollution that can make it unsuitable for certain uses. Complete hydrogeochemical studies are necessary for the better management of these resources. Well water samples were collected on the extent of Karfiguéla paddy field for [...] Read more.
Shallow groundwater is often exposed to multiple sources of pollution that can make it unsuitable for certain uses. Complete hydrogeochemical studies are necessary for the better management of these resources. Well water samples were collected on the extent of Karfiguéla paddy field for physico-chemical parameters, such as pH, EC, TDS, Na+, Ca2+, Mg2+, K+, NH4+, NO3, NO2, SO42−, CO32−, Cl, and HCO3, and metallic trace elements analyses as a case study. Due to the alluvial nature of aquifer deposits and the short residence time of groundwater, physical parameters and ion concentrations are low and within the recommended guideline values for irrigation water of the Food and Agriculture Organization (FAO) of the United Nations. However, Cd presents concentrations above 10 µg/L, the limit recommended by the FAO, while NO3 presents a slight to moderate risk. Piper and Stiff diagrams showed two types of water, Ca·Mg·HCO3 and Ca·Mg·SO4·Cl. Saturation indices revealed the under mineralization of natural minerals. Gibbs and bivariate diagrams, correlations and factorial analyses indicated that groundwater mineralization is mainly controlled by anthropogenic agricultural activities (60.05%), calcite and magnesite alteration (15.01%) and CO2 dissolution process (9.05%). Irrigation water suitability parameters, such as sodium adsorption ratio (SAR), sodium percentage (%Na), potential salinity (PS), the Kelly ratio (KR), residual sodium carbonate (RSC) and irrigation coefficient (Ka), confirmed that the shallow groundwater is 100% good for irrigation, while NO3 and permeability index (PI) indicated that it is permissible. However, according to magnesium hazard (MH), the groundwater is 100% unsuitable for irrigation and could lead to soil alkalinity. Full article
Show Figures

Figure 1

20 pages, 2347 KiB  
Article
Hydro-Geochemistry and Groundwater Quality Assessment of Ouargla Basin, South of Algeria
by Zina Mansouri, Youcef Leghrieb, Saber Kouadri, Nadhir Al-Ansari, Hadee Mohammed Najm, Nuha S. Mashaan, Moutaz Mustafa A. Eldirderi and Khaled Mohamed Khedher
Water 2022, 14(15), 2441; https://doi.org/10.3390/w14152441 - 6 Aug 2022
Cited by 9 | Viewed by 4965
Abstract
This study aims to evaluate the hydro-chemical characteristics of Ouargla, Algeria basin groundwaters harvested from the Mio Pliocene aquifer. The study covered 70 samples; the physical parameters, potential of hydrogen (pH), and electrical conductivity EC μS.cm−1 were determined in situ, using a [...] Read more.
This study aims to evaluate the hydro-chemical characteristics of Ouargla, Algeria basin groundwaters harvested from the Mio Pliocene aquifer. The study covered 70 samples; the physical parameters, potential of hydrogen (pH), and electrical conductivity EC μS.cm−1 were determined in situ, using a multiparameter; the laboratory analysis included dry residuals DR (mg/L), calcium Ca2+ (mg/L), magnesium Mg2+ (mg/L), sodium Na+ (mg/L), potassium K+ (mg/L), bicarbonates HCO3 (mg/L), sulfates SO42− (mg/L), and chloride Cl (mg/L). The piper diagram shows that the Ouargla basin ground waters divided into two facies, sodic chlorinated in 93% and sodic sulphated in 7% of samples. The United States Salinity Laboratory Staff (USSL) diagram was used to detect the suitability of groundwater in irrigation where the results show that the groundwater was classed into two classes, poor water (C4 S4) and bad water (C4 S4). Furthermore, indices such as the Kelly index (KI), sodium adsorption ratio (SAR), sodium solubility percentage (Na%), and magnesium hazards (MH) confirm the negative effect of groundwater on soil permeability in 96%, 80%, 89%, and 53% of samples. The permeability index (PI) shows that the analyzed samples were considered as doubtful (71%) and safe (29%), otherwise there is no risk related to residual sodium carbonate (RSC). The geo-spatial distribution of deferent indices shows that all the study area has poor groundwater for irrigation, except the south-west part, where the groundwaters of this sub-area do not form a problem related to RSC. Full article
Show Figures

Figure 1

Back to TopTop