Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches
Abstract
Share and Cite
Mansouri, Z.; Dinar, H.; Belkendil, A.; Bakelli, O.; Drias, T.; Assadi, A.A.; Khezami, L.; Mouni, L. Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches. Water 2025, 17, 1698. https://doi.org/10.3390/w17111698
Mansouri Z, Dinar H, Belkendil A, Bakelli O, Drias T, Assadi AA, Khezami L, Mouni L. Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches. Water. 2025; 17(11):1698. https://doi.org/10.3390/w17111698
Chicago/Turabian StyleMansouri, Zineb, Haythem Dinar, Abdeldjalil Belkendil, Omar Bakelli, Tarek Drias, Amine Aymen Assadi, Lotfi Khezami, and Lotfi Mouni. 2025. "Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches" Water 17, no. 11: 1698. https://doi.org/10.3390/w17111698
APA StyleMansouri, Z., Dinar, H., Belkendil, A., Bakelli, O., Drias, T., Assadi, A. A., Khezami, L., & Mouni, L. (2025). Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches. Water, 17(11), 1698. https://doi.org/10.3390/w17111698