Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,546)

Search Parameters:
Keywords = Physiological characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1508 KiB  
Article
Analysis of Coupled Response Characteristics of NAI Release and Stem Flow in Four Urban Greening Tree Species in Beijing During Drought Stress and Recovery Processes
by Xueqiang Liu, Bin Li, Weikang Zhang, Shaowei Lu, Jigui Wu, Jing An, Yaqian Fan, Na Zhao, Xiaotian Xu and Shaoning Li
Plants 2025, 14(17), 2630; https://doi.org/10.3390/plants14172630 (registering DOI) - 23 Aug 2025
Abstract
Negative air ions (NAI) represent an important ecological value indicator for green tree species. Flow of sap is a crucial indicator for water utilization and physiological state of trees. Although there have been some advancements in studies on the correlation between the release [...] Read more.
Negative air ions (NAI) represent an important ecological value indicator for green tree species. Flow of sap is a crucial indicator for water utilization and physiological state of trees. Although there have been some advancements in studies on the correlation between the release of NAI by plants and sap flow in recent years, it is still unclear how the release of NAI by plants changes during drought stress and recovery processes, as well as the coupling effect between the release of NAI by plants and sap flow under drought stress. In this context, four typical green tree species, Robinia pseudoacacia, Quercus variabilis, Pinus tabulaeformis, and Platycladus orientalis, were selected as experimental materials. A drought stress and recovery control experiment was conducted based on OTC. The dynamic data of negative air ion concentration (NAIC) and sap flow rate during the process of drought stress and recovery were monitored to clarify the characteristics and correlations of NAI and sap flow changes in the experimental tree species under drought stress and recovery. The main research results are as follows: (1) At the end of the drought period, the NAI and sap flow in the drought treatment group significantly decreased (p < 0.01), compared with the control group (CK), and the reduction rate of sap flow (77.73 ± 4.96%) for each tree species was higher than that of NAI (47.78% ± 4.96%). (2) At 1 day after rehydration, the recovery amplitudes of NAI and sap flow for all tree species were the greatest; at 7 days after rehydration, the NAI and sap flow of the drought treatment group recovered to the levels of the control group (p > 0.05). (3) During different stages of drought rehydration, the response degree of NAI to sap flow varied. The study found that in the drought-rehydration stage, the correlation between the NAI released by each tree species and sap flow was the lowest at the drought endpoint. In conclusion, this research clarifies the changing patterns of plant NAI release and sap flow during drought-rehydration, as well as the response changes of NAI to sap flow. It provides a theoretical basis for selecting drought-tolerant tree species in arid regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
26 pages, 925 KiB  
Review
Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats
by Iljin Kim and Jang-Hyuk Yun
Pharmaceutics 2025, 17(9), 1098; https://doi.org/10.3390/pharmaceutics17091098 (registering DOI) - 23 Aug 2025
Abstract
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. [...] Read more.
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. Conversely, feline DM shares key features with human T2DM, including insulin resistance, obesity-related inflammation, and islet amyloidosis. This review provides a comprehensive comparative analysis of antidiabetic therapies in humans, dogs, and cats, focusing on three core areas: disease pathophysiology, pharmacological and delivery strategies, and translational implications. In human medicine, a wide array of insulin analogs, oral hypoglycemic agents, and incretin-based therapies, including glucagon-like peptide-1 receptor agonists (liraglutide) and sodium-glucose cotransporter-2 inhibitors (empagliflozin), are available. Veterinary treatments remain limited to species-adapted insulin formulations and off-label use of human drugs. Interspecies differences in gastrointestinal physiology, drug metabolism, and behavioral compliance influence therapeutic efficacy and pharmacokinetics. Recent innovations, such as microneedle patches for insulin delivery and continuous glucose monitoring systems, show promise in humans and animals. Companion animals with naturally occurring diabetes serve as valuable models for preclinical testing of novel delivery platforms and long-acting formulations under real-world settings. While these technologies show potential, challenges remain in regulatory approval and behavioral adaptation in animals. Conclusions: Future research should prioritize pharmacokinetic bridging studies, veterinary-specific formulation trials, and device validation in animal models. By highlighting shared and species-specific characteristics of DM pathogenesis and treatment, this review advocates a One Health approach toward optimized antidiabetic therapies that benefit human and veterinary medicine. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

16 pages, 464 KiB  
Article
Physiological and Metabolic Responses to Water Restriction in Ewes Under Semi-Arid Conditions
by Claudenilde de Jesus Pinheiro Costa, Gherman Garcia Leal de Araújo, André Luiz Rodrigues Magalhães, Alberício Pereira de Andrade, Silvia Helena Nogueira Turco, Maria Helena Tavares de Matos, Diego César Nunes da Silva, Cleyton de Almeida Araújo, Roberta de Lima Valença, Thieres George Freire da Silva, Fleming Sena Campos and Glayciane Costa Gois
Vet. Sci. 2025, 12(9), 790; https://doi.org/10.3390/vetsci12090790 - 22 Aug 2025
Abstract
The aim of this study was to evaluate the effect of different water restrictions on the thermoregulation and blood hematological and metabolite parameters of crossbred Santa Inês ewes in a semi-arid climate. Thirty-two ewes were subjected to four water supply levels (100%, 80%, [...] Read more.
The aim of this study was to evaluate the effect of different water restrictions on the thermoregulation and blood hematological and metabolite parameters of crossbred Santa Inês ewes in a semi-arid climate. Thirty-two ewes were subjected to four water supply levels (100%, 80%, 60%, and 40%), in a completely randomized design with eight replications. The confinement period lasted 77 days, with 14 days allocated for adaptation. Respiratory rate, heart rate, and rectal temperature exhibited a quadratic response. There was an increase in red blood cells and urea. The enzyme alanine aminotransferase decreased linearly with water restriction. Urinary creatinine decreased along with water supply. Regarding urine color characteristics, all groups showed different colors, ranging from clear to cloudy. For the chemical characteristics of urine, a quadratic effect was observed for pH, with the highest value (8.75) at 60%. An increase was observed in total urine proteins and urobilinogen. Crossbred Santa Inês ewes in a semi-arid climate exhibit physiological adaptations to water supply reduction up to 40%. Following an 80% reduction in water supply, animals exhibit mild dehydration, characterized by increased serum urea levels and decreased alanine aminotransferase activity. Full article
Show Figures

Figure 1

17 pages, 556 KiB  
Article
The Impact of Cultivars and Biostimulants on the Compounds Contained in Glycine max (L.) Merr. Seeds
by Katarzyna Rymuza, Elżbieta Radzka and Joanna Cała
Agriculture 2025, 15(17), 1796; https://doi.org/10.3390/agriculture15171796 - 22 Aug 2025
Abstract
Background: Soybean (Glycine max (L.) Merr.), a nutrient-rich leguminous crop high in protein, lipids, and minerals, is extensively cultivated worldwide. The chemical composition of soybean seeds depends not only on the genetic characteristics of the cultivar but also on environmental conditions and [...] Read more.
Background: Soybean (Glycine max (L.) Merr.), a nutrient-rich leguminous crop high in protein, lipids, and minerals, is extensively cultivated worldwide. The chemical composition of soybean seeds depends not only on the genetic characteristics of the cultivar but also on environmental conditions and agricultural practices. In recent years, biostimulants have gained increasing importance in crop production due to their ability to enhance physiological processes in plants and potentially influence nutrient accumulation. This study aimed to investigate how cultivar and biostimulant type influence the chemical composition of soybean seeds under varying weather conditions in Central Europe. Methods: A three-year field experiment (2017–2019) was conducted in eastern Poland (Central Europe) using a split-plot design. The experimental factors included three non-GMO soybean cultivars (Abelina, Merlin, and SG Anser) and two foliar biostimulants (Asahi SL and Improver). In addition to classical ANOVA, the multivariate analysis of the impact of the investigated factors included principal component analysis (PCA). Results: The applied factors significantly affected seed contents of fat, protein, dry matter, ash, fibre, and macronutrients (N, P, K). Cv. Merlin had the highest fat (22.65%) and fibre content (9.33%), while Abelina showed the highest protein (37.06%) and dry matter content (94.42%). Biostimulant application increased the accumulation of several seed components. Asahi SL significantly enhanced fat content (by 0.69%), protein content (by over 1.5%), and dry matter content (by nearly 0.2%) compared to the control. Improver was more effective in increasing nitrogen (by 0.24%), phosphorus (by 0.5%), and potassium (by 0.15%) contents. Weather conditions throughout the growing seasons significantly altered the impact of the biostimulants. The PCA analysis revealed distinct relationships among the chemical properties of seeds, meteorological factors, and the applied biostimulants. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

17 pages, 1803 KiB  
Article
Effect of Nitrogen Application Rate on Growth Physiology, Yield Quality, and Nitrogen Fertilizer Utilization Rate of Liriope muscari in Pots
by Yuhong Yuan, Jihong Xiao, Shaoyan Liu, Tianyou He, Jundong Rong and Yushan Zheng
Biology 2025, 14(8), 1104; https://doi.org/10.3390/biology14081104 - 21 Aug 2025
Abstract
Liriope muscari is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable [...] Read more.
Liriope muscari is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable application of nitrogen fertilizers. In this study, based on uniform application of phosphorus and potassium fertilizers, six nitrogen application levels were set in pot experiments (expressed as N): N0: 0 kg/ha, N1: 208.33 kg/ha, N2: 416.66 kg/ha, N3: 625 kg/ha, N4: 833.33 kg/ha, N5: 1041.66 kg/ha). The morphological characteristics, photosynthetic physiology, tuber yield and quality, and seven nitrogen fertilizer utilization indices of L. muscari were analyzed and measured. Correlation analysis and structural equation modeling (SEM) were employed to investigate the mechanism by which nitrogen influences its growth and development, photosynthetic characteristics, tuber yield and quality, and nitrogen fertilizer utilization efficiency. The results showed that (1) nitrogen significantly promoted plant height, crown width, tiller number, and chlorophyll synthesis , with the N3 treatment (625 kg/ha) reaching the peak value, and the crown width and tiller number increasing by 26.44% and 38.90% compared to N0; the total chlorophyll content and net photosynthetic rate increased by 39.67% and 77.04%, respectively, compared to N0; high nitrogen (N5) inhibited photosynthesis and increased intercellular CO₂ concentration; (2) Fresh weight of tuberous roots, polysaccharide content, and saponin C content peaked at N3 (34.67 g/plant, 39.89%, and 0.21%), respectively, representing increases of 128.69%, 28.37%, and 33.66% compared to N0; (3) Nitrogen uptake, nitrogen fertilizer utilization efficiency, agronomic utilization efficiency, and apparent utilization efficiency were optimal at N3, while high nitrogen (N4–N5) reduced nitrogen fertilizer efficiency by 40–60%; (4) SEM analysis indicated that tiller number and transpiration rate directly drive yield, while stomatal conductance regulates saponin C synthesis. Under the experimental conditions, 625 kg/ha is the optimal nitrogen application rate balancing yield, quality, and nitrogen efficiency. Excessive nitrogen application (>833 kg/ha) induces photosynthetic inhibition and “luxury absorption”, leading to source-sink imbalance and reduced accumulation of secondary metabolites. This study provides a theoretical basis and technical support for the precise management of nitrogen in Liriope-type medicinal plants. It is expected to alleviate the contradictions of “high input, low output, and heavy pollution” in traditional fertilization models. Full article
20 pages, 3222 KiB  
Article
Polypropylene Microplastics and Cadmium: Unveiling the Key Impacts of Co-Pollution on Wheat–Soil Systems from Multiple Perspectives
by Zhiqin Zhang, Haoran He, Nan Chang and Chengjiao Duan
Agronomy 2025, 15(8), 2013; https://doi.org/10.3390/agronomy15082013 - 21 Aug 2025
Abstract
The interaction between microplastics (MPs) and heavy metals and their ecological risks to the soil–plant system has attracted widespread attention. This study explored the effects of polypropylene (PP) alone or combined with cadmium (Cd) pollution on wheat seed germination, plant growth, and the [...] Read more.
The interaction between microplastics (MPs) and heavy metals and their ecological risks to the soil–plant system has attracted widespread attention. This study explored the effects of polypropylene (PP) alone or combined with cadmium (Cd) pollution on wheat seed germination, plant growth, and the soil environment from multiple perspectives through seed germination experiments and pot experiments. The results of the seed germination experiment showed that the addition of 50 mg L−1 PP could promote the growth of seeds. However, medium and high concentrations of PP had significant inhibitory effects on seeds. For PP + Cd co-pollution, the addition of 50 mg L−1 PP could partially alleviate the stress of Cd alone. However, with the increase in PP concentration, the co-pollution showed stronger toxicity to seeds. Moreover, the synergistic effect of PP and Cd was greater than the antagonistic effect; both of them aggravated the stress on wheat. The results of the pot experiment showed that the soil microenvironment was significantly affected by PP alone or combined with Cd pollution. It was manifested as reducing soil moisture and pH, affecting soil nutrient cycling, and inhibiting the activities of soil enzymes (except for catalase). In addition, the MPs and Cd significantly affected the physiological characteristics of plants. Specifically, the addition of 50 mg L−1 PP alone promoted or had no significant effect on wheat growth. However, with the increase in PP concentration, the biomass and chlorophyll content of plants decreased significantly, while carotenoids, oxidative damage, and antioxidant enzyme activities increased significantly. Moreover, PP + Cd co-pollution led to stronger phytotoxicity. Moreover, PP exposure caused an increase in plant shoot and root Cd concentrations, promoting Cd transport from roots to shoots. Correlation heat maps and RDA analysis revealed that plant Cd concentration was significantly correlated with soil environmental factors and plant physiological indicators. Finally, the results of the linear model (%) of relative importance indicated that pH and MDA content were important soil and plant variables affecting the increase in Cd concentration in plant tissues. This study is of great significance for evaluating the ecological risks of MPs-Cd composite pollution. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

26 pages, 6019 KiB  
Article
Spatiotemporal Variations in Grain Yields and Their Responses to Climatic Factors in Northeast China During 1993–2022
by Ruiqiu Pang, Dongqi Sun and Weisong Sun
Land 2025, 14(8), 1693; https://doi.org/10.3390/land14081693 - 21 Aug 2025
Abstract
Global warming impacts agricultural production and food security, particularly in high-latitude regions with high temperature sensitivity. As a major grain-producing area in China and one of the fastest-warming regions globally, Northeast China (NEC) has received considerable research attention. However, the existing literature lacks [...] Read more.
Global warming impacts agricultural production and food security, particularly in high-latitude regions with high temperature sensitivity. As a major grain-producing area in China and one of the fastest-warming regions globally, Northeast China (NEC) has received considerable research attention. However, the existing literature lacks sufficient exploration of the spatiotemporal heterogeneity in climate change impacts. Based on data on rice, corn, and soybean yields, as well as temperature, rainfall, and sunshine duration in NEC from 1993 to 2022, this study employs Sen’s slope estimation, the Mann–Kendall (MK) test, spatial autocorrelation analysis, and the Geographically and Temporally Weighted Regression (GTWR) model to analyze the spatiotemporal evolution of grain yields and their responses to climate change. The results show that ① 1993–2022 witnessed an overall rise in grain yields per unit area in NEC, with Liaoning growing fastest. Rice yields increased regionally; corn yields rose in Liaoning and Jilin, while soybean yields increased only in Liaoning. During the growing season, rainfall trended upward with fluctuations, temperatures rose steadily, and sunshine duration declined in Heilongjiang. ② Except for corn and soybeans in the early period, other crops exhibited significant yield spatial agglomeration. High–high agglomeration areas first expanded, then shrank, eventually shifting northward to the region of Jilin Province. ③ Climatic factors show marked spatiotemporal heterogeneity in impacts: positive effect areas of rainfall and temperature expanded northward; sunshine duration’s influence weakened, but its negative effect areas spread. ④ Differences in crop responses are closely linked to their physiological characteristics, regional climate evolution, and agricultural adaptation measures. This study provides a scientific basis for formulating region-specific agricultural adaptation strategies to address climate change in NEC. Full article
Show Figures

Figure 1

13 pages, 1048 KiB  
Article
Driving Behavior of Older and Younger Drivers in Simplified Emergency Scenarios
by Yun Xiao, Mingming Dai and Shouqiang Xue
Sensors 2025, 25(16), 5178; https://doi.org/10.3390/s25165178 - 20 Aug 2025
Viewed by 88
Abstract
This study focuses on exploring the differences in driving abilities in emergency traffic situations between older drivers (aged 60–70) and young drivers (aged 20–35) in a simple traffic environment. Two typical emergency scenarios were designed in the experiment: Scenario A (intrusion of electric [...] Read more.
This study focuses on exploring the differences in driving abilities in emergency traffic situations between older drivers (aged 60–70) and young drivers (aged 20–35) in a simple traffic environment. Two typical emergency scenarios were designed in the experiment: Scenario A (intrusion of electric bicycles) and Scenario B (pedestrians crossing the road). The experiment employed a driving simulation system to synchronously collect data on eye movement characteristics, driving behavior, and physiological metrics from 30 drivers. Two-factor covariance analysis, correlation analysis, and regression analysis were conducted on the experimental data. The comprehensive study results indicated that the older group exhibited better driving performance in emergency scenarios compared to the younger group. Specifically, in Scenario A, the older group had a faster first fixation time on the AOI compared to the younger group, a faster braking reaction time, a higher maximum brake pedal depth, and a higher skin conductance level. In Scenario B, the older group’s driving performance was similar to that in Scenario A, with better performance than the younger group. The study reveals that in some simple driving tasks, young-old drivers (60–70 years) can compensate for their physiological decline through self-regulation and self-restraint, thereby exhibiting safer driving behaviors. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 6933 KiB  
Article
Physiological and Transcriptomic Mechanisms of Exogenous Salicylic Acid-Induced Resistance to Ear Rot in Maize
by Fangju Jiao, Ning Lan, Weijie Lu and Fang Wang
Agronomy 2025, 15(8), 2002; https://doi.org/10.3390/agronomy15082002 - 20 Aug 2025
Viewed by 142
Abstract
Maize ear rot is an important fungal disease in maize production, mainly caused by pathogens such as Fusarium graminearum, which seriously affects the yield and quality of maize. This study investigated the changes in the activity of defense-related enzymes in maize grains [...] Read more.
Maize ear rot is an important fungal disease in maize production, mainly caused by pathogens such as Fusarium graminearum, which seriously affects the yield and quality of maize. This study investigated the changes in the activity of defense-related enzymes in maize grains and their transcriptome response characteristics after exogenous SA treatment under Fusarium graminearum stress. The results showed that treatment with 0.01 mmol/L salicylic acid (SA) significantly inhibited the growth of Fusarium graminearum hyphae, while enhancing the activities of phenylalanine ammonia-lyase (PAL), superoxide dismutase (SOD), β-1,3-glucanase (β-1,3-GA), and polyphenol oxidase (PPO) in maize grains, and reducing the content of malondialdehyde (MDA), effectively alleviating the damage of Fusarium graminearum to the maize grain membrane system. Transcriptome analysis identified multiple key genes involved in SA-mediated disease resistance pathways, including disease-related proteins (PR10), acidic terpenoids, aspartic proteases, proteins containing BTB/POZ and MATH domains (BPM4), and PPT3 transporters. This study reveals the physiological and molecular mechanisms by which exogenous SA enhances maize resistance to ear rot, providing an important theoretical basis for further understanding the regulatory network of SA in plant disease resistance. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 2576 KiB  
Article
Enhancement in Three-Dimensional Depth with Bionic Image Processing
by Yuhe Chen, Chaoping Chen, Baoen Han and Yunfan Yang
Computers 2025, 14(8), 340; https://doi.org/10.3390/computers14080340 - 20 Aug 2025
Viewed by 138
Abstract
This study proposes an image processing framework based on Bionic principles to optimize 3D visual perception in virtual reality (VR) systems. By simulating the physiological mechanisms of the human visual system, the framework significantly enhances depth perception and visual fidelity in VR content. [...] Read more.
This study proposes an image processing framework based on Bionic principles to optimize 3D visual perception in virtual reality (VR) systems. By simulating the physiological mechanisms of the human visual system, the framework significantly enhances depth perception and visual fidelity in VR content. The research focuses on three core algorithms: Gabor texture feature extraction algorithm based on directional selectivity of neurons in the V1 region of the visual cortex, which enhances edge detection capability through fourth-order Gaussian kernel; improved Retinex model based on adaptive mechanism of retinal illumination, achieving brightness balance under complex illumination through horizontal–vertical dual-channel decomposition; the RGB adaptive adjustment algorithm, based on the three color response characteristics of cone cells, integrates color temperature compensation with depth cue optimization, enhances color naturalness and stereoscopic depth. Build a modular processing system on the Unity platform, integrate the above algorithms to form a collaborative optimization process, and ensure per-frame processing time meets VR real-time constraints. The experiment uses RMSE, AbsRel, and SSIM metrics, combined with subjective evaluation to verify the effectiveness of the algorithm. The results show that compared with traditional methods (SSAO, SSR, SH), our algorithm demonstrates significant advantages in simple scenes and marginal superiority in composite metrics for complex scenes. Collaborative processing of three algorithms can significantly improve depth map noise and enhance the user’s subjective experience. The research results provide a solution that combines biological rationality and engineering practicality for visual optimization in fields such as implantable metaverse, VR healthcare, and education. Full article
Show Figures

Figure 1

16 pages, 2789 KiB  
Article
Thermal Comfort and Tourism in Mostar (Bosnia and Herzegovina): A Human Bioclimatic Information Sheet for Visitors and Planners
by Milica Pecelj, Slavica Malinović-Milićević and Andreas Matzarakis
Atmosphere 2025, 16(8), 987; https://doi.org/10.3390/atmos16080987 - 20 Aug 2025
Viewed by 216
Abstract
In the context of growing climate change and more frequent heat extremes, tourism in Mediterranean cities like Mostar (Bosnia and Herzegovina) is becoming increasingly vulnerable. This study aimed to provide a detailed analysis of the human bioclimatic conditions in Mostar using the physiologically [...] Read more.
In the context of growing climate change and more frequent heat extremes, tourism in Mediterranean cities like Mostar (Bosnia and Herzegovina) is becoming increasingly vulnerable. This study aimed to provide a detailed analysis of the human bioclimatic conditions in Mostar using the physiologically equivalent temperature (PET) index, the modified PET (mPET), and the Climate-Tourism Information Scheme (CTIS), based on hourly meteorological data for the period 2000–2020. By applying the RayMan model, relevant bioclimatic parameters were calculated for three key times of day (07:00, 14:00, and 21:00 CET), and the results were analyzed in terms of seasonal and daily patterns of thermal stress. The most intense thermal stress was observed during summer afternoon hours, while the transitional seasons (spring and autumn) offer significantly more favorable conditions for tourist activities. A major contribution of this study is the creation of the first integrated bioclimatic information sheet for Mostar, which brings together PET, mPET, and CTIS outputs in accessible format tailored to local tourism needs. It serves as a scientifically based and practical tool for informing visitors and improving the planning of tourism activities in accordance with local climatic characteristics. Due to its visual clarity and ease of interpretation, the information sheet has strong potential for strategic adaptation in climate-sensitive tourism management. Full article
(This article belongs to the Special Issue Climate Change and Tourism: Impacts and Responses)
Show Figures

Figure 1

19 pages, 3343 KiB  
Article
Echocardiographic Assessment of Pulmonary Hemodynamics and Right Ventricular Performance in Neonatal Murine Hypoxia
by Kel Vin Woo, Philip T. Levy, Carla J. Weinheimer, Amanda L. Hauck, Aaron Hamvas, David M. Ornitz, Attila Kovacs and Gautam K. Singh
J. Cardiovasc. Dev. Dis. 2025, 12(8), 316; https://doi.org/10.3390/jcdd12080316 - 19 Aug 2025
Viewed by 122
Abstract
Background: Right heart catheterization (RHC) is the gold-standard for diagnosis of pulmonary hypertension (PH) but is a terminal procedure in neonatal mice. The objective was to validate echocardiographic measures of PH to establish the diagnostic capability against pulmonary vascular histology in neonatal mice. [...] Read more.
Background: Right heart catheterization (RHC) is the gold-standard for diagnosis of pulmonary hypertension (PH) but is a terminal procedure in neonatal mice. The objective was to validate echocardiographic measures of PH to establish the diagnostic capability against pulmonary vascular histology in neonatal mice. Methods: Adult mice, exposed to hypoxia or normoxia, were assessed by echocardiography and RHC to evaluate right ventricle (RV) morphometry and function. Echocardiographic measures identified in adult mice were then used to evaluate PH characteristics in hypoxia-exposed neonatal mice. Physiological parameters were compared to histopathology in all mice. Results: Hypoxia-challenged adult mice developed PH with RHC, demonstrating confirmed elevated RV systolic pressure (RVSP), RV hypertrophy, and increased cross-sectional area and neomuscularization of pulmonary vessels. Echocardiography-derived RV free wall (RVFW) thickness correlated with RV mass. Tricuspid valve annulus tissue Doppler imaging (TV TDI), tricuspid annular plane systolic excursion (TAPSE), pulmonary artery acceleration measures (PAAT), and TAPSE × PAAT (a measure of RV work) all correlated with RVSP determined by RHC. In neonatal mice exposed to hypoxia, PAAT, TV TDI, TAPSE, and TAPSE × PAAT were decreased and RVFW thickness was increased, correlating with the histologic phenotype of PH. Conclusions: Echocardiographic indices of RV morphology and function provide reliable estimates of invasive RV hemodynamics in hypoxia-induced PH. Full article
(This article belongs to the Section Basic and Translational Cardiovascular Research)
Show Figures

Figure 1

21 pages, 9452 KiB  
Article
Comparison of Techniques for Respiratory Rate Extraction from Electrocardiogram and Photoplethysmogram
by Alfonso Maria Ponsiglione, Michela Russo, Maria Giovanna Petrellese, Annalisa Letizia, Vincenza Tufano, Carlo Ricciardi, Annarita Tedesco, Francesco Amato and Maria Romano
Sensors 2025, 25(16), 5136; https://doi.org/10.3390/s25165136 - 19 Aug 2025
Viewed by 256
Abstract
Background: Respiratory rate (RR) is a key vital sign and one of the most sensitive indicators of physiological conditions, playing a crucial role in the early identification of clinical deterioration. The monitoring of RR using electrocardiography (ECG) and photoplethysmography (PPG) aims to overcome [...] Read more.
Background: Respiratory rate (RR) is a key vital sign and one of the most sensitive indicators of physiological conditions, playing a crucial role in the early identification of clinical deterioration. The monitoring of RR using electrocardiography (ECG) and photoplethysmography (PPG) aims to overcome limitations of traditional methods in clinical settings. Methods: The proposed approach extracts RR from ECG and PPG signals using different morphological and temporal features from publicly available datasets (iAMwell and Capnobase). The algorithm was used to develop and test with a selection of relevant ECG (e.g., R-peak, QRS area, and QRS slope) and PPG (amplitude and frequency modulation) characteristics. Results: The results show promising performance, with the ECG-derived signal using the R-peak–based method yielding the lowest error, with a mean absolute error of 0.99 breaths/min in the iAMwell dataset and 3.07 breaths/min in the Capnobase dataset. In comparison, the RR PPG-derived signal showed higher errors of 5.10 breaths/min in the iAMwell dataset and 10.66 breaths/min in the Capnobase dataset, for the FM and AM method, respectively. Bland–Altman analysis revealed a small negative bias, approximately −0.97 breaths/min for the iAMwell dataset (with limits of agreement from −2.62 to 0.95) and −1.16 breaths/min for the Capnobase dataset (limits of agreement from −3.37 to 1.10) in the intra-subject analysis. In the inter-subject analysis, the bias was −0.84 breaths/min (limits of agreement from −1.76 to 0.20) for iAMwell and −1.22 breaths/min (limits of agreement from −7.91 to 5.35) for Capnobase, indicating a slight underestimation. Conversely, the PPG-derived signal tended to overestimate RR, resulting in higher variability and reduced accuracy. These findings highlight the higher reliability of ECG-derived features for RR estimation in the analyzed datasets. Conclusion: This study suggests that the proposed approach could guide the design of cost-effective, non-invasive methods for continuous respiration monitoring, offering a reliable tool for detecting conditions like stress, anxiety, and sleep disorders. Full article
Show Figures

Figure 1

16 pages, 7479 KiB  
Article
Anti-Swelling Dual-Network Zwitterionic Conductive Hydrogels for Flexible Human Activity Sensing
by Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Qianqian Liu and Xin Zhao
Polymers 2025, 17(16), 2230; https://doi.org/10.3390/polym17162230 - 16 Aug 2025
Viewed by 339
Abstract
Conventional conductive hydrogels are susceptible to swelling in aquatic environments; which compromises their mechanical integrity; a limitation that poses a potential challenge to their long-term stability and application. In this study, a zwitterionic ion-conductive hydrogel was fabricated from polyvinyl alcohol (PVA), acrylic acid [...] Read more.
Conventional conductive hydrogels are susceptible to swelling in aquatic environments; which compromises their mechanical integrity; a limitation that poses a potential challenge to their long-term stability and application. In this study, a zwitterionic ion-conductive hydrogel was fabricated from polyvinyl alcohol (PVA), acrylic acid (AA), and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SMBA), forming a dual-network structure. A copolymer of zwitterionic SBMA and AA formed the first network, and PVA formed the second network by repeated freeze–thawing. The equilibrium state of zwitterionic SBMA was modulated by AA to protonate the SBMA, which resulted in the conversion of -SO3 to -SO3H; thus, hydrogels had the anti-swelling property driven by electrostatic repulsion. In addition, the prepared hydrogels possessed excellent mechanical properties (tensile strength of 0.76 MPa, elongation at break of 322%, and compressive strength of 0.97 MPa at 75% compressive strain) and remarkable anti-swelling properties (80% swelling after 120 h of immersion). Owing to the zwitterionic nature of SBMA, the hydrogel also showed inherent antimicrobial properties and high electrical conductivity, which could be capable of monitoring human movement and physiological signals. This work provides a facile strategy for designing hydrogels with remarkable mechanical properties and anti-swelling characteristics, expanding the application environment of hydrogels in flexible sensing Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

12 pages, 458 KiB  
Article
Preliminary Pharmacokinetic Analysis of Tramadol and Its Metabolite O-Desmethyltramadol in Boa (Boa constrictor constrictor)
by Marina Lopes Castro, Natalya Maldonado Moreno, Raphael Rocha Wenceslau, Fabiola Paes Leme, José Eduardo Gonçalves, Lara Duque Estrada Meyer Fagundes, Natália Fagundes, Marcelo Pires Nogueira de Carvalho and Suzane Lilian Beier
Animals 2025, 15(16), 2404; https://doi.org/10.3390/ani15162404 - 15 Aug 2025
Viewed by 290
Abstract
Boa constrictor snakes represent a suitable model for studying the absorption, metabolism, and elimination of tramadol due to their distinct physiological characteristics. The objective of this work was to provide preliminary data on the pharmacokinetics of tramadol and its active metabolite, O-desmethyltramadol (M1), [...] Read more.
Boa constrictor snakes represent a suitable model for studying the absorption, metabolism, and elimination of tramadol due to their distinct physiological characteristics. The objective of this work was to provide preliminary data on the pharmacokinetics of tramadol and its active metabolite, O-desmethyltramadol (M1), in the plasma of Boa constrictor using liquid chromatography with fluorescence detection. Ten snakes received tramadol (5 mg kg−1) both into the epaxial musculature (TRIM) and into the paravertebral vein (TRIV) with a 45-day interval between the two administration methods. Blood samples were taken at specified time points to analyze the pharmacokinetics. Data were evaluated with an independent pharmacokinetic model (R software version 4.3.0). A paired Student’s t-test was used for all parametric variables, except clearance, which was analyzed with the Wilcoxon test. A significance level of 5% was applied. The mean (range) maximum concentration of tramadol, volume of distribution, clearance, and elimination half-life for the TRIM group were 2.58 µg mL−1, 10.58 ± 2.91 L kg−1, 0.36 L kg−1 h−1, and 19.96 ± 8.34 h, respectively. For the TRIV group, these values were 3.39 µg mL−1, 5.60 ± 1.69 L kg−1, 0.22 L kg h−1, and 17.32 ± 7.55 h−1, respectively. M1 achieved maximum concentration and elimination half-lives of 0.58 µg mL−1 and 49.89 ± 10.8 h, respectively, for TRIM and 0.59 µg mL−1 and 35.66 ± 10.85 h for TRIV. The bioavailability of intramuscular tramadol was 61%, and M1 remained at similar concentrations for 20 min after tramadol administration in both treatments. Tramadol is rapidly biotransformed into M1 in Boa constrictors, maintaining high concentrations over an extended period. The pharmacokinetic characteristics, particularly the sustained plasma concentrations of M1, suggest potential for effective analgesia in the Boa constrictor. Furthermore, the intramuscular route provides the additional advantage of ease and practicality of administration. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

Back to TopTop