Echocardiographic Assessment of Pulmonary Hemodynamics and Right Ventricular Performance in Neonatal Murine Hypoxia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animal Care and Use
2.3. Animal Model of Hypoxia-Induced PH
2.4. Echocardiography
2.5. Cardiac Catheterization
2.6. Cardiac Tissue Processing
2.7. Immunohistochemistry and Immunofluorescence
2.8. Whole Slide Scanning
2.9. Measurement of Ventricular Weights
2.10. Statistics Analysis
3. Results
3.1. Echocardiographic Assessment of Hypoxia-Induced PH in Adult Mice
3.2. Echocardiographic Evaluation of Hypoxia-Induced RV Hypertrophy and RV Function in Adult Mice
3.3. Neonatal Hypoxia Results in Pulmonary Hypertension
3.4. Hypoxia Induces PH in Neonatal Mice
3.5. Neonatal Hypoxia Causes RV Hypertrophy and Diminished RV Function
4. Discussion
4.1. Echocardiographic Assessment of Hypoxia-Induced PH, RV Hypertrophy, and RV Dysfunction in Adult Mice
4.2. Echocardiographic Assessment of Hypoxia-Induced PH, RV Hypertrophy, and RV Function in Neonatal Mice
Author (year) | Age | Lung Disease Model | Mechanism | Adult Mice Comparison | PH Assessment |
---|---|---|---|---|---|
Yang (2015) [6] | p0–p14 | 11%, 2 weeks | IGF-1 | No | Thoracotomy with direct RV catheterization, Histology |
Reynolds (2016) [24] | p0–p14 | 70%, 2 weeks | BPD | No | Echocardiography Histology |
Ambalavanan (2005) [29] | p0–p14 | 14%, 2 weeks | ETAR | No | Histology * |
Young (2009) [30] | p0–p14 | 12%, 2 weeks | CXCR4 | No | Thoracotomy with direct RV catheterization Histology |
Bierer (2011) [31] | p2–p14 | Hyobaric | NFATc3 | Yes | Histology |
Sartina (2012) [32] | p0–p14 | 12%, 2 weeks | CXCR7 | No | Thoracotomy with direct RV catheterization Histology |
Gupta (2015) [33] | p0 | Hyperoxia | SOD2 | No | Histology |
Sun (2016) [34] | p0–p14 + 4 weeks | 11%, 2 weeks | IGF-1 | Yes | RV catheterization via IJ at 6 weeks Histology |
Young (2016) [35] | p0–p14 + 4 weeks | 12%, 2 weeks | SCF | No | Thoracotomy with direct RV catheterization Histology |
Sherlock (2018) [36] | p2–p22 | Bleomycin | SOD | No | Histology |
Woo (current study) | p0–p14 | 10%, 2 weeks | BPD | Yes | Echocardiography Catheterization (adults only), Histology |
4.3. RV-PA Coupling Mice
4.4. Clinical Implications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPD | Bronchopulmonary dysplasia |
PAAT | Pulmonary artery acceleration time |
PAATi | Indexed Pulmonary artery acceleration time (PAAT was adjusted to RVET) |
PH | Pulmonary hypertension |
PVD | Pulmonary vascular disease |
RHC | Right heart catheterization |
RV | Right ventricle |
RV | Right ventricle ejection time |
RVSP | Right ventricular systolic pressure |
RVFW | Right ventricle free wall |
TAPSE | Tricuspid annular plane excursion |
TDI | Tissue Doppler imaging |
TV | Tricuspid valve |
References
- Mourani, P.M.; Sontag, M.K.; Younoszai, A.; Miller, J.I.; Kinsella, J.P.; Baker, C.D.; Poindexter, B.B.; Ingram, D.A.; Abman, S.H. Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2015, 191, 87–95. [Google Scholar] [CrossRef]
- Levy, P.T.; Patel, M.D.; Groh, G.; Choudhry, S.; Murphy, J.; Holland, M.R.; Hamvas, A.; Grady, M.R.; Singh, G.K. Pulmonary Artery Acceleration Time Provides a Reliable Estimate of Invasive Pulmonary Hemodynamics in Children. J. Am. Soc. Echocardiogr. 2016, 29, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, U.; Feinstein, J.A.; Adatia, I.; Austin, E.D.; Mullen, M.P.; Hopper, R.K.; Hanna, B.; Romer, L.; Keller, R.L.; Fineman, J.; et al. Evaluation and Management of Pulmonary Hypertension in Children with Bronchopulmonary Dysplasia. J. Pediatr. 2017, 188, 24–34.e1. [Google Scholar] [CrossRef]
- Nagiub, M.; Lee, S.; Guglani, L. Echocardiographic assessment of pulmonary hypertension in infants with bronchopulmonary dysplasia: Systematic review of literature and a proposed algorithm for assessment. Echocardiography 2015, 32, 819–833. [Google Scholar] [CrossRef]
- O’Connor, M.G.; Cornfield, D.N.; Austin, E.D. Pulmonary hypertension in the premature infant: A challenging comorbidity in a vulnerable population. Curr. Opin. Pediatr. 2016, 28, 324–330. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, M.; Ramchandran, R.; Raj, J.U. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: Role of epigenetic regulation. Vasc. Pharmacol. 2015, 73, 20–31. [Google Scholar] [CrossRef]
- Das, M.; Fessel, J.; Tang, H.; West, J. A process-based review of mouse models of pulmonary hypertension. Pulm. Circ. 2012, 2, 415–433. [Google Scholar] [CrossRef]
- Kobs, R.W.; Muvarak, N.E.; Eickhoff, J.C.; Chesler, N.C. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am. J. Physiol.-Heart Circ. Physiol. 2005, 288, H1209–H1217. [Google Scholar] [CrossRef] [PubMed]
- Thibault, H.B.; Kurtz, B.; Raher, M.J.; Shaik, R.S.; Waxman, A.; Halpern, E.; Bloch, K.D.; Scherrer-Crosbie, M. Noninvasive assessment of murine pulmonary arterial pressure: Validation and application to models of pulmonary hypertension. Circ. Cardiovasc. Imaging 2010, 3, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Neilan, T.G.; Jassal, D.S.; Perez-Sanz, T.M.; Raher, M.J.; Pradhan, A.D.; Buys, E.S.; Ichinose, F.; Bayne, D.B.; Halpern, E.F.; Weyman, A.E.; et al. Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. Eur. Heart J. 2006, 27, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Vitali, S.H.; Hansmann, G.; Rose, C.; Fernandez-Gonzalez, A.; Scheid, A.; Mitsialis, S.A.; Kourembanas, S. The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: Long-term follow-up. Pulm. Circ. 2014, 4, 619–629. [Google Scholar] [CrossRef]
- Crnkovic, S.; Schmidt, A.; Egemnazarov, B.; Wilhelm, J.; Marsh, L.M.; Ghanim, B.; Klepetko, W.; Olschewski, A.; Olschewski, H.; Kwapiszewska, G. Functional and molecular factors associated with TAPSE in hypoxic pulmonary hypertension. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2016, 311, L59–L73. [Google Scholar] [CrossRef] [PubMed]
- Levy, P.T.; El Khuffash, A.; Woo, K.V.; Singh, G.K. Right Ventricular-Pulmonary Vascular Interactions: An Emerging Role for Pulmonary Artery Acceleration Time by Echocardiography in Adults and Children. J. Am. Soc. Echocardiogr. 2018, 31, 962–964. [Google Scholar] [CrossRef]
- Levy, P.T.; Patel, M.D.; Choudhry, S.; Hamvas, A.; Singh, G.K. Evidence of Echocardiographic Markers of Pulmonary Vascular Disease in Asymptomatic Infants Born Preterm at One Year of Age. J. Pediatr. 2018, 197, 48–56.e2. [Google Scholar] [CrossRef]
- Scherrer-Crosbie, M.; Steudel, W.; Hunziker, P.R.; Foster, G.P.; Garrido, L.; Liel-Cohen, N.; Zapol, W.M.; Picard, M.H. Determination of right ventricular structure and function in normoxic and hypoxic mice: A transesophageal echocardiographic study. Circulation 1998, 98, 1015–1021. [Google Scholar] [CrossRef]
- Hardziyenka, M.; Campian, M.E.; de Bruin-Bon, H.A.; Michel, M.C.; Tan, H.L. Sequence of echocardiographic changes during development of right ventricular failure in rat. J. Am. Soc. Echocardiogr. 2006, 19, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Kohut, A.; Patel, N.; Singh, H. Comprehensive Echocardiographic Assessment of the Right Ventricle in Murine Models. J. Cardiovasc. Ultrasound 2016, 24, 229–238. [Google Scholar] [CrossRef]
- Hansmann, G.; Fernandez-Gonzalez, A.; Aslam, M.; Vitali, S.H.; Martin, T.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm. Circ. 2012, 2, 170–181. [Google Scholar] [CrossRef]
- Nicolls, M.R.; Mizuno, S.; Taraseviciene-Stewart, L.; Farkas, L.; Drake, J.I.; Al Husseini, A.; Gomez-Arroyo, J.G.; Voelkel, N.F.; Bogaard, H.J. New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm. Circ. 2012, 2, 434–442. [Google Scholar] [CrossRef]
- Graham, B.B.; Kumar, R.; Mickael, C.; Kassa, B.; Koyanagi, D.; Sanders, L.; Zhang, L.; Perez, M.; Hernandez-Saavedra, D.; Valencia, C.; et al. Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2018, 59, 479–489. [Google Scholar] [CrossRef]
- Guazzi, M.; Dixon, D.; Labate, V.; Beussink-Nelson, L.; Bandera, F.; Cuttica, M.J.; Shah, S.J. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart Failure With Preserved Ejection Fraction: Stratification of Clinical Phenotypes and Outcomes. JACC Cardiovasc. Imaging 2017, 10, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Fine, N.M.; Chen, L.; Bastiansen, P.M.; Frantz, R.P.; Pellikka, P.A.; Oh, J.K.; Kane, G.C. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ. Cardiovasc. Imaging 2013, 6, 711–721. [Google Scholar] [CrossRef] [PubMed]
- D’Alonzo, G.E.; Barst, R.J.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Kernis, J.T.; et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 1991, 115, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.L.; Zhang, S.; Shrestha, A.K.; Barrios, R.; Shivanna, B. Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: A step toward preventing chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1597–1605. [Google Scholar] [CrossRef]
- Ciuclan, L.; Bonneau, O.; Hussey, M.; Duggan, N.; Holmes, A.M.; Good, R.; Stringer, R.; Jones, P.; Morrell, N.W.; Jarai, G.; et al. A novel murine model of severe pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2011, 184, 1171–1182. [Google Scholar] [CrossRef]
- Saxena, N.; Rajagopalan, N.; Edelman, K.; Lopez-Candales, A. Tricuspid annular systolic velocity: A useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography 2006, 23, 750–755. [Google Scholar] [CrossRef]
- Seo, Y.H.; Choi, H.J. Clinical Utility of Echocardiography for Early and Late Pulmonary Hypertension in Preterm Infants: Relation with Bronchopulmonary Dysplasia. J. Cardiovasc. Ultrasound 2017, 25, 124–130. [Google Scholar] [CrossRef]
- Ghio, S.; Recusani, F.; Klersy, C.; Sebastiani, R.; Laudisa, M.L.; Campana, C.; Gavazzi, A.; Tavazzi, L. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am. J. Cardiol. 2000, 85, 837–842. [Google Scholar] [CrossRef]
- Ambalavanan, N.; Bulger, A.; Murphy-Ullrich, J.; Oparil, S.; Chen, Y.F. Endothelin-A receptor blockade prevents and partially reverses neonatal hypoxic pulmonary vascular remodeling. Pediatr. Res. 2005, 57, 631–636. [Google Scholar] [CrossRef]
- Young, K.C.; Torres, E.; Hatzistergos, K.E.; Hehre, D.; Suguihara, C.; Hare, J.M. Inhibition of the SDF-1/CXCR4 axis attenuates neonatal hypoxia-induced pulmonary hypertension. Circ. Res. 2009, 104, 1293–1301. [Google Scholar] [CrossRef]
- Bierer, R.; Nitta, C.H.; Friedman, J.; Codianni, S.; de Frutos, S.; Dominguez-Bautista, J.A.; Howard, T.A.; Resta, T.C.; Bosc, L.V.G. NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 301, L872–L880. [Google Scholar] [CrossRef]
- Sartina, E.; Suguihara, C.; Ramchandran, S.; Nwajei, P.; Rodriguez, M.; Torres, E.; Hehre, D.; Devia, C.; Walters, M.J.; Penfold, M.E.; et al. Antagonism of CXCR7 attenuates chronic hypoxia-induced pulmonary hypertension. Pediatr. Res. 2012, 71, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Perez, M.; Lee, K.J.; Taylor, J.M.; Farrow, K.N. SOD2 activity is not impacted by hyperoxia in murine neonatal pulmonary artery smooth muscle cells and mice. Int. J. Mol. Sci. 2015, 16, 6373–6390. [Google Scholar] [CrossRef]
- Sun, M.; Ramchandran, R.; Chen, J.; Yang, Q.; Raj, J.U. Smooth Muscle Insulin-Like Growth Factor-1 Mediates Hypoxia-Induced Pulmonary Hypertension in Neonatal Mice. Am. J. Respir. Cell Mol. Biol. 2016, 55, 779–791. [Google Scholar] [CrossRef]
- Young, K.C.; Torres, E.; Hehre, D.; Wu, S.; Suguihara, C.; Hare, J.M. Antagonism of stem cell factor/c-kit signaling attenuates neonatal chronic hypoxia-induced pulmonary vascular remodeling. Pediatr. Res. 2016, 79, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, L.G.; Trumpie, A.; Hernandez-Lagunas, L.; McKenna, S.; Fisher, S.; Bowler, R.; Wright, C.J.; Delaney, C.; Nozik-Grayck, E. Redistribution of Extracellular Superoxide Dismutase Causes Neonatal Pulmonary Vascular Remodeling and PH but Protects Against Experimental Bronchopulmonary Dysplasia. Antioxidants 2018, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Naeije, R. Assessment of right ventricular function in pulmonary hypertension. Curr. Hypertens. Rep. 2015, 17, 35. [Google Scholar] [CrossRef]
- Naeije, R.; Dedobbeleer, C. Pulmonary hypertension and the right ventricle in hypoxia. Exp. Physiol. 2013, 98, 1247–1256. [Google Scholar] [CrossRef]
- Vonk Noordegraaf, A.; Westerhof, B.E.; Westerhof, N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2017, 69, 236–243. [Google Scholar] [CrossRef]
- Sunagawa, K.; Maughan, W.L.; Burkhoff, D.; Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am. J. Physiol. 1983, 245, H773–H780. [Google Scholar] [CrossRef]
- Amy, R.W.; Bowes, D.; Burri, P.H.; Haines, J.; Thurlbeck, W.M. Postnatal growth of the mouse lung. J. Anat. 1977, 124, 131–151. [Google Scholar]
- Burri, P.H. Structural aspects of postnatal lung development—Alveolar formation and growth. Biol. Neonate 2006, 89, 313–322. [Google Scholar] [CrossRef]
- Porrello, E.R.; Olson, E.N. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 2014, 13, 556–570. [Google Scholar] [CrossRef]
- Chang, Y.T.; Tseng, C.N.; Tannenberg, P.; Eriksson, L.; Yuan, K.; Perez, V.A.d.J.; Lundberg, J.; Lengquist, M.; Botusan, I.R.; Catrina, S.-B.; et al. Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension. Cardiovasc. Res. 2015, 107, 20–31. [Google Scholar] [CrossRef]
- Gore, B.; Izikki, M.; Mercier, O.; Dewachter, L.; Fadel, E.; Humbert, M.; Dartevelle, P.; Simonneau, G.; Naeije, R.; Lebrin, F.; et al. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension. PLoS ONE 2014, 9, e100310. [Google Scholar] [CrossRef]
- Martin, R.J.; Di Fiore, J.M.; Walsh, M.C. Hypoxic Episodes in Bronchopulmonary Dysplasia. Clin. Perinatol. 2015, 42, 825–838. [Google Scholar] [CrossRef]
Normoxia | Hypoxia | |
---|---|---|
RV ± SEM, g | 21.4 ± 0.3 (n = 4) | 34.5 ± 2.7 (n = 6) |
LV + S ± SEM, g | 78.1 ± 2.3 (n = 4) | 81.2 ± 4.2 (n = 6) |
RV:LV + S ± SEM, % | 27.5 ± 0.9 (n = 4) | 42.2 ± 2.0 (n = 6) |
RVFW thickness, mm | 0.25 ± 0.02 (n = 6) | 0.34 ± 0.01 (n = 8) |
TV TDI systolic peak velocity, mm/s | 52.2 ± 2.0 (n = 5) | 37.4 ± 1.6 (n = 6) |
TV TDI diastolic peak velocity, mm/s | −43.3 ± 1.9 (n = 4) | −63.4 ± 3.7 (n = 3) |
TAPSE, mm | 0.86 ± 0.03 (n = 6) | 0.66 ± 0.03 (n = 4) |
TAPSE × PAAT, mms | 11.98 ± 0.63 (n = 6) | 6.65 ± 0.41 (n = 4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, K.V.; Levy, P.T.; Weinheimer, C.J.; Hauck, A.L.; Hamvas, A.; Ornitz, D.M.; Kovacs, A.; Singh, G.K. Echocardiographic Assessment of Pulmonary Hemodynamics and Right Ventricular Performance in Neonatal Murine Hypoxia. J. Cardiovasc. Dev. Dis. 2025, 12, 316. https://doi.org/10.3390/jcdd12080316
Woo KV, Levy PT, Weinheimer CJ, Hauck AL, Hamvas A, Ornitz DM, Kovacs A, Singh GK. Echocardiographic Assessment of Pulmonary Hemodynamics and Right Ventricular Performance in Neonatal Murine Hypoxia. Journal of Cardiovascular Development and Disease. 2025; 12(8):316. https://doi.org/10.3390/jcdd12080316
Chicago/Turabian StyleWoo, Kel Vin, Philip T. Levy, Carla J. Weinheimer, Amanda L. Hauck, Aaron Hamvas, David M. Ornitz, Attila Kovacs, and Gautam K. Singh. 2025. "Echocardiographic Assessment of Pulmonary Hemodynamics and Right Ventricular Performance in Neonatal Murine Hypoxia" Journal of Cardiovascular Development and Disease 12, no. 8: 316. https://doi.org/10.3390/jcdd12080316
APA StyleWoo, K. V., Levy, P. T., Weinheimer, C. J., Hauck, A. L., Hamvas, A., Ornitz, D. M., Kovacs, A., & Singh, G. K. (2025). Echocardiographic Assessment of Pulmonary Hemodynamics and Right Ventricular Performance in Neonatal Murine Hypoxia. Journal of Cardiovascular Development and Disease, 12(8), 316. https://doi.org/10.3390/jcdd12080316