Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = Peptostreptococcus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3095 KiB  
Article
Uterine Microbiota Composition in Dairy Cows with Different Vaginal Discharge Scores: Suggesting Caviibacter as a Potential Pathogen in Mild Purulent Metritis
by Xiaolei He, Jiajia Wang, Lin Jiang, Xinyu Wang, Yuxing Wang, Yang Liu, Yanping Cheng, Fei Xu and Xiubo Li
Microorganisms 2025, 13(8), 1728; https://doi.org/10.3390/microorganisms13081728 - 24 Jul 2025
Viewed by 248
Abstract
The uterine microbiota plays a crucial role in maintaining postpartum reproductive health in dairy cows, and its dysregulation is closely associated with uterine diseases. Vaginal discharge characteristics serve as important clinical indicators for assessing uterine status and guiding clinical decision-making. This study employed [...] Read more.
The uterine microbiota plays a crucial role in maintaining postpartum reproductive health in dairy cows, and its dysregulation is closely associated with uterine diseases. Vaginal discharge characteristics serve as important clinical indicators for assessing uterine status and guiding clinical decision-making. This study employed 16S rRNA gene sequencing to analyze uterine microbial diversity in cows with different discharge types. Results revealed significant microbial shifts associated with discharge severity. Notably, Caviibacter was highly enriched (up to 60.25%) in cows with mildly purulent discharge (<50%), suggesting its potential role in early-stage endometritis. In contrast, Fusobacterium and Helcococcus dominated when purulent discharge exceeded 50%, while Bacteroides, Porphyromonas, and Peptostreptococcus prevailed in cows with malodorous or discolored secretions, indicating severe inflammation. This study extends previous findings by uncovering stage-specific microbial transitions and proposing Caviibacter as a potential early biomarker of endometritis. These insights support early diagnosis and targeted interventions, contributing to improved reproductive management and sustainable dairy farming. Full article
(This article belongs to the Special Issue Veterinary Microbiology and Immunology)
Show Figures

Figure 1

16 pages, 1562 KiB  
Article
Gut Microbiota Variation in Aging Dogs with Osteoarthritis
by Fatemeh Balouei, Christina de Rivera, Andrea Paradis, Bruno Stefanon, Stephanie Kelly, Noelle McCarthy and Paolo Mongillo
Animals 2025, 15(11), 1619; https://doi.org/10.3390/ani15111619 - 30 May 2025
Viewed by 507
Abstract
Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20–46 months, 43 dogs), Adult (47–92 months, 58 dogs), [...] Read more.
Gut microbiota composition plays a crucial role in host health and may be influenced by age and disease conditions. This study investigates the gut microbiota diversity of 175 dogs across three age groups (Junior (20–46 months, 43 dogs), Adult (47–92 months, 58 dogs), and Senior (93–168 months, 74 dogs), and examined the impact of osteoarthritis on microbial composition. Alpha diversity analysis using the Shannon and Chao1 indices were significant (p < 0.05) in Senior dogs Beta diversity analysis based on Bray–Curtis dissimilarity indices demonstrated substantial overlap in gut microbiota composition across age groups, with no significant clustering observed (p > 0.05). A second analysis compared the microbiota of 69 healthy dogs and 81 dogs affected by osteoarthritis (OA) in the three classes of age. No significant differences were shown for alpha diversity and beta diversity between healthy and OA dogs. This indicates that aging and osteoarthritis do not induce significant shifts in microbial beta diversity, although high inter-individual variability was noted. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) analysis identified distinct bacterial taxa associated with different age groups. Junior dogs exhibited enrichment in Blautia, Erysipelotrichaceae, and Clostridium, while Adult dogs were characterized by higher abundances of Prevotella, Streptococcus, and Ruminococcaceae. Senior dogs had increased representation of Prevotella and Ruminococcus. In OA dogs, Peptococcus, Peptostreptococcus, Clostridiaceae, and Coprobacillus were significantly enriched in comparison to healthy dogs, suggesting potential microbiota shifts associated with osteoarthritis. Overall, these findings indicate that gut microbiota diversity varies across different life stages, specific bacterial taxa were differentially enriched in relation to age and OA. This study enhances our understanding of gut microbiota dynamics in dogs and provides insights into potential age- and disease-related microbial signatures. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

24 pages, 9856 KiB  
Article
Roseburia intestinalis Modulates Immune Responses by Inducing M1 Macrophage Polarization
by Anna Bircher, Egle Katkeviciute, Yasser Morsy, Silvia Lang, Ana Montalban-Arques and Michael Scharl
Int. J. Mol. Sci. 2025, 26(11), 5049; https://doi.org/10.3390/ijms26115049 - 23 May 2025
Viewed by 640
Abstract
In recent years, the gut microbiome has been recognized as one influential factor in cancer development. Particularly in colorectal cancer (CRC), several studies observed a major imbalance of the intestinal microbiota, marked by a reduction in beneficial bacterial species, such as Roseburia intestinalis [...] Read more.
In recent years, the gut microbiome has been recognized as one influential factor in cancer development. Particularly in colorectal cancer (CRC), several studies observed a major imbalance of the intestinal microbiota, marked by a reduction in beneficial bacterial species, such as Roseburia intestinalis, and an increase in opportunistic pathobionts, like Peptostreptococcus stomatis. We previously observed that specific Eubacteriales, including R. intestinalis, were significantly reduced in CRC patients and have a potent anti-tumor immune effect when applied as oral monotherapy in mice. Here, we investigate the molecular mechanism of R. intestinalis on various cell types in vitro, highlighting its potential therapeutic value in CRC. Co-culture experiments with macrophages demonstrated that R. intestinalis exposure induced an increase in the M1 phenotype and decreased the M2 phenotype, suggesting macrophage-polarizing properties of these bacteria. R. intestinalis also triggered a gene expression profile resembling M1 macrophages and led to distinct chemokine and cytokine secretion in cancer cells, suggesting an immune-activating environment. However, we did not observe direct cytotoxic effects in cancer cells. Our research provides insights into the potential of R. intestinalis to activate immune responses, supporting further investigation into its therapeutic role in CRC. These findings underscore the need for deeper studies on the bacterium’s impact on CRC pathogenesis and treatment. Full article
(This article belongs to the Special Issue Molecular Advances in Gut Microbiota and Intestinal Diseases)
Show Figures

Figure 1

19 pages, 10518 KiB  
Article
Deciphering Gut Microbiome in Colorectal Cancer via Robust Learning Methods
by Huiye Han, Ying Li, Youran Qi, Stefano Mangiola and Wodan Ling
Genes 2025, 16(4), 452; https://doi.org/10.3390/genes16040452 - 15 Apr 2025
Viewed by 944
Abstract
Background: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide and is closely linked to the gut microbiota. Identifying reproducible and generalizable microbial signatures holds significant potential for enhancing early detection and advancing treatment for this deadly disease. Methods: This study [...] Read more.
Background: Colorectal cancer (CRC) is one of the most prevalent cancers worldwide and is closely linked to the gut microbiota. Identifying reproducible and generalizable microbial signatures holds significant potential for enhancing early detection and advancing treatment for this deadly disease. Methods: This study integrated various publicly available case-control datasets to identify microbial signatures for CRC. Alpha and beta diversity metrics were evaluated to characterize differences in gut microbial richness, evenness, and overall composition between CRC patients and healthy controls. Differential abundance analysis was conducted using ANCOM-BC and LEfSe to pinpoint individual taxa that were enriched or depleted in CRC patients. Additionally, sccomp, a Bayesian machine learning method from single-cell analysis, was adapted to provide a more robust validation of compositional differences in individual microbial markers. Results: Gut microbial richness is significantly higher in CRC patients, and overall microbiome composition differs significantly between CRC patients and healthy controls. Several taxa, such as Fusobacterium and Peptostreptococcus, are enriched in CRC patients, while others, including Anaerostipes, are depleted. The microbial signatures identified from the integrated data are reproducible and generalizable, with many aligning with findings from previous studies. Furthermore, the use of sccomp enhanced the precision of individual microbial marker identification. Conclusions: Biologically, the microbial signatures identified from the integrated data improve our understanding of the gut microbiota’s role in CRC pathogenesis and may contribute to the development of translational targets and microbiota-based therapies. Methodologically, this study demonstrates the effectiveness of adapting robust techniques from single-cell research to improve the precision of microbial marker discovery. Full article
(This article belongs to the Special Issue Advances in Bioinformatics and Environmental Health)
Show Figures

Figure 1

19 pages, 2614 KiB  
Article
Exploring the Link Between Obligate Anaerobe-Related Dysbiosis and Prostate Cancer Development: A Pilot Study
by Efthymios Ladoukakis, Tim Oliver, Mark Wilks, Emily F. Lane, Frank Chinegwundoh, Greg Shaw and Belinda Nedjai
Cancers 2025, 17(1), 70; https://doi.org/10.3390/cancers17010070 - 29 Dec 2024
Viewed by 1253
Abstract
Background/Objectives: Several independent studies have associated prostate cancer (PCa) with specific groups of bacteria, most of them reporting the presence of anaerobic or microaerophilic species such as Cutibacterium acnes (C. acnes). Such findings suggest a prostate cancer-related bacterial dysbiosis, in a [...] Read more.
Background/Objectives: Several independent studies have associated prostate cancer (PCa) with specific groups of bacteria, most of them reporting the presence of anaerobic or microaerophilic species such as Cutibacterium acnes (C. acnes). Such findings suggest a prostate cancer-related bacterial dysbiosis, in a manner similar to the association between Helicobacter pylori infection and gastric cancer. In an earlier exploratory study looking for such dysbiosis events, using a culturomics approach, we discovered that the presence of obligate anaerobes (OAs) along with C. acnes was associated with increased prostate-specific antigen (PSA) levels in 39 participants. Methods: Building on this, in this study, we analyzed 89 post-rectal examination urine samples, from men with prostate cancer attending the PROVENT trial, using 16S rDNA sequencing. Our investigation focused on the impact of six previously identified OA genera (Finegoldia, Fusobacterium, Prevotella, Peptoniphilus_A, Peptostreptococcus, and Veillonella_A) on PSA levels. However, an additional data-driven approach was followed to uncover more taxa linked to increased PSA. Results: Our analysis revealed a statistically significant association between Peptostreptococcus and elevated PSA levels. Additionally, there were potential interactions between Prevotella and Fusobacterium. Interestingly, we also found that an aerobe, Ochrobactrum_A,was significantly linked to higher PSA levels. Conclusions: These findings suggest that OA-related dysbiosis may contribute to elevated PSA levels through prostate cell damage even before prostate cancer develops, possibly playing a role in chronic inflammation and the hypervascular changes seen in precancerous lesions. Future clinical trials with larger cohorts are needed to further evaluate the role of OA in prostate cancer development and progression. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

12 pages, 1233 KiB  
Article
A Randomized Clinical Study of a Curcumin and Melatonin Toothpaste Against Periodontal Bacteria
by Riccardo Pulcini, Antonio Maria Chiarelli, Bruna Sinjari, Jessica Elisabetta Esposito, Francesco Avolio, Riccardo Martinotti, Vittorio Pignatelli, Luca Pignatelli, Laura Berlincioni, Stefano Martinotti and Elena Toniato
Biomedicines 2024, 12(11), 2499; https://doi.org/10.3390/biomedicines12112499 - 31 Oct 2024
Viewed by 1487
Abstract
Background: The mouth and the oropharyngeal system are home to numerous bacterial species that constitute the so-called oral microbiome and play an important role for the integrity of the oral cavity, influencing the overall health of the body, as demonstrated by several studies. [...] Read more.
Background: The mouth and the oropharyngeal system are home to numerous bacterial species that constitute the so-called oral microbiome and play an important role for the integrity of the oral cavity, influencing the overall health of the body, as demonstrated by several studies. The aim of this study was to evaluate the bacterial modulation potential of a toothpaste (bioredoxin) containing curcumin and melatonin. Both substances have anti-inflammatory properties, as documented in several scientific reports. Methods: The in vivo study we present was a single-center, double-blind trial and was conducted in parallel groups. We enlisted 20 volunteers who were randomly assigned to four distinct groups using blinded four different toothpaste preparations: a standard toothpaste indicated as placebo, a toothpaste with curcumin, a toothpaste with melatonin, and a toothpaste with melatonin and curcumin. Results: The samples from the gingival tasks were taken at time 0 and after 8 weeks of toothpaste treatment. By evaluating the DNA content of the most significant periodontal bacteria related to the total bacteria count using quantitative PCR assays, including the saprophyte component of the microbiome, we demonstrated that the Curcumin and Melatonin treatment has a statistically relevant effect on decreasing the level of periodontal pathogenic bacteria DNA. The toothpaste with the addition of curcumin and melatonin showed a modulation between t0 and t1 of the Campylobacter rectus (14,568 vs. 3532.8) and Peptostreptococcus micro (1320.8 vs. 319) bacteria. In addition, a modulation of pathogenic bacteria and saprophytic bacteria was shown. The synergistic action of the two additives would therefore appear to lead to promising results. Conclusions: Despite the fact that additional studies may be necessary in evaluating the effect of the Curcumin/melatonin combination in modulating a proposed therapeutic effect on infections of the oropharyngeal apparatus, in this report, we show for the first time that a combination of curcumin and melatonin supplemented using an oral cosmetic vehicle has the capacity to decrease the level of periodontal pathogenic bacteria, possibly ameliorating health and the physiological conditions in the buccal scenario. Full article
Show Figures

Figure 1

40 pages, 3306 KiB  
Systematic Review
Peri-Implantitis-Associated Microbiota before and after Peri-Implantitis Treatment, the Biofilm “Competitive Balancing” Effect: A Systematic Review of Randomized Controlled Trials
by Federica Di Spirito, Massimo Pisano, Maria Pia Di Palo, Gianluigi Franci, Antonio Rupe, Antonino Fiorino and Carlo Rengo
Microorganisms 2024, 12(10), 1965; https://doi.org/10.3390/microorganisms12101965 - 28 Sep 2024
Cited by 8 | Viewed by 2538
Abstract
This systematic review of RCTs aimed to characterize short- and long-term changes in peri-implantitis-associated microbiota (total biofilm microbial load and predominant pathogens’ counts) following (any) peri-implantitis treatment in systemically healthy, non-smoking, partially/totally edentulous adults. The study protocol, compliant with the PRISMA statement, was [...] Read more.
This systematic review of RCTs aimed to characterize short- and long-term changes in peri-implantitis-associated microbiota (total biofilm microbial load and predominant pathogens’ counts) following (any) peri-implantitis treatment in systemically healthy, non-smoking, partially/totally edentulous adults. The study protocol, compliant with the PRISMA statement, was registered on PROSPERO (CRD42024514521) before the literature search. Data from 11 RCTs, assessed through the ROBINS-2 tool, were qualitatively synthesized. No data were retrieved on total edentulism, healthy peri-implant/periodontal sites, treated mucositis, gingivitis, and periodontitis sites. Shortly after treatment, Prevotella intermedia, Fusobacterium nucleatum, and Peptostreptococcus micros prevailed, indicating early colonization, as after implant placement. After both surgical and non-surgical approaches, although not eradicated, the peri-implant total biofilm load, red- and orange-complex species, and Aggregatibacter actinomycetemcomitans counts generally decreased for up to about three months. However, one month after treatment, red-complex species and Prevotella intermedia increased, likely due to persistent tissue-invasive bacteria, unresolved pathological conditions (high probing depth values) favoring anaerobiosis and dysbiosis, and a qualitatively and quantitatively decreased biofilm community, competing and balancing the predominant pathogens (biofilm “competitive balancing” effect), thus allowing recolonization by more virulent bacteria. Red-complex bacteria gradually leveled off to baseline at the six- and twelve-month follow-ups. Fusobacterium nucleatum remained almost unchanged after treatment. Full article
Show Figures

Figure 1

18 pages, 3666 KiB  
Article
Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance
by Marina Loch, Elisabeth Dorbek-Sundström, Aleksi Husso, Tiina Pessa-Morikawa, Tarmo Niine, Tanel Kaart, Kerli Mõtus, Mikael Niku and Toomas Orro
Animals 2024, 14(17), 2533; https://doi.org/10.3390/ani14172533 - 31 Aug 2024
Cited by 1 | Viewed by 1793
Abstract
After birth, the immune system is challenged by numerous elements of the extrauterine environment, reflected in fluctuations of inflammatory markers. The concentrations of these markers in the first month of life are associated with the future performance of dairy youngstock. It is thought [...] Read more.
After birth, the immune system is challenged by numerous elements of the extrauterine environment, reflected in fluctuations of inflammatory markers. The concentrations of these markers in the first month of life are associated with the future performance of dairy youngstock. It is thought that bacterial genera colonizing the calf intestinal tract can cause inflammation and thus affect their host’s performance via immunomodulation. This study explored how the faecal microbiota of newborn dairy calves were related to inflammatory markers during the first three weeks of life, and if the abundance of specific genera was associated with first-lactation performance. Ninety-five female Holstein calves were studied. Once a week, serum and faecal samples were collected, serum concentrations of serum amyloid A, haptoglobin, tumour necrosis factor-α, and interleukin-6 were measured, and faecal microbiota composition was examined by 16S rRNA gene amplicon sequencing. Faecal Gallibacterium abundance in the first week of age and Collinsella abundance in the second week were negatively associated with inflammatory response as well as with calving–conception interval. Peptostreptococcus abundance in the second week of life was positively associated with inflammatory response and calving–conception interval, and negatively with average daily weight gain. In the third week, Dorea abundance was positively, Bilophila abundance was negatively associated with inflammatory response, and both genera were negatively associated with age at first calving. These bacterial genera may be able to influence the inflammatory response and through this, possibly the future performance of the dairy heifer. Deciphering such microbiota–host interactions can help improve calf management to benefit production and welfare. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

12 pages, 851 KiB  
Article
Development of the Intestinal Microbiota of Dairy Calves and Changes Associated with Cryptosporidium spp. Infection in Brazil
by José Antônio Bessegatto, Júlio Augusto Naylor Lisbôa, Felippe Danyel Cardoso Martins, Roberta Lemos Freire, Elias Jorge Facury Filho, Amauri Alcindo Alfieri and Marcio C. Costa
Microorganisms 2024, 12(9), 1744; https://doi.org/10.3390/microorganisms12091744 - 23 Aug 2024
Cited by 1 | Viewed by 3283
Abstract
Cryptosporidium spp. is one of the most important pathogens infecting nursing calves worldwide. This study aimed to investigate the intestinal microbiota of dairy calves during the first month of life and the impact of diarrhea caused by Cryptosporidium on a Brazilian farm. Fecal [...] Read more.
Cryptosporidium spp. is one of the most important pathogens infecting nursing calves worldwide. This study aimed to investigate the intestinal microbiota of dairy calves during the first month of life and the impact of diarrhea caused by Cryptosporidium on a Brazilian farm. Fecal samples from 30 calves were collected during the first month of life, and fecal scores were recorded. Samples from the second, third, and fourth days of life were analyzed by DNA sequencing of the 16S rRNA gene. In addition, samples of sixteen calves positive for Cryptosporidium spp. were retrospectively chosen according to the development of diarrhea: four and two days before diarrhea, at the onset of diarrhea, after four days of diarrhea, at the end of diarrhea, and after six days of diarrhea resolution. Diarrhea was observed in all calves (100%), starting at day 5 of life, and all calves tested positive for Cryptosporidium in at least one sample. The microbiota richness increased with age but was retarded by diarrhea. Compositional changes associated with Cryptosporidium infection included increases in Fusobacterium, Prevotella, and Peptostreptococcus, as well as decreases in Collinsella and Lachnospiraceae. In conclusion, Cryptosporidium infection has the potential to decrease richness and change the composition of the intestinal microbiota of dairy calves. Full article
(This article belongs to the Special Issue Gut Microbiome of Farm Animals in Health and Disease 2.0)
Show Figures

Figure 1

14 pages, 1608 KiB  
Article
Comparing the Microbiome of the Adenoids in Children with Secretory Otitis Media and Children without Middle Ear Effusion
by Oļegs Sokolovs-Karijs, Monta Brīvība, Rihards Saksis, Maija Rozenberga, Laura Bunka, Francesca Girotto, Jana Osīte, Aigars Reinis, Gunta Sumeraga and Angelika Krūmiņa
Microorganisms 2024, 12(8), 1523; https://doi.org/10.3390/microorganisms12081523 - 25 Jul 2024
Cited by 1 | Viewed by 1519
Abstract
Background: The adenoids, primary sites of microbial colonization in the upper airways, can influence the development of various conditions, including otitis media with effusion (OME). Alterations in the adenoid microbiota have been implicated in the pathogenesis of such conditions. Aim: This study aims [...] Read more.
Background: The adenoids, primary sites of microbial colonization in the upper airways, can influence the development of various conditions, including otitis media with effusion (OME). Alterations in the adenoid microbiota have been implicated in the pathogenesis of such conditions. Aim: This study aims to utilize 16S rRNA genetic sequencing to identify and compare the bacterial communities on the adenoid surfaces of children with OME and children with healthy middle ears. Additionally, we seek to assess the differences in bacterial diversity between these two groups. Materials and Methods: We collected adenoid surface swabs from forty children, divided into two groups: twenty samples from children with healthy middle ears and twenty samples from children with OME. The V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Alpha and beta diversity indices were calculated, and statistical analyses were performed to identify significant differences in bacterial composition. Results: Alpha diversity analysis, using Pielou’s index, revealed significantly greater evenness in the bacterial communities on the adenoid surfaces of the healthy ear group compared with the OME group. Beta diversity analysis indicated greater variability in the microbial composition of the OME group. The most common bacterial genera in both groups were Haemophilus, Fusobacterium, Streptococcus, Moraxella, and Peptostreptococcus. The healthy ear group was primarily dominated by Haemophilus and Streptococcus, whereas the OME group showed higher abundance of Fusobacterium and Peptostreptococcus. Additionally, the OME group exhibited statistically significant higher levels of Alloprevotella, Peptostreptococcus, Porphyromonas, Johnsonella, Parvimonas, and Bordetella compared with the healthy ear group. Conclusion: Our study identified significant differences in the bacterial composition and diversity on the adenoid surfaces of children with healthy middle ears and those with OME. The OME group exhibited greater microbial variability and higher abundances of specific bacterial genera. These findings suggest that the adenoid surface microbiota may play a role in the pathogenesis of OME. Further research with larger sample sizes and control groups is needed to validate these results and explore potential clinical applications. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

15 pages, 12885 KiB  
Article
Chloroquine Downregulation of Intestinal Autophagy Changed Intestinal Microbial Community Compositions and Metabolite Profiles in Piglets
by Xueling Gu, Simeng Liao, Meng Li, Jing Wang and Bie Tan
Vet. Sci. 2024, 11(8), 333; https://doi.org/10.3390/vetsci11080333 - 25 Jul 2024
Cited by 1 | Viewed by 1691
Abstract
Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation [...] Read more.
Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets. Full article
Show Figures

Figure 1

22 pages, 11960 KiB  
Article
Clinical Study and Microbiological Analysis of Periodontopathogenic Microflora Analyzed among Children and Adolescents with Cardiovascular Diseases Compared to Group with Good General Status
by Oana Chipirliu, Marian Viorel Crăciun and Madalina Nicoleta Matei
Pediatr. Rep. 2024, 16(2), 482-503; https://doi.org/10.3390/pediatric16020041 - 18 Jun 2024
Cited by 4 | Viewed by 1417
Abstract
Periodontal diseases, as an important part of oral pathology, present different characteristics when affecting children and adolescents or young adults. Studies have shown that adolescence and childhood are closely related to a high risk of periodontal disease, but the follow-up for periodontal health [...] Read more.
Periodontal diseases, as an important part of oral pathology, present different characteristics when affecting children and adolescents or young adults. Studies have shown that adolescence and childhood are closely related to a high risk of periodontal disease, but the follow-up for periodontal health or damage at this age has been insufficiently appreciated until now. The aim of this study was to identify subgingival microorganisms using a real-time polymerase chain reaction (PCR) in a group of children and adolescents aged 7–17 years with and without cardiovascular disease. The group of 62 subjects with gingival inflammation and poor hygiene was divided into two groups according to general condition: 31 subjects with carduivascular disease (group A) and 31 subjects without cardiovascular disease (group C). Subjects were examined in the initial consultation, the state of hygiene and periodontal inflammation was assessed using the plaque index (PI) and gingival index (GI), and samples were taken from the gingival sulcus using sterile paper cones to determine nine subgingival microorganisms. Nine subgingival microorganisms were identified: Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tannerella forsythias (Tf), Prevotella intermedia (Pi), Peptostreptococcus (Micromonas) micros (Pm), Fusobacterium nucleatum (Fn), Eubacterium nodatum (En), and Capnocytophaga gingivalis (Cg). The patients were included in a specialist treatment program which aimed to relieve the inflammatory condition, remove local irritative factors, and train the patients to perform proper oral hygiene at home by using primary and secondary oral hygiene products. Subjects were reevaluated 3 months after treatment, when measurements for the PI and GI and microbiological determinations were repeated. The results showed a predominance of subjects aged 16–17 years (12.4%). Among the subjects with marked gingival inflammation, the male gender was predominant (58.06%). The PI values changed considerably after treatment, with lower values in patients presenting a general condition without cardiovascular disease (PI = 8.10%) compared with the patients with cardiovascular disease (PI = 13.77%). After treatment, the GI showed considerable changes in both groups. Red, orange, and purple complex microorganisms were found before treatment and decreased considerably after treatment in both groups. The highest values were found for Treponema denticola (140,000 (1.4 × 105)) in patients with cardiovascular disease and generalized gingival inflammation. Of the pathogenic microorganisms, the most common was Tannerella forsythia in 52 patients before treatment, and red microorganisms considerably appeared in only 10 patients after treatment. Capnocytophaga gingivalis remained constant both in the diseased state and after treatment and was consistent with periodontal health. Children with cardiovascular diseases had a higher prevalence of gingival manifestations. The composition of the subgingival microbial plaque was directly influenced by the degree of oral hygiene, but the response to specialized treatment was also influenced by the general health status. The results of this study support the conclusion that periodontal pathogens appear and multiply in the absence of proper hygiene in childhood after the eruption of permanent teeth, and their action leads to the initiation of periodontal diseases. Full article
Show Figures

Figure 1

24 pages, 5840 KiB  
Article
Discovery of Bacterial Key Genes from 16S rRNA-Seq Profiles That Are Associated with the Complications of SARS-CoV-2 Infections and Provide Therapeutic Indications
by Md. Kaderi Kibria, Md. Ahad Ali, Muhammad Yaseen, Imran Ahmad Khan, Mashooq Ahmad Bhat, Md. Ariful Islam, Rashidul Alam Mahumud and Md. Nurul Haque Mollah
Pharmaceuticals 2024, 17(4), 432; https://doi.org/10.3390/ph17040432 - 28 Mar 2024
Cited by 2 | Viewed by 2871
Abstract
SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents [...] Read more.
SARS-CoV-2 infections, commonly referred to as COVID-19, remain a critical risk to both human life and global economies. Particularly, COVID-19 patients with weak immunity may suffer from different complications due to the bacterial co-infections/super-infections/secondary infections. Therefore, different variants of alternative antibacterial therapeutic agents are required to inhibit those infection-causing drug-resistant pathogenic bacteria. This study attempted to explore these bacterial pathogens and their inhibitors by using integrated statistical and bioinformatics approaches. By analyzing bacterial 16S rRNA sequence profiles, at first, we detected five bacterial genera and taxa (Bacteroides, Parabacteroides, Prevotella Clostridium, Atopobium, and Peptostreptococcus) based on differentially abundant bacteria between SARS-CoV-2 infection and control samples that are significantly enriched in 23 metabolic pathways. A total of 183 bacterial genes were found in the enriched pathways. Then, the top-ranked 10 bacterial genes (accB, ftsB, glyQ, hldD, lpxC, lptD, mlaA, ppsA, ppc, and tamB) were selected as the pathogenic bacterial key genes (bKGs) by their protein–protein interaction (PPI) network analysis. Then, we detected bKG-guided top-ranked eight drug molecules (Bemcentinib, Ledipasvir, Velpatasvir, Tirilazad, Acetyldigitoxin, Entreatinib, Digitoxin, and Elbasvir) by molecular docking. Finally, the binding stability of the top-ranked three drug molecules (Bemcentinib, Ledipasvir, and Velpatasvir) against three receptors (hldD, mlaA, and lptD) was investigated by computing their binding free energies with molecular dynamic (MD) simulation-based MM-PBSA techniques, respectively, and was found to be stable. Therefore, the findings of this study could be useful resources for developing a proper treatment plan against bacterial co-/super-/secondary-infection in SARS-CoV-2 infections. Full article
(This article belongs to the Special Issue Multidrug Resistance in Bacteria and New Therapeutic Options)
Show Figures

Graphical abstract

19 pages, 3274 KiB  
Article
Gut Microbiota Signatures with Potential Clinical Usefulness in Colorectal and Non-Small Cell Lung Cancers
by Sofía Tesolato, Juan Vicente-Valor, Mateo Paz-Cabezas, Dulcenombre Gómez-Garre, Silvia Sánchez-González, Adriana Ortega-Hernández, Sofía de la Serna, Inmaculada Domínguez-Serrano, Jana Dziakova, Daniel Rivera, Jose-Ramón Jarabo, Ana-María Gómez-Martínez, Florentino Hernando, Antonio Torres and Pilar Iniesta
Biomedicines 2024, 12(3), 703; https://doi.org/10.3390/biomedicines12030703 - 21 Mar 2024
Cited by 3 | Viewed by 2716
Abstract
The application of bacterial metagenomic analysis as a biomarker for cancer detection is emerging. Our aim was to discover gut microbiota signatures with potential utility in the diagnosis of colorectal cancer (CRC) and non-small cell lung cancer (NSCLC). A prospective study was performed [...] Read more.
The application of bacterial metagenomic analysis as a biomarker for cancer detection is emerging. Our aim was to discover gut microbiota signatures with potential utility in the diagnosis of colorectal cancer (CRC) and non-small cell lung cancer (NSCLC). A prospective study was performed on a total of 77 fecal samples from CRC and NSCLC patients and controls. DNA from stool was analyzed for bacterial genomic sequencing using the Ion Torrent™ technology. Bioinformatic analysis was performed using the QIIME2 pipeline. We applied logistic regression to adjust for differences attributable to sex, age, and body mass index, and the diagnostic accuracy of our gut signatures was compared with other previously published results. The feces of patients affected by different tumor types, such as CRC and NSCLC, showed a differential intestinal microbiota profile. After adjusting for confounders, Parvimonas (OR = 53.3), Gemella (OR = 6.01), Eisenbergiella (OR = 5.35), Peptostreptococcus (OR = 9.42), Lactobacillus (OR = 6.72), Salmonella (OR = 5.44), and Fusobacterium (OR = 78.9) remained significantly associated with the risk of CRC. Two genera from the Ruminococcaceae family, DTU089 (OR = 20.1) and an uncharacterized genus (OR = 160.1), were associated with the risk of NSCLC. Our two panels had better diagnostic capacity for CRC (AUC = 0.840) and NSLC (AUC = 0.747) compared to the application of two other published panels to our population. Thus, we propose a gut bacteria panel for each cancer type and show its potential application in cancer diagnosis. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota in Health and Diseases)
Show Figures

Figure 1

27 pages, 39769 KiB  
Article
Uterine Commensal Peptostreptococcus Species Contribute to IDO1 Induction in Endometrial Cancer via Indoleacrylic Acid
by Qiong Wang, Yaqiong Liu, Weiwei Chen, Sha Chen, Minting Su, Yanqin Zheng, Wenjie Liu, Li Li, Liang Zeng, Quan Shi, Juan He, Yuanmin Qian, Xingcui Xuan, Qirong Wen, Gendie E. Lash and Kun Shi
Biomedicines 2024, 12(3), 573; https://doi.org/10.3390/biomedicines12030573 - 4 Mar 2024
Cited by 4 | Viewed by 2347
Abstract
Microbial dysbiosis has an increasingly appreciated impact on carcinogenesis, and the cervicovaginal microbiome plays a critical role in microenvironmental inflammation. Here, we investigated the involvement of the female genital tract Peptostreptococcus species in gynecological cancer via indoleacrylic acid (IAA). IAA production from Peptostreptococcus [...] Read more.
Microbial dysbiosis has an increasingly appreciated impact on carcinogenesis, and the cervicovaginal microbiome plays a critical role in microenvironmental inflammation. Here, we investigated the involvement of the female genital tract Peptostreptococcus species in gynecological cancer via indoleacrylic acid (IAA). IAA production from Peptostreptococcus species and the effect of bacterial culture on tumor growth in vivo were examined. The impact of IAA on cytokine production and indoleamine-2,3-dioxygenase 1 (IDO1) expression in an endometrial cancer (EC) cell line, as well as their effect on Treg and Teff cells, and M1 and M2 macrophage populations were examined in EC patients and tumor-grafted mice. Clinically, Peptostreptococcus species abundance, IAA, and IDO1 expression were verified in EC patients. The results showed that IAA production was induced in the uteri of BALB/c nude mice by Peptostreptococcus species transplantation, and the intratumoral injection of a conditioned medium from Peptostreptococcus cultures into tumor-grafted mice promoted tumor growth. IL-10 expression was upregulated by IAA; IFN-γ expression was increased by IL-10. IFN-γ induced IDO1 expression in the EC cell line. The co-culture of IDO1-expressing EC cells with peripheral blood mononuclear cells upregulated the Treg proportion and decreased the M1/M2 ratio. Clinically, P. anaerobius was more abundant amongst the uterine microbiota of EC patients than the control. The IAA, IDO1, and kynurenine/tryptophan ratios were all higher in EC tissue, and the M1/M2 ratio was lower. Our study sheds light on the link between IDO1 induction and uterine Peptostreptococcus dysbiosis and provides a potential rationale for the role of Peptostreptococcus species in immune tolerance induction in type I endometrial cancer. Full article
Show Figures

Figure 1

Back to TopTop