Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Paenibacillaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

22 pages, 2490 KiB  
Article
Endophytic Bacterial Consortia Isolated from Disease-Resistant Pinus pinea L. Increase Germination and Plant Quality in Susceptible Pine Species (Pinus radiata D. Don)
by Frederico Leitão, Marta Alves, Isabel Henriques and Glória Pinto
Forests 2025, 16(7), 1161; https://doi.org/10.3390/f16071161 - 14 Jul 2025
Viewed by 289
Abstract
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in [...] Read more.
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in susceptible Pinus radiata D. Don. Root endophytes were isolated, screened for PGP traits, and identified via 16S rRNA gene sequencing. Bacterial formulations were applied to P. radiata seeds to determine their impact on germination and plant quality indicators (photosynthetic pigments and other metabolites). Paenibacillaceae (19%) and Bacillaceae (13%) were predominant among 68 isolates, with 94% producing indole-3-acetic acid, and Burkholderiaceae showing the broadest PGP trait diversity. Seedlings inoculated with formulation C3 (Caballeronia R.M3R3, Rhodococcus T.M4R4, and Mesorhizobium R.M1R2) displayed an improved germination rate (89% compared to 71% from the uninoculated control), while those inoculated with formulation P4 (Paenibacillus T.M5R4, Bacillus R.M2R7, Acinetobacter T.M2R22, and Paraburkholderia R.M1R3) showed an improved germination rate (81%), increased amount of starch (0.4-fold), and free amino acids (1.5-fold). This study presents a comprehensive approach, from endophyte isolation to in vivo tests, highlighting two bacterial formulations as candidates for further proof-of-concept nursery trials. Ultimately, these bioinoculants represent eco-friendly strategies to enhance forest seedling establishment and support sustainable forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

10 pages, 1545 KiB  
Article
Viable and Heat-Resistant Microbiota with Probiotic Potential in Fermented and Non-Fermented Tea Leaves and Brews
by Elisabeth Uhlig, Afina Megaelectra, Göran Molin and Åsa Håkansson
Microorganisms 2025, 13(5), 964; https://doi.org/10.3390/microorganisms13050964 - 23 Apr 2025
Viewed by 546
Abstract
The live microbiota of tea has not been extensively investigated. This study aimed to identify the live, culturable microbiota from four types of tea with varying oxidation levels, before and after brewing. Tea leaves and brews from oolong and fermented teas were analyzed [...] Read more.
The live microbiota of tea has not been extensively investigated. This study aimed to identify the live, culturable microbiota from four types of tea with varying oxidation levels, before and after brewing. Tea leaves and brews from oolong and fermented teas were analyzed for total viable counts of aerobic bacteria, lactobacilli, fungi, and Enterobacteriaceae. Cultivation was performed and isolates were identified by Sanger sequencing. Heat resistance was assessed at 70 °C and 90 °C. Random Amplified Polymorphic DNA (RAPD) was used to determine strain-level diversity. Fully oxidized, post-fermented Pu-erh tea had the highest viable bacterial count. Most isolates belonged to Bacillaceae, Staphylococcaceae, and Paenibacillaceae, families associated with soil or human skin. Only two potentially pathogenic species were identified: Staphylococcus epidermidis and Bacillus cereus. In Pu-erh, live bacteria were detected after brewing at 90 °C, including Heyndrickxia coagulans, a spore forming probiotic species. H. coagulans strains remained in vegetative state after hot water exposure and survived at 70 °C, indicating thermotolerance. RAPD-analysis revealed nine distinct H. coagulans strains across six Pu-erh teas. Conclusion: This study provides new insight into the viable microbiota of different teas and their survival during brewing, highlighting safety concerns and probiotic species like H. coagulans. Full article
(This article belongs to the Special Issue The Microbiome in Fermented Tea)
Show Figures

Figure 1

14 pages, 4085 KiB  
Article
Phenotypic and Complete Reference Whole Genome Sequence Analyses of Two Paenibacillus spp. Isolates from a Gray Wolf (Canis lupus) Gastrointestinal Tract
by Jessika L. Bryant, Jennifer McCabe, C. Cristoph Klews, MiCayla Johnson, Ariel N. Atchley, Thomas W. Cousins, Maya Barnard-Davidson, Kristina M. Smith, Mark R. Ackermann, Michael Netherland, Nur A. Hasan, Peter A. Jordan, Evan S. Forsythe, Patrick N. Ball and Bruce S. Seal
Vet. Sci. 2025, 12(1), 51; https://doi.org/10.3390/vetsci12010051 - 13 Jan 2025
Cited by 1 | Viewed by 1490
Abstract
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic [...] Read more.
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic pets can likely yield promising probiotic candidates. Consequently, the overall aim was to isolate bacteria from free-ranging animals that could potentially be utilized as novel probiotics. Two bacteria identified as unique Paenibacillus spp. strains by small ribosomal RNA (16S) gene sequencing were isolated from the gastrointestinal tract of a North American Gray Wolf (Canis lupus). The bacteria were typed as Gram-variable, and both were catalase/oxidase positive as well as sensitive to commonly used antibiotics. The bacteria digested complex carbohydrates and lipids by standard assays. The isolated bacteria also inhibited the growth of Staphylococcus aureus and Micrococcus luteus. The whole genome sequence (WGS) length of bacterial isolate ClWae17B was 6,939,193 bp, while ClWae19 was 7,032,512 bp, both similar in size to other Paenibacillus spp. The genomes of both bacteria encoded enzymes involved with the metabolism of complex starches and lipids, such as lyases and pectinases, along with encoding antimicrobials such as lanthipeptides, lasso peptides, and cyclic-lactone-autoinducers. No pernicious virulence genes were identified in the WGS of either bacterial isolate. Phylogenetically, the most closely related bacteria based on 16S gene sequences and WGS were P. taichungensis for ClWae17B and P. amylolyticus for ClWae19. WGS analyses and phenotypic assays supported the hypothesis that the isolates described constitute two novel candidate probiotic bacteria for potential use in dogs. Full article
Show Figures

Graphical abstract

17 pages, 6457 KiB  
Article
Biochar Loaded with a Bacterial Strain N33 Facilitates Pecan Seedling Growth and Shapes Rhizosphere Microbial Community
by Zexuan Jiang, Qi Li, Fangren Peng and Jinping Yu
Plants 2024, 13(9), 1226; https://doi.org/10.3390/plants13091226 - 28 Apr 2024
Cited by 1 | Viewed by 1791
Abstract
Biochar and beneficial microorganisms have been widely used in ecological agriculture. However, the impact of biochar loaded with microbes (BM) on plant growth remains to be understood. In this study, BM was produced by incubating pecan biochar with the bacterial strain N33, and [...] Read more.
Biochar and beneficial microorganisms have been widely used in ecological agriculture. However, the impact of biochar loaded with microbes (BM) on plant growth remains to be understood. In this study, BM was produced by incubating pecan biochar with the bacterial strain N33, and the effects of BM on pecan growth and the microbial community in the rhizosphere were explored. BM application significantly enhanced the biomass and height of pecan plants. Meanwhile, BM treatment improved nutrient uptake in plants and significantly increased the chlorophyll, soluble sugars, and soluble proteins of plants. Furthermore, BM treatment improved the soil texture and environment. Finally, BM application substantially enhanced the diversity of soil fungi and bacteria as well as the relative abundances of the phyla Firmicutes and Chloroflexi, and families Bacillaceae and Paenibacillaceae, as shown by high-throughput sequencing. Together, this study clarified the growth-promotive effects of BM on pecan plants and suggested an alternative to synthetic fertilizers in their production. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

23 pages, 8087 KiB  
Article
Effects of Different Heat Treatments on Yak Milk Proteins on Intestinal Microbiota and Metabolism
by Senbiao Shu, Rong Jing, Liang Li, Wenhan Wang, Jinchao Zhang, Zhang Luo, Yuanyuan Shan and Zhendong Liu
Foods 2024, 13(2), 192; https://doi.org/10.3390/foods13020192 - 6 Jan 2024
Cited by 5 | Viewed by 2367
Abstract
Dairy products are susceptible to modifications in protein oxidation during heat processing, which can lead to changes in protein function, subsequently affecting intestinal health. Despite being a unique nutritional source, yak milk has not been thoroughly examined for the effects of its oxidized [...] Read more.
Dairy products are susceptible to modifications in protein oxidation during heat processing, which can lead to changes in protein function, subsequently affecting intestinal health. Despite being a unique nutritional source, yak milk has not been thoroughly examined for the effects of its oxidized proteins on intestinal microbiota and metabolism. Hence, this study employed different heat treatment methods (low-temperature pasteurization, high-temperature pasteurization, and high-temperature sterilization) to induce oxidation in yak milk proteins. The study then assessed the degree of oxidation in these proteins and utilized mice as research subjects. Using metagenomics and metabolomics methods, this study examined the structure of intestinal microbial communities and metabolic products in mice consuming oxidized yak milk. The results showed a decrease in carbonyl and total thiol contents of yak milk proteins after different heat treatments, indicating that heat treatment causes oxidation in yak milk proteins. Metagenomic analysis of mouse intestinal microbiota revealed significant changes in 66 genera. In the high-temperature sterilization group (H), key differential genera included Verrucomicrobiales, Verrucomicrobiae, Akkermansiaceae, and 28 others. The high-temperature pasteurization group (M) mainly consisted of Latilactobacillus, Bacillus, and Romboutsia. The low-temperature pasteurization group (L) primarily comprised of Faecalibacterium, Chaetomium, Paenibacillaceae, Eggerthella, Sordariales, and 33 others. Functionally, compared to the control group (C), the H group upregulated translation and energy metabolism functions, the L group the M group significantly upregulated metabolism of other amino acids, translation, and cell replication and repair functions. Based on metabolomic analysis, differential changes in mouse metabolites could affect multiple metabolic pathways in the body. The most significantly affected metabolic pathways were phenylalanine metabolism, vitamin B6 metabolism, steroid hormone biosynthesis, and pantothenate and CoA biosynthesis. The changes were similar to the functional pathway analysis of mouse metagenomics, affecting amino acid and energy metabolism in mice. In summary, moderate oxidation of yak milk proteins exhibits a positive effect on mouse intestinal microbiota and metabolism. In conclusion, yak milk has a positive effect on mouse intestinal microflora and metabolism, and this study provides a scientific basis for optimizing dairy processing technology and further developing and applying yak milk. Full article
(This article belongs to the Special Issue Dietary Fiber and Gut Microbiota)
Show Figures

Figure 1

10 pages, 1240 KiB  
Brief Report
Phenotypic and Draft Genome Sequence Analyses of a Paenibacillus sp. Isolated from the Gastrointestinal Tract of a North American Gray Wolf (Canis lupus)
by Jennifer McCabe, Jessika L. Bryant, C. Cristoph Klews, MiCayla Johnson, Ariel N. Atchley, Thomas W. Cousins, Analiska Dominguez, Marie Gabriel, Katie Middleton, Natasha A. Bowles, Heather M. Broughton, Kristina M. Smith, Mark R. Ackermann, Robert Bildfell, Patrick N. Ball, Evan S. Forsythe and Bruce S. Seal
Appl. Microbiol. 2023, 3(4), 1120-1129; https://doi.org/10.3390/applmicrobiol3040077 - 23 Sep 2023
Cited by 3 | Viewed by 13450
Abstract
The discovery of novel probiotic bacteria from free-ranging animals for the treatment of inflammatory bowel disease in domestic pets is a unique approach. The chloroform extraction of gastrointestinal (GI) tract material was used to inactivate vegetative cells and select for spore-forming bacteria. A [...] Read more.
The discovery of novel probiotic bacteria from free-ranging animals for the treatment of inflammatory bowel disease in domestic pets is a unique approach. The chloroform extraction of gastrointestinal (GI) tract material was used to inactivate vegetative cells and select for spore-forming bacteria. A bacterium identified as a novel Paenibacillus sp. strain via small ribosomal RNA (16S) gene sequencing was isolated from the GI tract of a gray wolf (Canis lupus). The bacterium was typed as Gram-variable, both catalase/oxidase-positive and positive via starch hydrolysis and lipase assays. The bacterium inhibited the growth of Staphylococcus aureus, Escherichia coli and Micrococcus luteus. The draft whole genome sequence (WGS) assembly was 7,034,206 bp in length, encoding 6543 genes, and is similar in size and coding capacity to other closely related Paenibacillus spp. The isolate’s genome encodes several germination and sporulation gene products along with antimicrobials such as a bacteriocin system and chitinase. Enzyme genes such as alpha amylase, cellulase, lipases and pectin lyase are also present in the genome. An incomplete lysogenic bacteriophage genome was also present in the isolate’s genome. Phenotypic characteristics combined with a WGS genotype analysis indicate that this bacterium, designated Paenibacillus sp. ClWae2A, could be a potential candidate probiotic for domestic dogs. Full article
Show Figures

Figure 1

21 pages, 4624 KiB  
Article
Characterization of Microbial Diversity in Decayed Wood from a Spanish Forest: An Environmental Source of Industrially Relevant Microorganisms
by Óscar Velasco-Rodríguez, Mariana Fil, Tonje M. B. Heggeset, Kristin F. Degnes, David Becerro-Recio, Katarina Kolsaková, Tone Haugen, Malene Jønsson, Macarena Toral-Martínez, Carlos García-Estrada, Alberto Sola-Landa, Kjell D. Josefsen, Håvard Sletta and Carlos Barreiro
Microorganisms 2022, 10(6), 1249; https://doi.org/10.3390/microorganisms10061249 - 18 Jun 2022
Cited by 8 | Viewed by 3520
Abstract
Rotting wood is inhabited by a large diversity of bacteria, fungi, and insects with complex environmental relationships. The aim of this work was to study the composition of the microbiota (bacteria and fungi) in decaying wood from a northwest Spanish forest as a [...] Read more.
Rotting wood is inhabited by a large diversity of bacteria, fungi, and insects with complex environmental relationships. The aim of this work was to study the composition of the microbiota (bacteria and fungi) in decaying wood from a northwest Spanish forest as a source of industrially relevant microorganisms. The analyzed forest is situated in a well-defined biogeographic area combining Mediterranean and temperate macrobioclimates. Bacterial diversity, determined by metagenome analyses, was higher than fungal heterogeneity. However, a total of 194 different cultivable bacterial isolates (mainly Bacillaceae, Streptomycetaceae, Paenibacillaceae, and Microbacteriaceae) were obtained, in contrast to 343 fungal strains (mainly Aspergillaceae, Hypocreaceae, and Coniochaetaceae). Isolates traditionally known as secondary metabolite producers, such as Actinobacteria and members of the Penicillium genus, were screened for their antimicrobial activity by the detection of antibiotic biosynthetic clusters and competitive bioassays against fungi involved in wood decay. In addition, the ability of Penicillium isolates to degrade cellulose and release ferulic acid from wood was also examined. These results present decaying wood as an ecologically rich niche and a promising source of biotechnologically interesting microorganisms. Full article
(This article belongs to the Special Issue Secondary Metabolism of Microorganisms)
Show Figures

Graphical abstract

11 pages, 1392 KiB  
Article
Endophytic Community Composition and Genetic-Enzymatic Features of Cultivable Bacteria in Vaccinium myrtillus L. in Forests of the Baltic-Nordic Region
by Ingrida Mažeikienė, Birutė Frercks, Daiva Burokienė, Irena Mačionienė and Alvija Šalaševičienė
Forests 2021, 12(12), 1647; https://doi.org/10.3390/f12121647 - 27 Nov 2021
Cited by 9 | Viewed by 2643
Abstract
Regardless of their growth locations and species diversity, plants have endophytic bacterial communities. Bilberry (Vaccinium myrtillus L.) is valuable for human health because of its antioxidant properties, and the plant has adapted to stressful growing conditions in forests. Here, we aimed to [...] Read more.
Regardless of their growth locations and species diversity, plants have endophytic bacterial communities. Bilberry (Vaccinium myrtillus L.) is valuable for human health because of its antioxidant properties, and the plant has adapted to stressful growing conditions in forests. Here, we aimed to describe the composition of the community of endophytic microorganisms in bilberry leaves and to determine whether the diversity of endophytic bacteria varies depending on the geographical location of the plants. In this study, we evaluated the significance of endophytes in the host plant and the potential use of such bacteria. Twenty-five culturable bacterial isolates were identified in V. myrtillus leaves based on 16S rRNA gene sequencing and phylogenetic analysis. For the first time, we report upon the diversity of endophytic communities coexisting in bilberry leaves in different geographical locations of the Nordic-Baltic region. Under harsh conditions, the bilberry plants had a greater diversity of bacteria. The bacterial families Bacillaceae, Paenibacillaceae and Micrococcaceae were the most common endophytes in leaves of bilberry. Strains of Staphylococcaceae, Lactobacillaceae, Pseudomonaceae, Corynebacteriaceae and Planococcaceae were identified in samples from Finland and Norway. Plant growth-promoting genes (acdS and AcPho) and/or enzymatic activity were identified in many isolates. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

12 pages, 1104 KiB  
Article
The Reaction of Cellulolytic and Potentially Cellulolytic Spore-Forming Bacteria to Various Types of Crop Management and Farmyard Manure Fertilization in Bulk Soil
by Jakub Dobrzyński, Paweł Stanisław Wierzchowski, Wojciech Stępień and Ewa Beata Górska
Agronomy 2021, 11(4), 772; https://doi.org/10.3390/agronomy11040772 - 15 Apr 2021
Cited by 24 | Viewed by 3257
Abstract
The ecology of cellulolytic bacteria in bulk soil is still relatively unknown. There is still only a handful of papers on the abundance and diversity of this group of bacteria. Our study aimed to determine the impact of various crop management systems and [...] Read more.
The ecology of cellulolytic bacteria in bulk soil is still relatively unknown. There is still only a handful of papers on the abundance and diversity of this group of bacteria. Our study aimed to determine the impact of various crop management systems and farmyard manure (FYM) fertilization on the abundance of cellulolytic and potentially cellulolytic spore-forming bacteria (SCB). The study site was a nearly 100-year-old fertilization experiment, one of the oldest still active field trials in Europe. The highest contents of total carbon (TC) and total nitrogen (TN) were recorded in both five-year rotations. The abundances of SCB and potential SCB were evaluated using classical microbiological methods, the most probable number (MPN), and 16S rRNA Illumina MiSeq sequencing. The highest MPN of SCB was recorded in soil with arbitrary rotation without legumes (ARP) fertilized with FYM (382 colony-forming units (CFU) mL−1). As a result of the bioinformatic analysis, the highest values of the Shannon–Wiener index and the largest number of operational taxonomic units (OTUs) were found in ARP-FYM, while the lowest in ARP treatment without FYM fertilization. In all treatments, those dominant at the order level were: Brevibacillales (13.1–43.4%), Paenibacillales (5.3–36.9%), Bacillales (4.0–0.9%). Brevibacillaceae (13.1–43.4%), Paenibacillaceae (8.2–36.9%), and Clostridiaceae (5.4–11.9%) dominated at the family level in all tested samples. Aneurinibacillaceae and Hungateiclostridiaceae families increased their overall share in FYM fertilization treatments. The results of our research show that the impact of crop management types on SCB was negligible while the actual factor shaping SCB community was the use of FYM fertilization. Full article
Show Figures

Figure 1

24 pages, 2388 KiB  
Article
Genome-Driven Discovery of Enzymes with Industrial Implications from the Genus Aneurinibacillus
by Majid Rasool Kamli, Nada A. Y. Alzahrani, Nahid H. Hajrah, Jamal S. M. Sabir and Adeel Malik
Microorganisms 2021, 9(3), 499; https://doi.org/10.3390/microorganisms9030499 - 26 Feb 2021
Cited by 14 | Viewed by 3489
Abstract
Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential [...] Read more.
Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications. Full article
(This article belongs to the Special Issue Novel Microbial Enzymes with Industrial Applications)
Show Figures

Figure 1

25 pages, 2623 KiB  
Article
Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants
by Andrea Fontana, Mirko Manchia, Concetta Panebianco, Pasquale Paribello, Carlo Arzedi, Eleonora Cossu, Mario Garzilli, Maria Antonietta Montis, Andrea Mura, Claudia Pisanu, Donatella Congiu, Massimiliano Copetti, Federica Pinna, Bernardo Carpiniello, Alessio Squassina and Valerio Pazienza
Biomedicines 2020, 8(9), 311; https://doi.org/10.3390/biomedicines8090311 - 27 Aug 2020
Cited by 50 | Viewed by 7186
Abstract
Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed [...] Read more.
Major depressive disorder (MDD) is a common severe psychiatric illness, exhibiting sub-optimal response to existing pharmacological treatments. Although its etiopathogenesis is still not completely understood, recent findings suggest that an altered composition of the gut microbiota might play a role. Here we aimed to explore potential differences in the composition of the gut microbiota between patients with MDD and healthy controls (HC) and to identify possible signatures of treatment response by analyzing two groups of MDD patients characterized as treatment-resistant (TR) or responders (R) to antidepressants. Stool samples were collected from 34 MDD patients (8 TR, 19 R and 7 untreated) and 20 HC. Microbiota was characterized using the 16S metagenomic approach. A penalized logistic regression analysis algorithm was applied to identify bacterial populations that best discriminate the diagnostic groups. Statistically significant differences were identified for the families of Paenibacillaceae and Flavobacteriaceaea, for the genus Fenollaria, and the species Flintibacter butyricus, Christensenella timonensis, and Eisenbergiella massiliensis among others. The phyla Proteobacteria, Tenericutes and the family Peptostreptococcaceae were more abundant in TR, whereas the phylum Actinobacteria was enriched in R patients. Moreover, a number of bacteria only characterized the microbiota of TR patients, and many others were only detected in R. Our results confirm that dysbiosis is a hallmark of MDD and suggest that microbiota of TR patients significantly differs from responders to antidepressants. This finding further supports the relevance of an altered composition of the gut microbiota in the etiopathogenesis of MDD, suggesting a role in response to antidepressants. Full article
(This article belongs to the Special Issue Microbial Ecology in Health and Disease)
Show Figures

Graphical abstract

Back to TopTop