Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (524)

Search Parameters:
Keywords = PV energy estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 373 KiB  
Article
Impact Assessment of Rural Electrification Through Photovoltaic Kits on Household Expenditures and Income: The Case of Morocco
by Abdellah Oulakhmis, Rachid Hasnaoui and Youness Boudrik
Economies 2025, 13(8), 224; https://doi.org/10.3390/economies13080224 - 31 Jul 2025
Abstract
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using [...] Read more.
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using quasi-experimental econometric techniques, specifically propensity score matching (PSM) and estimation of the Average Treatment Effect on the Treated (ATT), the study measures changes in household income, expenditures, and economic activities resulting from PV electrification. The results indicate significant positive effects on household income, electricity spending, and productivity in agriculture and livestock. These findings highlight the critical role of decentralized renewable energy in advancing rural development and poverty reduction. Policy recommendations include expanding PV access with complementary support measures such as microfinance and technical training. Full article
Show Figures

Figure 1

20 pages, 5900 KiB  
Article
Experimental Testing and Seasonal Performance Assessment of a Stationary and Sun-Tracked Photovoltaic–Thermal System
by Ewa Kozak-Jagieła, Piotr Cisek, Adam Pawłowski, Jan Taler and Paweł Albrechtowicz
Energies 2025, 18(15), 4064; https://doi.org/10.3390/en18154064 (registering DOI) - 31 Jul 2025
Abstract
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The [...] Read more.
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The test installation consisted of thirty stationary PVT modules and five dual-axis sun-tracking systems, each equipped with six PV modules. An innovative cooling system was developed for the PVT modules, consisting of a surface-mounted heat sink installed on the rear side of each panel. The system includes embedded tubes through which a cooling fluid circulates, enabling efficient heat recovery. The results indicated that the stationary PVT system outperformed a conventional fixed PV installation, whose expected output was estimated using PVGIS data. Specifically, the stationary PVT system generated 26.1 kWh/m2 more electricity annually, representing a 14.8% increase. The sun-tracked PVT modules yielded even higher gains, producing 42% more electricity than the stationary system, with particularly notable improvements during the autumn and winter seasons. After accounting for the electricity consumed by the tracking mechanisms, the sun-tracked PVT system still delivered a 34% higher net electricity output. Moreover, it enhanced the thermal energy output by 85%. The findings contribute to the ongoing development of high-performance PVT systems and provide valuable insights for their optimal deployment in various climatic conditions, supporting the broader integration of renewable energy technologies in building energy systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning
by Ahmet Hamzaoğlu, Ali Erduman and Ali Kırçay
Sustainability 2025, 17(15), 6853; https://doi.org/10.3390/su17156853 - 28 Jul 2025
Viewed by 163
Abstract
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is [...] Read more.
Accurate estimation of available rooftop areas for PV power generation at the city scale is critical for sustainable energy planning and policy development. In this study, using publicly available high-resolution satellite imagery, rooftop solar energy potential in urban, rural, and industrial areas is estimated using deep learning models. In order to identify roof areas, high-resolution open-source images were manually labeled, and the training dataset was trained with DeepLabv3+ architecture. The developed model performed roof area detection with high accuracy. Model outputs are integrated with a user-friendly interface for economic analysis such as cost, profitability, and amortization period. This interface automatically detects roof regions in the bird’s-eye -view images uploaded by users, calculates the total roof area, and classifies according to the potential of the area. The system, which is applied in 81 provinces of Turkey, provides sustainable energy projections such as PV installed capacity, installation cost, annual energy production, energy sales revenue, and amortization period depending on the panel type and region selection. This integrated system consists of a deep learning model that can extract the rooftop area with high accuracy and a user interface that automatically calculates all parameters related to PV installation for energy users. The results show that the DeepLabv3+ architecture and the Adam optimization algorithm provide superior performance in roof area estimation with accuracy between 67.21% and 99.27% and loss rates between 0.6% and 0.025%. Tests on 100 different regions yielded a maximum roof estimation accuracy IoU of 84.84% and an average of 77.11%. In the economic analysis, the amortization period reaches the lowest value of 4.5 years in high-density roof regions where polycrystalline panels are used, while this period increases up to 7.8 years for thin-film panels. In conclusion, this study presents an interactive user interface integrated with a deep learning model capable of high-accuracy rooftop area detection, enabling the assessment of sustainable PV energy potential at the city scale and easy economic analysis. This approach is a valuable tool for planning and decision support systems in the integration of renewable energy sources. Full article
Show Figures

Figure 1

25 pages, 8614 KiB  
Article
Shuffled Puma Optimizer for Parameter Extraction and Sensitivity Analysis in Photovoltaic Models
by En-Jui Liu, Rou-Wen Chen, Qing-An Wang and Wan-Ling Lu
Energies 2025, 18(15), 4008; https://doi.org/10.3390/en18154008 - 28 Jul 2025
Viewed by 190
Abstract
Photovoltaic (PV) systems are the core technology for implementing net-zero carbon emissions by 2050. The performance of PV systems is strongly influenced by environmental factors, including irradiance, temperature, and shading, which makes it difficult to characterize the nonlinear and multi-coupling behavior of the [...] Read more.
Photovoltaic (PV) systems are the core technology for implementing net-zero carbon emissions by 2050. The performance of PV systems is strongly influenced by environmental factors, including irradiance, temperature, and shading, which makes it difficult to characterize the nonlinear and multi-coupling behavior of the systems. Accurate modeling is essential for reliable performance prediction and lifespan estimation. To address this challenge, a novel metaheuristic algorithm called shuffled puma optimizer (SPO) is deployed to perform parameter extraction and optimal configuration identification across four PV models. The robustness and stability of SPO are comprehensively evaluated through comparisons with advanced algorithms based on best fitness, mean fitness, and standard deviation. The root mean square error (RMSE) obtained by SPO for parameter extraction are 8.8180 × 10−4, 8.5513 × 10−4, 8.4900 × 10−4, and 2.3941 × 10−3 for the single diode model (SDM), double diode model (DDM), triple diode model (TDM), and photovoltaic module model (PMM), respectively. A one-factor-at-a-time (OFAT) sensitivity analysis is employed to assess the relative importance of undetermined parameters within each PV model. The SPO-based modeling framework enables high-accuracy PV performance prediction, and its application to sensitivity analysis can accurately identify key factors that lead to reduced computational cost and improved adaptability for integration with energy management systems and intelligent electric grids. Full article
Show Figures

Figure 1

16 pages, 4631 KiB  
Article
Hybrid Wind–Solar Generation and Analysis for Iberian Peninsula: A Case Study
by Jesús Polo
Energies 2025, 18(15), 3966; https://doi.org/10.3390/en18153966 - 24 Jul 2025
Viewed by 275
Abstract
Hybridization of solar and wind energy sources is a promising solution to enhance the dispatch capability of renewables. The complementarity of wind and solar radiation, as well as the sharing of transmission lines and other infrastructures, can notably benefit the deployment of renewable [...] Read more.
Hybridization of solar and wind energy sources is a promising solution to enhance the dispatch capability of renewables. The complementarity of wind and solar radiation, as well as the sharing of transmission lines and other infrastructures, can notably benefit the deployment of renewable power. Mapping of hybrid solar–wind potential can help identify new emplacements or existing power facilities where an extension with a hybrid system might work. This paper presents an analysis of a hybrid solar–wind potential by considering a reference power plant of 40 MW in the Iberian Peninsula and comparing the hybrid and non-hybrid energy generated. The generation of energy is estimated using SAM for a typical meteorological year, using PVGIS and ERA5 meteorological information as input. Modeling the hybrid plant in relation to individual PV and wind power plants minimizes the dependence on technical and economic input data, allowing for the expression of potential hybridization analysis in relative numbers through maps. Correlation coefficient and capacity factor maps are presented here at different time scales, showing the complementarity in most of the spatial domain. In addition, economic analysis in comparison with non-hybrid power plants shows a reduction of around 25–30% in the LCOE in many areas of interest. Finally, a sizing sensitivity analysis is also performed to select the most beneficial sharing between PV and wind. Full article
(This article belongs to the Special Issue Advances in Forecasting Technologies of Solar Power Generation)
Show Figures

Figure 1

19 pages, 3805 KiB  
Article
Assessment of Urban Rooftop Photovoltaic Potential Based on Deep Learning: A Case Study of the Central Urban Area of Wuhan
by Yu Zhang, Wei He, Jinyan Hu, Chaohui Zhou, Bo Ren, Huiheng Luo, Zhiyong Tian and Weili Liu
Buildings 2025, 15(15), 2607; https://doi.org/10.3390/buildings15152607 - 23 Jul 2025
Viewed by 288
Abstract
Accurate assessment of urban rooftop solar photovoltaic (PV) potential is critical for the low-carbon energy transition. This study presents a deep learning-based approach using high-resolution (0.5 m) aerial imagery to automatically identify building rooftops in the central urban area of Wuhan, China (covering [...] Read more.
Accurate assessment of urban rooftop solar photovoltaic (PV) potential is critical for the low-carbon energy transition. This study presents a deep learning-based approach using high-resolution (0.5 m) aerial imagery to automatically identify building rooftops in the central urban area of Wuhan, China (covering seven districts), and to estimate their PV installation potential. Two state-of-the-art semantic segmentation models (DeepLabv3+ and U-Net) were trained and evaluated on a local rooftop dataset; U-Net with a ResNet50 backbone achieved the best performance with an overall segmentation accuracy of ~94%. Using this optimized model, we extracted approximately 130 km2 of suitable rooftop area, which could support an estimated 18.18 GW of PV capacity. These results demonstrate the effectiveness of deep learning for city-scale rooftop mapping and provide a data-driven basis for strategic planning of distributed PV installations to support carbon neutrality goals. The proposed framework can be generalized to facilitate large-scale solar energy assessments in other cities. Full article
(This article belongs to the Special Issue Smart Technologies for Climate-Responsive Building Envelopes)
Show Figures

Figure 1

19 pages, 2954 KiB  
Article
Maximum Power Extraction of Photovoltaic Systems Using Dynamic Sliding Mode Control and Sliding Observer
by Ali Karami-Mollaee and Oscar Barambones
Mathematics 2025, 13(14), 2305; https://doi.org/10.3390/math13142305 - 18 Jul 2025
Viewed by 183
Abstract
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and [...] Read more.
In this paper, a robust optimized controller is implemented in the photovoltaic generator system (PVGS). The PVGS is composed of individual photovoltaic (PV) cells, which convert solar energy to electrical energy. To optimize the efficiency of the PVGS under variable solar irradiance and temperatures, a maximum power point tracking (MPPT) controller is necessary. Additionally, the PVGS output voltage is typically low for many applications. To achieve the MPPT and to gain the output voltage, an increasing boost converter (IBC) is employed. Then, two issues should be considered in MPPT. At first, a smooth control signal for adjusting the duty cycle of the IBC is important. Another critical issue is the PVGS and IBC unknown sections, i.e., the total system uncertainty. Therefore, to address the system uncertainties and to regulate the smooth duty cycle of the converter, a robust dynamic sliding mode control (DSMC) is proposed. In DSMC, a low-pass integrator is placed before the system to suppress chattering and to produce a smooth actuator signal. However, this integrator increases the system states, and hence, a sliding mode observer (SMO) is proposed to estimate this additional state. The stability of the proposed control scheme is demonstrated using the Lyapunov theory. Finally, to demonstrate the effectiveness of the proposed method and provide a reliable comparison, conventional sliding mode control (CSMC) with the same proposed SMO is also implemented. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

17 pages, 2066 KiB  
Article
A Mid-Term Scheduling Method for Cascade Hydropower Stations to Safeguard Against Continuous Extreme New Energy Fluctuations
by Huaying Su, Yupeng Li, Yan Zhang, Yujian Wang, Gang Li and Chuntian Cheng
Energies 2025, 18(14), 3745; https://doi.org/10.3390/en18143745 - 15 Jul 2025
Viewed by 170
Abstract
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility [...] Read more.
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility resource to safeguard against continuous extreme new energy fluctuations. This paper proposes a mid-term scheduling method for reservoir hydropower to enhance our ability to regulate continuous extreme new energy fluctuations. First, a data-driven scenario generation method is proposed to characterize the continuous extreme new energy output by combining kernel density estimation, Monte Carlo sampling, and the synchronized backward reduction method. Second, a two-stage stochastic hydropower–new energy complementary optimization scheduling model is constructed with the reservoir water level as the decision variable, ensuring that reservoirs have a sufficient water buffering capacity to free up transmission channels for continuous extremely high new energy outputs and sufficient water energy storage to compensate for continuous extremely low new energy outputs. Third, the mathematical model is transformed into a tractable mixed-integer linear programming (MILP) problem by using piecewise linear and triangular interpolation techniques on the solution, reducing the solution complexity. Finally, a case study of a hydropower–PV station in a river basin is conducted to demonstrate that the proposed model can effectively enhance hydropower’s regulation ability, to mitigate continuous extreme PV outputs, thereby improving power supply reliability in this hybrid renewable energy system. Full article
(This article belongs to the Special Issue Optimal Schedule of Hydropower and New Energy Power Systems)
Show Figures

Figure 1

15 pages, 3168 KiB  
Article
A Multi-Scale Approach to Photovoltaic Waste Prediction: Insights from Italy’s Current and Future Installations
by Andrea Franzoni, Chiara Leggerini, Mariasole Bannò, Mattia Avanzini and Edoardo Vitto
Solar 2025, 5(3), 32; https://doi.org/10.3390/solar5030032 - 15 Jul 2025
Viewed by 383
Abstract
Italy strives to meet its renewable energy targets for 2030 and 2050, with photovoltaic (PV) technology playing a central role. However, the push for increased solar adoption, spurred by past incentive schemes such as “Conto Energia” and “Superbonus 110%”, [...] Read more.
Italy strives to meet its renewable energy targets for 2030 and 2050, with photovoltaic (PV) technology playing a central role. However, the push for increased solar adoption, spurred by past incentive schemes such as “Conto Energia” and “Superbonus 110%”, raises long-term challenges related to PV waste management. In this study, we present a multi-scale approach to forecast End-of-Life (EoL) PV waste across Italy’s 20 regions, aiming to support national circular economy strategies. Historical installation data (2008–2024) were collected and combined with socio-economic and energy-related indicators to train a Backpropagation Neural Network (BPNN) for regional PV capacity forecasting up to 2050. Each model was optimised and validated using R2 and RMSE metrics. The projections indicate that current trends fall short of meeting Italy’s decarbonisation targets. Subsequently, by applying a Weibull reliability function under two distinct scenarios (Early-loss and Regular-loss), we estimated the annual and regional distribution of PV panels reaching their EoL. This analysis provides spatially explicit insights into future PV waste flows, essential for planning regional recycling infrastructures and ensuring sustainable energy transitions. Full article
Show Figures

Figure 1

16 pages, 2234 KiB  
Article
Multi-Climate Simulation of Temperature-Driven Efficiency Losses in Crystalline Silicon PV Modules with Cost–Benefit Thresholds for Evaluating Cooling Strategies
by Bitian Jiang and Christi Madsen
Energies 2025, 18(14), 3609; https://doi.org/10.3390/en18143609 - 8 Jul 2025
Viewed by 241
Abstract
We explored the impact of high operating temperatures for monocrystalline silicon photovoltaic (PV) modules which dominate the market. Using nine years of hourly climate data with the System Advisor Model (SAM), we examined temperature impacts and cooling potential benefits across three climate zones [...] Read more.
We explored the impact of high operating temperatures for monocrystalline silicon photovoltaic (PV) modules which dominate the market. Using nine years of hourly climate data with the System Advisor Model (SAM), we examined temperature impacts and cooling potential benefits across three climate zones in the United States. Assuming that cooling approaches can achieve a constant temperature decrease of ΔT independent of irradiance and environmental conditions, our simulations show that a ΔT = 10 °C temperature reduction could improve energy yield by almost 3% annually. Cooling technologies have the strongest impact during the hottest months, with even a 5 °C reduction raising efficiency by nearly 10%. When the minimum temperature of the cooled module is constrained to the ambient temperature, ΔT = 20 °C boosts the hottest month energy yield by over 25%. For economically viable cooling systems, the cooling cost should be much less than the break-even cost. We estimate break-even costs of USD 25–40/m2 for 10 °C and USD 40–60/m2 for 20 °C cooling for the locations simulated. For ΔT > 20 °C, the added energy yield shows diminishing returns with minimum increase in break-even costs. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

30 pages, 2575 KiB  
Review
The Potential of Utility-Scale Hybrid Wind–Solar PV Power Plant Deployment: From the Data to the Results
by Luis Arribas, Javier Domínguez, Michael Borsato, Ana M. Martín, Jorge Navarro, Elena García Bustamante, Luis F. Zarzalejo and Ignacio Cruz
Wind 2025, 5(3), 16; https://doi.org/10.3390/wind5030016 - 7 Jul 2025
Viewed by 668
Abstract
The deployment of utility-scale hybrid wind–solar PV power plants is gaining global attention due to their enhanced performance in power systems with high renewable energy penetration. To assess their potential, accurate estimations must be derived from the available data, addressing key challenges such [...] Read more.
The deployment of utility-scale hybrid wind–solar PV power plants is gaining global attention due to their enhanced performance in power systems with high renewable energy penetration. To assess their potential, accurate estimations must be derived from the available data, addressing key challenges such as (1) the spatial and temporal resolution requirements, particularly for renewable resource characterization; (2) energy balances aligned with various business models; (3) regulatory constraints (environmental, technical, etc.); and (4) the cost dependencies of the different components and system characteristics. When conducting such analyses at the regional or national scale, a trade-off must be achieved to balance accuracy with computational efficiency. This study reviews existing experiences in hybrid plant deployment, with a focus on Spain, identifying the lack of national-scale product cost models for HPPs as the main gap and establishing a replicable methodology for hybrid plant mapping. A simplified example is shown using this methodology for a country-level analysis. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

23 pages, 5418 KiB  
Article
Deep-Learning-Enhanced Hybrid WOA-FMO Algorithm for Accurate PV Parameter Estimation in Single-, Double-, and Triple-Diode Models
by Hatem A. Farag Embaresh, Selçuk Alparslan Avci, Javad Rahebi and Raheleh Ghadami
Processes 2025, 13(7), 2023; https://doi.org/10.3390/pr13072023 - 26 Jun 2025
Viewed by 334
Abstract
The accurate modeling of photovoltaic (PV) systems is crucial in optimizing energy efficiency and operational reliability. To address challenges in parameter estimation under dynamic conditions, a hybrid deep learning (DL)-based optimization scheme is proposed. It is hypothesized that combining the global search capabilities [...] Read more.
The accurate modeling of photovoltaic (PV) systems is crucial in optimizing energy efficiency and operational reliability. To address challenges in parameter estimation under dynamic conditions, a hybrid deep learning (DL)-based optimization scheme is proposed. It is hypothesized that combining the global search capabilities of the Whale Optimization Algorithm (WOA) with local refinement of Fishier Mantis Optimization (FMO), supported by long short-term memory (LSTM)-based predictions, enhances accuracy and robustness. The method was validated through simulations on single-, double-, and triple-diode models (SDM, DDM, and TDM) using MATLAB 2021a version. The hybrid model achieved the lowest root mean square error (RMSE) of 6.96 × 10−4 across all models, outperforming standard metaheuristics and showing strong stability over multiple runs. These findings confirm the method’s superior accuracy and efficiency for PV parameter extraction. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 19260 KiB  
Article
Barrio-Level Assessment of Solar Rooftop Energy and Initial Insights into Energy Inequalities in Puerto Rico
by Carlos A. Peña-Becerra, Willian A. Pacheco-Cano, Daniel F. Aragones-Vargas, Agustín Irizarry-Rivera and Marcel Castro-Sitiriche
Solar 2025, 5(2), 28; https://doi.org/10.3390/solar5020028 - 19 Jun 2025
Viewed by 683
Abstract
The transition to renewable energy is critical to enhance Puerto Rico’s energy resilience and reduce dependence on imported fossil fuels. Rooftop photovoltaic (PV) systems provide a scalable opportunity to meet these objectives. This study evaluates the potential of rooftop PV systems across Puerto [...] Read more.
The transition to renewable energy is critical to enhance Puerto Rico’s energy resilience and reduce dependence on imported fossil fuels. Rooftop photovoltaic (PV) systems provide a scalable opportunity to meet these objectives. This study evaluates the potential of rooftop PV systems across Puerto Rico using the National Renewable Energy Laboratory’s (NREL) PV Rooftop Database, processing detailed roof surface data to estimate installed capacity, energy generation, Levelized Cost of Electricity (LCOE), and solar resource potential at municipal and barrio levels. Findings reveal high solar rooftop capacity in urban neighborhoods, with areas like Sabana Abajo and Hato Tejas each exceeding 450 GWh/year in potential generation. Solar rooftop resource values peak at 3.67 kWh/kW in coastal areas, with LCOE values (0.071–0.215 USD/kWh) below current electricity rates. All municipalities demonstrate technical potential to meet their electricity demand with rooftop PV system alone. This research contributes through (1) developing Puerto Rico’s first comprehensive solar rooftop potential map; (2) providing unprecedented barrio-level analysis; (3) introducing a methodology for estimating missing post-disaster consumption data; and (4) integrating technical, economic, and equity indicators to inform energy policy. These findings demonstrate the importance of rooftop solar in achieving renewable energy goals and provide an understanding of spatial energy inequalities. Full article
Show Figures

Figure 1

21 pages, 2175 KiB  
Article
Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation
by Ana Marcos-Castro, Carlos Sanz-Saiz, Jesús Polo and Nuria Martín-Chivelet
Appl. Sci. 2025, 15(12), 6579; https://doi.org/10.3390/app15126579 - 11 Jun 2025
Viewed by 487
Abstract
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical [...] Read more.
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical output according to the installed power and the solar irradiation, thus accounting for the power losses the PV system undergoes. Among the different parameters affecting PR, module temperature and the angle of incidence of irradiance are the most dependent on the BIPV application due to the varied module positioning. This paper assesses the suitability of several BIPV temperature models and determines the angular losses for any possible module positioning. The proposed methodology is easy to replicate and results in polar heatmap graphs to estimate PR at the desired location as a function of the tilt and azimuth angles of the modules. The calculations require irradiance, ambient temperature, and wind speed data, which can easily be obtained worldwide. Dynamic sky conditions are addressed through filters that smooth out quickly changing input data to avoid high and low peaks. The developed graphs are helpful in the decision-making process for BIPV designs by allowing the designer to estimate the expected PR of the BIPV system for any possible position of the modules on the building envelope, reducing the effect of uncertainties and resulting in more accurate and better predictions of the system’s output energy. The method applied to a BIPV façade in Madrid showed a deviation of less than 3% between the estimated and monitored PRs; the PR values ranged between 0.74 and 0.82, depending on the BIPV application and module position. Full article
(This article belongs to the Special Issue Advances in the Energy Efficiency and Thermal Comfort of Buildings)
Show Figures

Graphical abstract

23 pages, 1734 KiB  
Article
A Comparative Modeling Framework for Forecasting Distributed Energy Resource Adoption Under Trend-Based and Goal-Oriented Scenarios
by Zheng Grace Ma, Magnus Værbak and Bo Nørregaard Jørgensen
Sustainability 2025, 17(12), 5283; https://doi.org/10.3390/su17125283 - 7 Jun 2025
Viewed by 465
Abstract
Accurate forecasting of Distributed Energy Resource (DER) adoption is essential for decarbonization, effective policy, and infrastructure planning. This paper develops a comparative framework integrating trend-based and goal-oriented approaches using the logistic growth and Bass diffusion models. Using Danish household data for electric vehicles [...] Read more.
Accurate forecasting of Distributed Energy Resource (DER) adoption is essential for decarbonization, effective policy, and infrastructure planning. This paper develops a comparative framework integrating trend-based and goal-oriented approaches using the logistic growth and Bass diffusion models. Using Danish household data for electric vehicles (EVs), heat pumps (HPs), and rooftop photovoltaics (PVs), we evaluate four logistic-growth-based and two Bass-diffusion-based methods. Each method supports standard curve-fitting (trend-based) or incorporates explicit policy goals (goal-based), such as reaching a specified adoption threshold by a target year. An integrated flow diagram visually summarizes the decision process for method selection based on data availability, market maturity, and policy targets. Results show that Bass diffusion excels in early-stage or policy-driven markets like EVs, while logistic approaches perform better for PVs after subsidies are removed, with HP adoption falling in between. A key innovation is integrating future adoption targets into parameter estimation, enabling stakeholders to assess the required acceleration in adoption rates. The findings highlight the need to align model choice with data, market conditions, and policy objectives, offering practical guidance to accelerate DER deployment. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Hybrid Energy Systems)
Show Figures

Figure 1

Back to TopTop