Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = PAF inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 2713 KiB  
Article
Anti-Inflammatory and Antiplatelet Interactions on PAF and ADP Pathways of NSAIDs, Analgesic and Antihypertensive Drugs for Cardioprotection—In Vitro Assessment in Human Platelets
by Makrina Katsanopoulou, Zisis Zannas, Anna Ofrydopoulou, Chatzikamari Maria, Xenophon Krokidis, Dimitra A. Lambropoulou and Alexandros Tsoupras
Medicina 2025, 61(8), 1413; https://doi.org/10.3390/medicina61081413 - 4 Aug 2025
Viewed by 214
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with pathophysiological mechanisms often involving platelet activation and chronic inflammation. While antiplatelet agents targeting adenosine diphosphate (ADP)-mediated pathways are well established in CVD management, less is known about drug interactions with the platelet-activating [...] Read more.
Cardiovascular disease (CVD) is the leading cause of death worldwide, with pathophysiological mechanisms often involving platelet activation and chronic inflammation. While antiplatelet agents targeting adenosine diphosphate (ADP)-mediated pathways are well established in CVD management, less is known about drug interactions with the platelet-activating factor (PAF) pathway, a key mediator of inflammation. This study aimed to evaluate the effects of several commonly used cardiovascular and anti-inflammatory drug classes—including clopidogrel, non-steroidal anti-inflammatory drugs (NSAIDs), angiotensin II receptor blockers (ARBs), β-blockers, and analgesics—on platelet function via both the ADP and PAF pathways. Using human platelet-rich plasma (hPRP) from healthy donors, we assessed platelet aggregation in response to these two agonists in the absence and presence of graded concentrations of each of these drugs or of their usually prescribed combinations. The study identified differential drug effects on platelet aggregation, with some agents showing pathway-specific activity. Clopidogrel and NSAIDs demonstrated expected antiplatelet effects, while some (not all) antihypertensives exhibited additional anti-inflammatory potential. These findings highlight the relevance of evaluating pharmacological activity beyond traditional targets, particularly in relation to PAF-mediated inflammation and thrombosis. This dual-pathway analysis may contribute to a broader understanding of drug mechanisms and inform the development of more comprehensive therapeutic strategies for the prevention and treatment of cardiovascular, hypertension, and inflammation-driven diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 2021 KiB  
Article
Fucosylation-Mediated Suppression of Lipid Droplet Accumulation Induced by Low-Level L-Fucose Administration in 3T3-L1 Adipocytes
by Tomoya Nakamura, Tomohiko Nakao, Yuri Kominami, Miho Ito, Teruki Aizawa, Yusuke Akahori and Hideki Ushio
Kinases Phosphatases 2025, 3(3), 13; https://doi.org/10.3390/kinasesphosphatases3030013 - 24 Jun 2025
Viewed by 272
Abstract
Obesity causes lifestyle-related diseases such as hypertension and type 2 diabetes and has become a global health concern. L-fucose (Fuc), a monosaccharide that can be derived from brown algae, has been shown to strongly suppress lipid droplet accumulation in 3T3-L1 murine adipocytes at [...] Read more.
Obesity causes lifestyle-related diseases such as hypertension and type 2 diabetes and has become a global health concern. L-fucose (Fuc), a monosaccharide that can be derived from brown algae, has been shown to strongly suppress lipid droplet accumulation in 3T3-L1 murine adipocytes at high concentrations via the activation of AMP-activated kinase (AMPK). Although low concentrations of Fuc also exhibited similar effects, the underlying mechanisms remain unclear. In this study, we investigated the effects of low-level Fuc on lipid metabolism, focusing on the role of fucosylation. Low-level Fuc did not induce AMPK phosphorylation but suppressed lipid droplet accumulation. This suppressive effect was abolished by co-treatment with the fucosylation inhibitor 2F-Peracetyl-Fucose (2F-PAF), suggesting that fucosylation plays a key role in the observed metabolic regulation. Furthermore, proteomic analysis combined with click chemistry pulldown suggested that proteins involved in the regulation of lipid metabolism, such as acetoacetyl-CoA synthetase enzymes and catalytic subunit alpha of cAMP-dependent protein kinase, are fucosylated or interact with fucose. These findings provide novel insights into the anti-obesity mechanisms of Fuc and highlight the physiological significance of protein fucosylation in adipocyte lipid metabolism. Full article
Show Figures

Figure 1

14 pages, 1274 KiB  
Article
Indoximod Attenuates Inflammatory Responses in Acetic Acid-Induced Acute Colitis by Modulating Toll-like Receptor 4 (TLR4) Signaling and Proinflammatory Cytokines in Rats
by Gulcin Ercan, Hatice Aygun, Ahmet Akbaş, Osman Sezer Çınaroğlu and Oytun Erbas
Medicina 2025, 61(6), 1033; https://doi.org/10.3390/medicina61061033 - 3 Jun 2025
Viewed by 598
Abstract
Background and Objectives: Acute ulcerative colitis is characterized by excessive mucosal inflammation and epithelial disruption, often driven by dysregulated cytokine and immune signaling. Indoximod (1-methyl-DL-tryptophan), although not a direct enzymatic inhibitor, modulates the indoleamine 2,3-dioxygenase (IDO) pathway and has been reported to exert [...] Read more.
Background and Objectives: Acute ulcerative colitis is characterized by excessive mucosal inflammation and epithelial disruption, often driven by dysregulated cytokine and immune signaling. Indoximod (1-methyl-DL-tryptophan), although not a direct enzymatic inhibitor, modulates the indoleamine 2,3-dioxygenase (IDO) pathway and has been reported to exert immunoregulatory effects in various models of inflammation. This study aimed to evaluate the protective effects of Indoximod in an acetic acid-induced colitis model in rats, focusing on histopathological changes and inflammatory mediators. Materials and Methods: Thirty male Wistar albino rats were randomly assigned to three groups (n = 10 per group): Group 1 (Control) received 0.9% saline oral gavage; Group 2 (Colitis) received intrarectal 4% acetic acid to induce colitis and were then treated with saline; Group 3 (Colitis + Indoximod) received 4% acetic acid followed by oral gavage administration of Indoximod (30 mg/kg) for 15 consecutive days. Histopathological evaluation of colonic tissues was performed using hematoxylin and eosin (H&E) staining. Colonic expression of Toll-like receptor 4 (TLR4) and plasma levels of tumor necrosis factor-alpha (TNF-α), pentraxin-3 (PTX-3), and platelet-activating factor (PAF) were quantified using enzyme-linked immunosorbent assay (ELISA). Results: Acetic acid-induced colitis significantly increased mucosal damage, TLR4 expression, and circulating levels of TNF-α, PTX-3, and PAF compared with controls (p < 0.001). Indoximod treatment markedly reduced histological injury and significantly suppressed TLR4 and TNF-α levels (p < 0.01), along with partial reductions in PTX-3 (p < 0.05). However, PAF levels remained elevated despite treatment, indicating limited efficacy in PAF-associated pathways. Conclusions: Indoximod exhibited anti-inflammatory effects in this acute colitis model, likely by downregulating key proinflammatory mediators. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

16 pages, 1290 KiB  
Review
Platelet-Activating Factor-Induced Inflammation in Obesity: A Two-Sided Coin of Protection and Risk
by Smaragdi Antonopoulou
Cells 2025, 14(7), 471; https://doi.org/10.3390/cells14070471 - 21 Mar 2025
Viewed by 869
Abstract
Obesity, marked by excessive fat accumulation, especially abdominal, is a global health concern with significant public impact. While obesity-associated chronic unresolved inflammation contributes to metabolic dysfunctions, acute inflammation supports healthy adipose tissue remodeling and expansion. Platelet-activating factor (PAF), a “primitive” signaling molecule, is [...] Read more.
Obesity, marked by excessive fat accumulation, especially abdominal, is a global health concern with significant public impact. While obesity-associated chronic unresolved inflammation contributes to metabolic dysfunctions, acute inflammation supports healthy adipose tissue remodeling and expansion. Platelet-activating factor (PAF), a “primitive” signaling molecule, is among the key mediators involved in the acute phase of inflammation and in various pathophysiological processes. This article explores the role of PAF in fat accumulation and obesity by reviewing experimental data from cell cultures, animals, and humans. It proposes an emerging biochemical mechanism in an attempt to explain its dual role in the healthy and obese adipose tissue, including also data on PAF’s potential involvement in epigenetic mechanisms that may be linked to the “obesity memory”. Finally, it highlights the potential of natural PAF modulators in promoting functional adipose tissue, thermogenesis, and obesity prevention through a healthy lifestyle, including a Mediterranean diet rich in PAF weak agonists/PAF receptor antagonists and regular exercise, which help maintain controlled PAF levels. Conversely, in cases of obesity-related systemic inflammation with excessive PAF levels, potent PAF inhibitors like ginkgolide B and rupatadine may help mitigate metabolic dysfunctions with PAFR antagonists potentially enhancing their effects synergistically. Full article
(This article belongs to the Special Issue Adipose Tissue Functioning in Health and Diseases)
Show Figures

Figure 1

11 pages, 2647 KiB  
Article
Structure-Based Screening and Optimization of PafA Inhibitors with Potent Anti-Tuberculosis Activity
by Hewei Jiang, Jin Xie, Lei Wang, Hong Chen, Yunxiao Zheng, Xuening Wang, Shujuan Guo, Tao Wang, Jing Bi, Xuelian Zhang, Jianfeng Pei and Shengce Tao
Int. J. Mol. Sci. 2024, 25(23), 13189; https://doi.org/10.3390/ijms252313189 - 8 Dec 2024
Cited by 1 | Viewed by 1370
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health challenge, primarily due to the increasing prevalence of drug resistance. Consequently, the development of drugs with novel modes of action (MOAs) is urgently required. In this study, we discovered [...] Read more.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major global health challenge, primarily due to the increasing prevalence of drug resistance. Consequently, the development of drugs with novel modes of action (MOAs) is urgently required. In this study, we discovered and characterized two potent inhibitors, Pi-1-58 and Pi-2-26, targeting the prokaryotic ubiquitin-like protein (Pup) ligase PafA of Mtb. Pi-1-58 was identified through computer-aided drug screening. The binding mode of Pi-1-58 and PafA was investigated through molecular docking, followed by experimental validations. Based on the core structure of Pi-1-58, we developed a more potent inhibitor, Pi-2-26, through structure-guided drug design. Both Pi-1-58 and Pi-2-26 exhibited selective and specific inhibition of PafA according to biochemical and cell-based assays. Importantly, the inhibitors demonstrated significant inhibition on Mtb survival in the presence of nitric oxide, mimicking the in vivo nitrogen limited environment that Mtb encountered in macrophage. Our findings provide a comprehensive understanding of the structural and functional aspects of these PafA inhibitors and establish a solid foundation for the development of novel therapeutics against tuberculosis. Full article
(This article belongs to the Special Issue Molecular Research in Infective Mycobacteria)
Show Figures

Figure 1

27 pages, 7556 KiB  
Article
First-Row Transition Metal Complexes Incorporating the 2-(2′-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin
by Antigoni Margariti, Vasiliki D. Papakonstantinou, George M. Stamatakis, Constantinos A. Demopoulos, Christina Machalia, Evangelia Emmanouilidou, Gregor Schnakenburg, Maria-Christina Nika, Nikolaos S. Thomaidis and Athanassios I. Philippopoulos
Molecules 2023, 28(19), 6899; https://doi.org/10.3390/molecules28196899 - 1 Oct 2023
Cited by 6 | Viewed by 3095
Abstract
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could [...] Read more.
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N′-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2′-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 μM and 0.46 μM, respectively. Within the series, complex (5) was less effective (IC50 = 39 μM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF’s basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future II)
Show Figures

Figure 1

20 pages, 3079 KiB  
Review
Protective Effect of Olive Oil Microconstituents in Atherosclerosis: Emphasis on PAF Implicated Atherosclerosis Theory
by Smaragdi Antonopoulou and Constantinos A. Demopoulos
Biomolecules 2023, 13(4), 700; https://doi.org/10.3390/biom13040700 - 20 Apr 2023
Cited by 25 | Viewed by 3076
Abstract
Atherosclerosis is a progressive vascular multifactorial process. The mechanisms underlining the initiating event of atheromatous plaque formation are inflammation and oxidation. Among the modifiable risk factors for cardiovascular diseases, diet and especially the Mediterranean diet (MedDiet), has been widely recognized as one of [...] Read more.
Atherosclerosis is a progressive vascular multifactorial process. The mechanisms underlining the initiating event of atheromatous plaque formation are inflammation and oxidation. Among the modifiable risk factors for cardiovascular diseases, diet and especially the Mediterranean diet (MedDiet), has been widely recognized as one of the healthiest dietary patterns. Olive oil (OO), the main source of the fatty components of the MedDiet is superior to the other “Mono-unsaturated fatty acids containing oils” due to the existence of specific microconstituents. In this review, the effects of OO microconstituents in atherosclerosis, based on data from in vitro and in vivo studies with special attention on their inhibitory activity against PAF (Platelet-Activating Factor) actions, are presented and critically discussed. In conclusion, we propose that the anti-atherogenic effect of OO is attributed to the synergistic action of its microconstituents, mainly polar lipids that act as PAF inhibitors, specific polyphenols and α-tocopherol that also exert anti-PAF activity. This beneficial effect, also mediated through anti-PAF action, can occur from microconstituents extracted from olive pomace, a toxic by-product of the OO production process that constitutes a significant ecological problem. Daily intake of moderate amounts of OO consumed in the context of a balanced diet is significant for healthy adults. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 2033 KiB  
Article
Tin(II) and Tin(IV) Complexes Incorporating the Oxygen Tripodal Ligands [(η5-C5R5)Co{P(OEt)2O}3], (R = H, Me; Et = -C2H5) as Potent Inflammatory Mediator Inhibitors: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin
by Alexandros Kalampalidis, Artemis Damati, Demetrios Matthopoulos, Alexandros B. Tsoupras, Constantinos A. Demopoulos, Gregor Schnakenburg and Athanassios I. Philippopoulos
Molecules 2023, 28(4), 1859; https://doi.org/10.3390/molecules28041859 - 16 Feb 2023
Cited by 4 | Viewed by 2562
Abstract
Metal complexes displaying antiplatelet properties is a promising research area. In our methodology, Platelet-Activating Factor (PAF), the most potent lipid pro-inflammatory mediator, serves as a biological probe. The antiplatelet activity is exerted by the inhibition of the PAF-induced aggregation in washed rabbit platelets [...] Read more.
Metal complexes displaying antiplatelet properties is a promising research area. In our methodology, Platelet-Activating Factor (PAF), the most potent lipid pro-inflammatory mediator, serves as a biological probe. The antiplatelet activity is exerted by the inhibition of the PAF-induced aggregation in washed rabbit platelets (WRPs) and in rabbit plasma rich in platelets (rPRPs). Herein, the synthesis and biological investigation of a series of organometallic tin(II) and tin(IV) complexes, featuring the oxygen tripodal Kläui ligands [(η5-C5R5)Co{P(OEt)2O}3], {R = H, (LOEt); Me (L*OEt)}, are reported. Reaction of NaLOEt (1a) and NaL*OEt (1b) with SnCl2, yielded the rare four-coordinate LOEtSnCl (2a) and L*OEtSnCl (2b) complexes. Accordingly, LOEtSnPh3 (3a) and L*OEtSnPh3 (3b) were prepared, starting from Ph3SnCl. Characterization includes spectroscopy and X-ray diffraction studies for 2a, 2b and 3b. The antiplatelet activity of the lead complexes 2b and 3a (IC50 = 0.5 μΜ) is superior compared to that of 1a and 1b, while both complexes display a pronounced inhibitory activity against thrombin (IC50 = 1.8 μM and 0.6 μM). The in vitro cytotoxic activities of 3a and 2b on human Jurkat T lymphoblastic tumor cell line is higher than that of cisplatin. Full article
Show Figures

Graphical abstract

13 pages, 1063 KiB  
Article
Presence of Ceramidase Activity in Electronegative LDL
by Núria Puig, Jose Rives, Montserrat Estruch, Ana Aguilera-Simon, Noemi Rotllan, Mercedes Camacho, Núria Colomé, Francesc Canals, José Luis Sánchez-Quesada and Sonia Benitez
Int. J. Mol. Sci. 2023, 24(1), 165; https://doi.org/10.3390/ijms24010165 - 22 Dec 2022
Cited by 2 | Viewed by 2532
Abstract
Electronegative low-density lipoprotein (LDL(−)) is a minor modified fraction of human plasma LDL with several atherogenic properties. Among them is increased bioactive lipid mediator content, such as lysophosphatidylcholine (LPC), non-esterified fatty acids (NEFA), ceramide (Cer), and sphingosine (Sph), which are related to the [...] Read more.
Electronegative low-density lipoprotein (LDL(−)) is a minor modified fraction of human plasma LDL with several atherogenic properties. Among them is increased bioactive lipid mediator content, such as lysophosphatidylcholine (LPC), non-esterified fatty acids (NEFA), ceramide (Cer), and sphingosine (Sph), which are related to the presence of some phospholipolytic activities, including platelet-activating factor acetylhydrolase (PAF-AH), phospholipase C (PLC), and sphingomyelinase (SMase), in LDL(−). However, these enzymes’ activities do not explain the increased Sph content, which typically derives from Cer degradation. In the present study, we analyzed the putative presence of ceramidase (CDase) activity, which could explain the increased Sph content. Thin layer chromatography (TLC) and lipidomic analysis showed that Cer, Sph, and NEFA spontaneously increased in LDL(−) incubated alone at 37 °C, in contrast with native LDL(+). An inhibitor of neutral CDase prevented the formation of Sph and, in turn, increased Cer content in LDL(−). In addition, LDL(−) efficiently degraded fluorescently labeled Cer (NBD-Cer) to form Sph and NEFA. These observations defend the existence of the CDase-like activity’s association with LDL(−). However, neither the proteomic analysis nor the Western blot detected the presence of an enzyme with known CDase activity. Further studies are thus warranted to define the origin of the CDase-like activity detected in LDL(−). Full article
Show Figures

Figure 1

26 pages, 1774 KiB  
Review
Targeting the Platelet-Activating Factor Receptor (PAF-R): Antithrombotic and Anti-Atherosclerotic Nutrients
by Rajendran Harishkumar, Sakshi Hans, Janelle E. Stanton, Andreas M. Grabrucker, Ronan Lordan and Ioannis Zabetakis
Nutrients 2022, 14(20), 4414; https://doi.org/10.3390/nu14204414 - 20 Oct 2022
Cited by 30 | Viewed by 7612
Abstract
Platelet-activating factor (PAF) is a lipid mediator that interacts with its receptor (PAF-R) to carry out cell signalling. However, under certain conditions the binding of PAF to PAF-R leads to the activation of pro-inflammatory and prothrombotic pathways that have been implicated in the [...] Read more.
Platelet-activating factor (PAF) is a lipid mediator that interacts with its receptor (PAF-R) to carry out cell signalling. However, under certain conditions the binding of PAF to PAF-R leads to the activation of pro-inflammatory and prothrombotic pathways that have been implicated in the onset and development of atherosclerotic cardiovascular diseases (CVD) and inflammatory diseases. Over the past four decades, research has focused on the identification and development of PAF-R antagonists that target these inflammatory diseases. Research has also shown that dietary factors such as polar lipids, polyphenols, and other nutrient constituents may affect PAF metabolism and PAF-R function through various mechanisms. In this review we focus on the inhibition of PAF-R and how this may contribute to reducing cardiovascular disease risk. We conclude that further development of PAF-R inhibitors and human studies are required to investigate how modulation of the PAF-R may prevent the development of atherosclerotic cardiovascular disease and may lead to the development of novel therapeutics. Full article
Show Figures

Figure 1

13 pages, 242 KiB  
Article
Consumption of Enriched Yogurt with PAF Inhibitors from Olive Pomace Affects the Major Enzymes of PAF Metabolism: A Randomized, Double Blind, Three Arm Trial
by Maria Detopoulou, Agathi Ntzouvani, Filio Petsini, Labrini Gavriil, Elizabeth Fragopoulou and Smaragdi Antonopoulou
Biomolecules 2021, 11(6), 801; https://doi.org/10.3390/biom11060801 - 28 May 2021
Cited by 18 | Viewed by 3463
Abstract
Platelet-activating factor (PAF), a proinflammatory lipid mediator, plays a crucial role in the formation of the atherosclerotic plaque. Therefore, the inhibition of endothelium inflammation by nutraceuticals, such as PAF inhibitors, is a promising alternative for preventing cardiovascular diseases. The aim of the present [...] Read more.
Platelet-activating factor (PAF), a proinflammatory lipid mediator, plays a crucial role in the formation of the atherosclerotic plaque. Therefore, the inhibition of endothelium inflammation by nutraceuticals, such as PAF inhibitors, is a promising alternative for preventing cardiovascular diseases. The aim of the present study was to evaluate the impact of a new functional yogurt enriched with PAF inhibitors of natural origin from olive oil by-products on PAF metabolism. Ninety-two apparently healthy, but mainly overweight volunteers (35–65 years) were randomly allocated into three groups by block-randomization. The activities of PAF’s biosynthetic and catabolic enzymes were measured, specifically two isoforms of acetyl-CoA:lyso-PAF acetyltransferase (LPCATs), cytidine 5′-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT) and two isoforms of platelet activating factor acetylhydrolase in leucocytes (PAF-AH) and plasma (lipoprotein associated phospholipase-A2, LpPLA2). The intake of the enriched yogurt resulted in reduced PAF-CPT and LpPLA2 activities. No difference was observed in the activities of the two isoforms of lyso PAF-AT. In conclusion, intake of yogurt enriched in PAF inhibitors could favorably modulate PAF biosynthetic and catabolic pathways. Full article
25 pages, 1103 KiB  
Review
Micronutrients, Phytochemicals and Mediterranean Diet: A Potential Protective Role against COVID-19 through Modulation of PAF Actions and Metabolism
by Paraskevi Detopoulou, Constantinos A. Demopoulos and Smaragdi Antonopoulou
Nutrients 2021, 13(2), 462; https://doi.org/10.3390/nu13020462 - 30 Jan 2021
Cited by 58 | Viewed by 13168
Abstract
The new coronavirus disease 2019 (COVID-19) pandemic is an emerging situation with high rates of morbidity and mortality, in the pathophysiology of which inflammation and thrombosis are implicated. The disease is directly connected to the nutritional status of patients and a well-balanced diet [...] Read more.
The new coronavirus disease 2019 (COVID-19) pandemic is an emerging situation with high rates of morbidity and mortality, in the pathophysiology of which inflammation and thrombosis are implicated. The disease is directly connected to the nutritional status of patients and a well-balanced diet is recommended by official sources. Recently, the role of platelet activating factor (PAF) was suggested in the pathogenesis of COVID-19. In the present review several micronutrients (vitamin A, vitamin C, vitamin E, vitamin D, selenium, omega-3 fatty acids, and minerals), phytochemicals and Mediterranean diet compounds with potential anti-COVID activity are presented. We further underline that the well-known anti-inflammatory and anti-thrombotic actions of the investigated nutrients and/or holistic dietary schemes, such as the Mediterranean diet, are also mediated through PAF. In conclusion, there is no single food to prevent coronavirus Although the relationship between PAF and COVID-19 is not robust, a healthy diet containing PAF inhibitors may target both inflammation and thrombosis and prevent the deleterious effects of COVID-19. The next step is the experimental confirmation or not of the PAF-COVID-19 hypothesis. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

15 pages, 304 KiB  
Article
Effect of Differently Fed Farmed Gilthead Sea Bream Consumption on Platelet Aggregation and Circulating Haemostatic Markers among Apparently Healthy Adults: A Double-Blind Randomized Crossover Trial
by Agathi Ntzouvani, Smaragdi Antonopoulou, Elizabeth Fragopoulou, Meropi D. Kontogianni, Tzortzis Nomikos, Anastasia Mikellidi, Μarianna Xanthopoulou, Nick Kalogeropoulos and Demosthenes Panagiotakos
Nutrients 2021, 13(2), 286; https://doi.org/10.3390/nu13020286 - 20 Jan 2021
Cited by 5 | Viewed by 2375
Abstract
Fish consumption beneficially affects coagulation markers. Few dietary intervention studies have investigated differently fed farmed fish against these cardio-metabolic risk factors in humans. This double-blind randomized crossover trial evaluated differently fed farmed gilthead sea bream consumption against platelet aggregation and circulating haemostatic markers [...] Read more.
Fish consumption beneficially affects coagulation markers. Few dietary intervention studies have investigated differently fed farmed fish against these cardio-metabolic risk factors in humans. This double-blind randomized crossover trial evaluated differently fed farmed gilthead sea bream consumption against platelet aggregation and circulating haemostatic markers among apparently healthy adults. Subjects aged 30–65 years, with a body mass index 24.0–31.0 kg/m2, consuming less than 150 g cooked fish per week, were recruited in Attica, Greece. Participants were randomized (n = 38, 1:1) to one of two sequences; consumption of fish fed with fish oil diet (conventional fish, CF)/fish fed with olive pomace-enriched diet (enriched fish, EF) versus EF/CF. The primary outcomes were ex vivo human platelet aggregation and circulating plasminogen activator inhibitor-1 (PAI-1) and P-selectin (sP-selectin) concentrations. EF consumption had no significant effect on platelet sensitivity or haemostatic markers compared to CF. Platelet sensitivity to platelet-activating factor (PAF) decreased after CF consumption during the second period (p < 0.01). Plasma PAI-1 and sP-selectin concentrations increased after CF consumption during both periods (p < 0.01 for both). Based on current findings, consumption of enriched farmed gilthead sea bream had no greater effect on coagulation markers in adults compared to the conventionally fed fish. Full article
(This article belongs to the Section Nutritional Policies and Education for Health Promotion)
Show Figures

Graphical abstract

18 pages, 2917 KiB  
Article
Platelet-Activating Factor-Receptor Signaling Mediates Targeted Therapies-Induced Microvesicle Particles Release in Lung Cancer Cells
by Shreepa J. Chauhan, Anita Thyagarajan, Yanfang Chen, Jeffrey B. Travers and Ravi P. Sahu
Int. J. Mol. Sci. 2020, 21(22), 8517; https://doi.org/10.3390/ijms21228517 - 12 Nov 2020
Cited by 13 | Viewed by 3703
Abstract
Microvesicle particles (MVP) secreted by a variety of cell types in response to reactive oxygen species (ROS)-generating pro-oxidative stressors have been implicated in modifying the cellular responses including the sensitivity to therapeutic agents. Our previous studies have shown that expression of a G-protein [...] Read more.
Microvesicle particles (MVP) secreted by a variety of cell types in response to reactive oxygen species (ROS)-generating pro-oxidative stressors have been implicated in modifying the cellular responses including the sensitivity to therapeutic agents. Our previous studies have shown that expression of a G-protein coupled, platelet-activating factor-receptor (PAFR) pathway plays critical roles in pro-oxidative stressors-mediated cancer growth and MVP release. As most therapeutic agents act as pro-oxidative stressors, the current studies were designed to determine the role of the PAFR signaling in targeted therapies (i.e., gefitinib and erlotinib)-mediated MVP release and underlying mechanisms using PAFR-expressing human A549 and H1299 non-small cell lung cancer (NSCLC) cell lines. Our studies demonstrate that both gefitinib and erlotinib generate ROS in a dose-dependent manner in a process blocked by antioxidant and PAFR antagonist, verifying their pro-oxidative stressor’s ability, and the role of the PAFR in this effect. We observed that these targeted therapies induce MVP release in a dose- and time-dependent manner, similar to a PAFR-agonist, carbamoyl-PAF (CPAF), and PAFR-independent agonist, phorbol myristate acetate (PMA), used as positive controls. To confirm the PAFR dependency, we demonstrate that siRNA-mediated PAFR knockdown or PAFR antagonist significantly blocked only targeted therapies- and CPAF-mediated but not PMA-induced MVP release. The use of pharmacologic inhibitor strategy suggested the involvement of the lipid ceramide-generating enzyme, acid sphingomyelinase (aSMase) in MVP biogenesis, and observed that regardless of the stimuli used, aSMase inhibition significantly blocked MVP release. As mitogen-activated protein kinase (MAPK; ERK1/2 and p38) pathways crosstalk with PAFR, their inhibition also significantly attenuated targeted therapies-mediated MVP release. These findings indicate that PAFR signaling could be targeted to modify cellular responses of targeted therapies in lung cancer cells. Full article
(This article belongs to the Special Issue Extracellular Vesicles and Tumour Microenvironment 2.0)
Show Figures

Figure 1

17 pages, 2966 KiB  
Article
Elevated Plasma Levels of Circulating Extracellular miR-320a-3p in Patients with Paroxysmal Atrial Fibrillation
by Andrey V. Zhelankin, Sergey V. Vasiliev, Daria A. Stonogina, Konstantin A. Babalyan, Elena I. Sharova, Yurii V. Doludin, Dmitry Y. Shchekochikhin, Eduard V. Generozov and Anna S. Akselrod
Int. J. Mol. Sci. 2020, 21(10), 3485; https://doi.org/10.3390/ijms21103485 - 15 May 2020
Cited by 25 | Viewed by 3742
Abstract
The potential of extracellular circulating microRNAs (miRNAs) as non-invasive biomarkers of atrial fibrillation (AF) has been confirmed by a number of recent studies. However, the current data for some miRNAs are controversial and inconsistent, probably due to pre-analytical and methodological differences. In this [...] Read more.
The potential of extracellular circulating microRNAs (miRNAs) as non-invasive biomarkers of atrial fibrillation (AF) has been confirmed by a number of recent studies. However, the current data for some miRNAs are controversial and inconsistent, probably due to pre-analytical and methodological differences. In this work, we attempted to fulfill the basic pre-analytical requirements provided for circulating miRNA studies for application to paroxysmal atrial fibrillation (PAF) research. We used quantitative PCR (qPCR) to determine the relative plasma levels of circulating miRNAs expressed in the heart or associated with atrial remodeling or fibrillation with reported altered plasma/serum levels in AF: miR-146a-5p, miR-150-5p, miR-19a-3p, miR-21-5p, miR-29b-3p, miR-320a-3p, miR-328-3p, miR-375-3p, and miR-409-3p. First, in a cohort of 90 adult outpatient clinic patients, we found that the plasma level of miR-320a-3p was elevated in PAF patients compared to healthy controls and hypertensive patients without AF. We further analyzed the impact of medication therapies on miRNA relative levels and found elevated miR-320a-3p levels in patients receiving angiotensin-converting-enzyme inhibitors (ACEI) therapy. Additionally, we found that miR-320a-3p, miR-21-5p, and miR-146a-5p plasma levels positively correlated with the CHA2DS2-Vasc score and were elevated in subjects with CHA2DS2-Vasc ≥ 2. Our results indicate that, amongst the analyzed miRNAs, miR-320a-3p may be considered as a potential PAF circulating plasma biomarker, leading to speculation as to whether this miRNA is a marker of platelet state change due to ACEI therapy. Full article
(This article belongs to the Special Issue Epigenetic Mechanisms of Cardiac Disease)
Show Figures

Graphical abstract

Back to TopTop