Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = Oligodeoxynucleotide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2784 KiB  
Article
Methylated CpG ODNs from Bifidobacterium longum subsp. infantis Modulate Treg Induction and Suppress Allergic Response in a Murine Model
by Dongmei Li, Idalia Cruz, Samantha N. Peltak, Patricia L. Foley and Joseph A. Bellanti
Int. J. Mol. Sci. 2025, 26(14), 6755; https://doi.org/10.3390/ijms26146755 - 14 Jul 2025
Viewed by 295
Abstract
In our previous studies, methylated CpG oligodeoxynucleotides (ODN) derived from Bifidobacterium longum subsp. infantis have demonstrated immunomodulatory effects through the induction of regulatory T cells (Tregs). To define the structural determinants underlying this effect, we synthesized four CpG ODNs varying in methylation degree, [...] Read more.
In our previous studies, methylated CpG oligodeoxynucleotides (ODN) derived from Bifidobacterium longum subsp. infantis have demonstrated immunomodulatory effects through the induction of regulatory T cells (Tregs). To define the structural determinants underlying this effect, we synthesized four CpG ODNs varying in methylation degree, CpG motif placement, and backbone length. These include (1) ODN-A (2m-V1), a 20-nucleotide CpG oligodeoxynucleotide incorporating two 5-methylcytosines at positions 4 and 12 within centrally placed CpG motifs; (2) ODN-B (um-V2), a 20-nucleotide CpG oligodeoxynucleotide with a backbone structure identical to ODN-A but unmethylated; (3) ODN-C (2m’-V3), a 20-nucleotide CpG oligodeoxynucleotide with a backbone structure identical to ODN-A, but with two 5-methylcytosines shifted to positions 7 and 15; (4) ODN-D (3m-V4), a 27-nucleotide CpG oligodeoxynucleotide with an extended backbone structure, this time with three 5-methylcytosines at positions 3, 11, and 19. Using a murine model of an OVA-induced allergy, we show that methylated ODN-A (2m-V1) and ODN-D (3m-V4) markedly reduce serum anti-OVA IgE, clinical symptoms, eosinophilic infiltration, and Th2/Th17 responses, while promoting splenic Treg expansion and IL-10 production. In contrast, unmethylated ODN-B (um-V2) and a positionally altered methylated ODN-C (2m’-V3) both failed to suppress allergic inflammation, and, in contrast, enhanced the Th2/Th17 response and induced robust in vitro Toll-like receptors TLR7/8/9 expression in native splenocytes. These findings suggest that both methylation and motif architecture critically influence the immunologic profile of CpG ODNs. Our results provide mechanistic insights into CpG ODN structure/function relationships and support the therapeutic potential of select methylated sequences for restoring immune tolerance in allergic diseases. Full article
Show Figures

Figure 1

9 pages, 1518 KiB  
Article
Synthesis of Sensitive Oligodeoxynucleotides Containing Acylated Cytosine, Adenine, and Guanine Nucleobases
by Komal Chillar, Rohith Awasthy, Marina Tanasova and Shiyue Fang
DNA 2025, 5(2), 25; https://doi.org/10.3390/dna5020025 - 9 May 2025
Viewed by 688
Abstract
Background/Objective: Oligodeoxynucleotides (ODNs) containing base-labile modifications such as N4-acetyldeoxycytidine (4acC), N6-acetyladenosine (6acA), N2-acetylguanosine (2acG), and N4-methyoxycarbonyldeoxycytidine (4mcC) are highly challenging to synthesize because standard ODN synthesis methods require deprotection and cleavage under strongly basic and nucleophilic conditions, and there is a lack of [...] Read more.
Background/Objective: Oligodeoxynucleotides (ODNs) containing base-labile modifications such as N4-acetyldeoxycytidine (4acC), N6-acetyladenosine (6acA), N2-acetylguanosine (2acG), and N4-methyoxycarbonyldeoxycytidine (4mcC) are highly challenging to synthesize because standard ODN synthesis methods require deprotection and cleavage under strongly basic and nucleophilic conditions, and there is a lack of ideal alternative methods to solve the problem. The objective of this work is to explore the capability of the recently developed 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) method for the incorporation of multiple 4acC modifications into a single ODN molecule and the feasibility of using the method for the incorporation of the 6acA, 2acG and 4mcC modifications into ODNs. Methods: The sensitive ODNs were synthesized on an automated solid phase synthesizer using the Dmoc group as the linker and the methyl Dmoc (meDmoc) group for the protection of the exo-amino groups of nucleobases. Deprotection and cleavage were achieved under non-nucleophilic and weakly basic conditions. Results: The 4acC, 6acA, 2acG, and 4mcC were all found to be stable under the mild ODN deprotection and cleavage conditions. Up to four 4acC modifications were able to be incorporated into a single 19-mer ODN molecule. ODNs containing the 6acA, 2acG, and 4mcC modifications were also successfully synthesized. The ODNs were characterized using RP HPLC, capillary electrophoresis, gel electrophoresis and MALDI MS. Conclusions: Among the modified nucleotides, 4acC has been found in nature and proven beneficial to DNA duplex stability. A method for the synthesis of ODNs containing multiple 4acC modifications is expected to find applications in biological studies involving 4acC. Although 6acA, 2acG, and 4mcC have not been found in nature, a synthetic route to ODNs containing them is expected to facilitate projects aimed at studying their biophysical properties as well as their potential for antisense, RNAi, CRISPR, and mRNA therapeutic applications. Full article
Show Figures

Graphical abstract

16 pages, 1540 KiB  
Article
Preliminary Evidence of Enhanced Immunogenicity of Hepatitis B Virus Vaccines When Co-Administered with Calcium Phosphate, Aluminum Hydroxide, and Cytosine Phospho-Guanine Oligodeoxynucleotides Combined Adjuvant in BALB/c Mice
by Oumou Ouattara, Josephine W. Kimani and James H. Kimotho
Immuno 2025, 5(1), 12; https://doi.org/10.3390/immuno5010012 - 14 Mar 2025
Viewed by 1073
Abstract
Hepatitis B virus (HBV) infection is a major public health risk. Despite the introduction of successful vaccines, which are normally single adjuvanted, there are still some drawbacks, including non-responsiveness in certain groups, short durability of immunity, inadequate protection, and the need for additional [...] Read more.
Hepatitis B virus (HBV) infection is a major public health risk. Despite the introduction of successful vaccines, which are normally single adjuvanted, there are still some drawbacks, including non-responsiveness in certain groups, short durability of immunity, inadequate protection, and the need for additional doses to be addressed. This study aimed to develop an optimized combination of Cytosine-phosphate-Guanine Oligonucleotides (CPG-ODN2395, CPG-ODN-18281-2 23 mer) and calcium phosphate, and to assess its immunogenicity and toxicity when co-administrated with the commercial HBV vaccine (BEVAC, containing aluminum hydroxide) and an in-house aluminum hydroxide-adjuvanted HBs purified antigen in Balb/c mice. Tail blood was collected from vaccinated Balb/c mice on days 14 and 28 post-immunization to determine the antibody secretion level using an enzyme-linked immunosorbent assay (ELISA). The Tumor Necrosis Factor (TNF-a) and interleukin-6 (IL-6) cytokine expression levels were assessed through real-time PCR, and the safety profile was checked through biochemical and hematological analysis. Our results showed that the combination of CPG-ODN2395, CPG-ODN 18281-2 23 mer, and CAP significantly enhanced the IgG antibody secretion level (p < 0.0001), which also showed a significant increase in IL-6 expression (p < 0.0001). The safety evaluations revealed no adverse impact on liver and kidney function, with normal ALT, AST, urea, and creatinine levels (p < 0.55). Hematological assessments revealed stable parameters across all groups. This study concludes that combining CpG ODNs and calcium phosphate adjuvants with hepatitis B vaccinations has the potential to enhance a stronger immunological response to hepatitis B infection than single adjuvants. These results highlight the promise of this innovative adjuvant system, necessitating more research in clinical environments to increase vaccine effectiveness and sustained protection against HBV. Full article
Show Figures

Figure 1

16 pages, 4158 KiB  
Article
Immunostimulatory Effects of Guanine-Quadruplex Topologies as Scaffolds for CpG Oligodeoxynucleotides
by Soumitra Pathak, Nguyen Bui Thao Le, Taiji Oyama, Yusuke Odahara, Atsuya Momotake, Kazunori Ikebukuro, Chiho Kataoka-Hamai, Chiaki Yoshikawa, Kohsaku Kawakami, Yoshihisa Kaizuka and Tomohiko Yamazaki
Biomolecules 2025, 15(1), 95; https://doi.org/10.3390/biom15010095 - 10 Jan 2025
Viewed by 1332
Abstract
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical [...] Read more.
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake. G4 structures can form in parallel, anti-parallel, or hybrid topologies, depending on strand orientation, but the effects of these topologies on CpG ODNs have not yet been explored. In this study, we designed three distinct G4 topologies as scaffolds for CpG ODNs. Among the three topology, the parallel G4 CpG ODN demonstrated the highest serum stability and cellular uptake, resulting in the strongest immune response from macrophage cells. Additionally, we investigated the binding affinities of the different G4 topologies to macrophage scavenger receptor-1 and TLR9, both of which are key to immune activation. These findings provide valuable insights into the development of CpG ODN-based vaccine adjuvants. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 624 KiB  
Perspective
Transcriptional Systems Vaccinology Approaches for Vaccine Adjuvant Profiling
by Diogo Pellegrina, Heather L. Wilson, George K. Mutwiri and Mohamed Helmy
Vaccines 2025, 13(1), 33; https://doi.org/10.3390/vaccines13010033 - 1 Jan 2025
Viewed by 1768
Abstract
Adjuvants are a diverse group of substances that can be added to vaccines to enhance antigen-specific immune responses and improve vaccine efficacy. The first adjuvants, discovered almost a century ago, were soluble crystals of aluminium salts. Over the following decades, oil emulsions, vesicles, [...] Read more.
Adjuvants are a diverse group of substances that can be added to vaccines to enhance antigen-specific immune responses and improve vaccine efficacy. The first adjuvants, discovered almost a century ago, were soluble crystals of aluminium salts. Over the following decades, oil emulsions, vesicles, oligodeoxynucleotides, viral capsids, and other complex organic structures have been shown to have adjuvant potential. However, the detailed mechanisms of how adjuvants enhance immune responses remain poorly understood and may be a barrier that reduces the rational selection of vaccine components. Previous studies on mechanisms of action of adjuvants have focused on how they activate innate immune responses, including the regulation of cell recruitment and activation, cytokine/chemokine production, and the regulation of some “immune” genes. This approach provides a narrow perspective on the complex events involved in how adjuvants modulate antigen-specific immune responses. A comprehensive and efficient way to investigate the molecular mechanism of action for adjuvants is to utilize systems biology approaches such as transcriptomics in so-called “systems vaccinology” analysis. While other molecular biology methods can verify if one or few genes are differentially regulated in response to vaccination, systems vaccinology provides a more comprehensive picture by simultaneously identifying the hundreds or thousands of genes that interact with complex networks in response to a vaccine. Transcriptomics tools such as RNA sequencing (RNA-Seq) allow us to simultaneously quantify the expression of practically all expressed genes, making it possible to make inferences that are only possible when considering the system as a whole. Here, we review some of the challenges in adjuvant studies, such as predicting adjuvant activity and toxicity when administered alone or in combination with antigens, or classifying adjuvants in groups with similar properties, while underscoring the significance of transcriptomics in systems vaccinology approaches to propel vaccine development forward. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

20 pages, 6424 KiB  
Article
Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner
by Rena Ikeda, Chihaya Kimura, Yuma Nihashi, Koji Umezawa, Takeshi Shimosato and Tomohide Takaya
Life 2024, 14(12), 1572; https://doi.org/10.3390/life14121572 - 30 Nov 2024
Cited by 1 | Viewed by 1702
Abstract
A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of [...] Read more.
A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.7 was treated with the receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation, then the effect of iSN40 on was quantified by tartrate-resistant acid phosphatase (TRAP) staining and real-time RT-PCR. iSN40 completely inhibited RANKL-induced differentiation into TRAP+ multinucleated osteoclasts by suppressing osteoclastogenic genes and inducing anti-/non-osteoclastogenic genes. Treatment with a TLR9 inhibitor, E6446, or a mutation in the CpG motif of iSN40 abolished the intracellular uptake and anti-osteoclastogenic effect of iSN40. These results demonstrate that iSN40 is subcellularly internalized and is recognized by TLR9 via its CpG motif, modulates RANKL-dependent osteoclastogenic gene expression, and ultimately inhibits osteoclastogenesis. Finally, iSN40 was confirmed to inhibit the osteoclastogenesis of RAW264.7 cells cocultured with the murine osteoblast cell line MC3T3-E1, presenting a model of bone remodeling. This study demonstrates that iSN40, which exerts both pro-osteogenic and anti-osteoclastogenic effects, may be a promising nucleic acid drug for osteoporosis. Full article
(This article belongs to the Special Issue Bone Remodeling)
Show Figures

Figure 1

18 pages, 6495 KiB  
Article
FmRbohH Mediates ROS Generation and Enhances Pollen Tube Growth in Fraxinus mandshurica
by Bello Hassan Jakada, Shuqi Wang, Shun Yang, Ying Wu, Zerui Huang, Yunping Liu and Xingguo Lan
Forests 2024, 15(10), 1735; https://doi.org/10.3390/f15101735 - 30 Sep 2024
Cited by 1 | Viewed by 1234
Abstract
Flowering plants require normal pollen germination and growth to be fertilized, but studies on the mechanism regulating pollen tube growth in Fraxinus mandshurica are limited. Here, we used transcriptomic data to study the oxidative phosphorylation pathway during pollen tube growth in Fraxinus mandshurica [...] Read more.
Flowering plants require normal pollen germination and growth to be fertilized, but studies on the mechanism regulating pollen tube growth in Fraxinus mandshurica are limited. Here, we used transcriptomic data to study the oxidative phosphorylation pathway during pollen tube growth in Fraxinus mandshurica. Our study identified 8,734 differentially expressed genes during the stages S1 to S3 of pollen tube growth. Significant enrichment of the oxidative phosphorylation pathway, amino acid synthesis, protein processing in the ER, carbon metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis were examined using the Kyoto Encyclopedia of Genes and Genomes, and 58 genes linked to ROS synthesis and scavenging during the S1–S3 stages were identified. Also, H2DCFDA staining confirmed ROS formation in the pollen and the pollen tubes, and treatment with copper (II) chloride (CuCl2) and diphenyleneiodonium (DPI) was shown to reduce ROS in the pollen tube. Reduction in ROS content caused decreased pollen germination and pollen tube length. Furthermore, FmRbohH (respiratory burst oxidase homolog H) expression was detected in the pollen and pollen tube, and an antisense oligodeoxynucleotide assay demonstrated reduced ROS and pollen tube growth in Fraxinus mandshurica. This study shed more light on the RbohH gene functions during pollen tube growth. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

18 pages, 4011 KiB  
Article
Electroporation Delivery of Cas9 sgRNA Ribonucleoprotein-Mediated Genome Editing in Sheep IVF Zygotes
by Wenhui Pi, Guangyu Feng, Minghui Liu, Cunxi Nie, Cheng Chen, Jingjing Wang, Limin Wang, Pengcheng Wan, Changbin Liu, Yi Liu and Ping Zhou
Int. J. Mol. Sci. 2024, 25(17), 9145; https://doi.org/10.3390/ijms25179145 - 23 Aug 2024
Cited by 6 | Viewed by 2788
Abstract
The utilization of electroporation for delivering CRISPR/Cas9 system components has enabled efficient gene editing in mammalian zygotes, facilitating the development of genome-edited animals. In this study, our research focused on targeting the ACTG1 and MSTN genes in sheep, revealing a threshold phenomenon in [...] Read more.
The utilization of electroporation for delivering CRISPR/Cas9 system components has enabled efficient gene editing in mammalian zygotes, facilitating the development of genome-edited animals. In this study, our research focused on targeting the ACTG1 and MSTN genes in sheep, revealing a threshold phenomenon in electroporation with a voltage tolerance in sheep in vitro fertilization (IVF) zygotes. Various poring voltages near 40 V and pulse durations were examined for electroporating sheep zygotes. The study concluded that stronger electric fields required shorter pulse durations to achieve the optimal conditions for high gene mutation rates and reasonable blastocyst development. This investigation also assessed the quality of Cas9/sgRNA ribonucleoprotein complexes (Cas9 RNPs) and their influence on genome editing efficiency in sheep early embryos. It was highlighted that pre-complexation of Cas9 proteins with single-guide RNA (sgRNA) before electroporation was essential for achieving a high mutation rate. The use of suitable electroporation parameters for sheep IVF zygotes led to significantly high mutation rates and heterozygote ratios. By delivering Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) to zygotes through electroporation, targeting the MSTN (Myostatin) gene, a knock-in efficiency of 26% was achieved. The successful generation of MSTN-modified lambs was demonstrated by delivering Cas9 RNPs into IVF zygotes via electroporation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 4147 KiB  
Article
BP1003 Decreases STAT3 Expression and Its Pro-Tumorigenic Functions in Solid Tumors and the Tumor Microenvironment
by Maria Gagliardi, Rhonda Kean, Bingbing Dai, Jithesh Jose Augustine, Michael Roberts, Jason Fleming, D. Craig Hooper and Ana Tari Ashizawa
Biomedicines 2024, 12(8), 1901; https://doi.org/10.3390/biomedicines12081901 - 20 Aug 2024
Cited by 2 | Viewed by 1803
Abstract
Overexpression and aberrant activation of signal transducer and activator of transcription 3 (STAT3) contribute to tumorigenesis, drug resistance, and tumor-immune evasion, making it a potential cancer therapeutic target. BP1003 is a neutral liposome incorporated with a nuclease-resistant P-ethoxy antisense oligodeoxynucleotide (ASO) targeting the [...] Read more.
Overexpression and aberrant activation of signal transducer and activator of transcription 3 (STAT3) contribute to tumorigenesis, drug resistance, and tumor-immune evasion, making it a potential cancer therapeutic target. BP1003 is a neutral liposome incorporated with a nuclease-resistant P-ethoxy antisense oligodeoxynucleotide (ASO) targeting the STAT3 mRNA. Its unique design enhances BP1003 stability, cellular uptake, and target affinity. BP1003 efficiently reduces STAT3 expression and enhances the sensitivity of breast cancer cells (HER2+, triple negative) and ovarian cancer cells (late stage, invasive ovarian cancer) to paclitaxel and 5-fluorouracil (5-FU) in both 2D and 3D cell cultures. Similarly, ex vivo and in vivo patient-derived models of pancreatic ductal adenocarcinoma (PDAC) show reduced tissue viability and tumor volume with BP1003 and gemcitabine combination treatments. In addition to directly affecting tumor cells, BP1003 can modulate the tumor microenvironment. Unlike M1 differentiation, monocyte differentiation into anti-inflammatory M2 macrophages is suppressed by BP1003, indicating its potential contribution to immunotherapy. The broad anti-tumor effect of BP1003 in numerous preclinical solid tumor models, such as breast, ovarian, and pancreatic cancer models shown in this work, makes it a promising cancer therapeutic. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

16 pages, 3486 KiB  
Article
Effects of Synthetic Toll-Like Receptor 9 Ligand Molecules on Pulpal Immunomodulatory Response and Repair after Injuries
by Angela Quispe-Salcedo, Tomohiko Yamazaki and Hayato Ohshima
Biomolecules 2024, 14(8), 931; https://doi.org/10.3390/biom14080931 - 1 Aug 2024
Cited by 2 | Viewed by 1526
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine–phosphate–guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. [...] Read more.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine–phosphate–guanine (CpG) motifs (CpG-ODNs) are ligand molecules for Toll-like receptor 9 (TLR9), which is expressed by odontoblasts in vitro and dental pulp cells. This study determined the effects of CpG-ODNs on pulpal immunomodulatory response and repair following injury. Briefly, the upper right first molars of three-week-old mice were extracted, immersed in Type A (D35) or B (K3) CpG-ODN solutions (0.1 or 0.8 mM) for 30 min, and then replanted. Pulpal healing and immunomodulatory activity were assessed by hematoxylin–eosin and AZAN staining, as well as immunohistochemistry. One week following the operation, inflammatory reactions occurred in all of the experimental groups; however, re-revascularization and newly formed hard tissue deposition were observed in the pulp chamber of all groups at week 2. A positive trend in the expression of immune cell markers was observed toward the CpG-ODN groups at 0.1 mM. Our data suggest that synthetic CpG-ODN solutions at low concentrations may evoke a long-lasting macrophage–TLR9-mediated pro-inflammatory, rather than anti-inflammatory, response in the dental pulp to modulate the repair process and hard tissue formation. Further studies are needed to determine the effects of current immunomodulatory agents in vitro and in vivo and develop treatment strategies for dental tissue regeneration. Full article
Show Figures

Figure 1

14 pages, 1267 KiB  
Article
Sensing of an HIV-1–Derived Single-Stranded RNA-Oligonucleotide Induces Arginase 1-Mediated Tolerance
by Chiara Suvieri, Giada Mondanelli, Ciriana Orabona, Maria Teresa Pallotta, Eleonora Panfili, Sofia Rossini, Claudia Volpi and Maria Laura Belladonna
Cells 2024, 13(13), 1088; https://doi.org/10.3390/cells13131088 - 23 Jun 2024
Viewed by 1378
Abstract
Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several [...] Read more.
Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV–1–derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV–1–derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases. Full article
(This article belongs to the Collection Feature Papers in ‘Cellular Immunology’)
Show Figures

Graphical abstract

12 pages, 2032 KiB  
Article
Myogenic Anti-Nucleolin Aptamer iSN04 Inhibits Proliferation and Promotes Differentiation of Vascular Smooth Muscle Cells
by Mana Miyoshi, Takeshi Shimosato and Tomohide Takaya
Biomolecules 2024, 14(6), 709; https://doi.org/10.3390/biom14060709 - 15 Jun 2024
Cited by 2 | Viewed by 2231
Abstract
De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, [...] Read more.
De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation. The present study investigated the effect of iSN04 on VSMCs because nucleolin has been reported to contribute to VSMC de-differentiation under pathophysiological conditions. Nucleolin is localized in the nucleoplasm and nucleoli of both rat and human VSMCs. iSN04 without a carrier was spontaneously incorporated into VSMCs, indicating that iSN04 would serve as an anti-nucleolin aptamer. iSN04 treatment decreased the ratio of 5-ethynyl-2′-deoxyuridine (EdU)-positive proliferating VSMCs and increased the expression of α-smooth muscle actin, a contractile marker of VSMCs. iSN04 also suppressed angiogenesis of mouse aortic rings ex vivo, which is a model of pathological angiogenesis involved in plaque formation, growth, and rupture. These results demonstrate that antagonizing nucleolin with iSN04 preserves VSMC differentiation, providing a nucleic acid drug candidate for the treatment of vascular disease. Full article
Show Figures

Figure 1

12 pages, 1987 KiB  
Article
Protective Effects of Long Double-Stranded RNA with Different CpG Motifs against Miamiensis avidus and Viral Hemorrhagic Septicemia Virus (VHSV) Infections in Olive Flounder (Paralichthys olivaceus)
by Hee-Jae Choi, Da-Yeon Choi, Jung-Jin Park, Hye Jin Jung, Bo-Seong Kim, Sung-Chul Hong, Jun-Hwan Kim and Yue Jai Kang
Fishes 2024, 9(6), 227; https://doi.org/10.3390/fishes9060227 - 13 Jun 2024
Viewed by 1613
Abstract
The South Korean aquaculture industry has incurred considerable production losses due to various infectious diseases. Artificially synthesized polyinosinic–polycytidylic acid (poly I:C), structurally similar to double-stranded RNA (dsRNA) and cytidine–phosphate–guanosine oligodeoxynucleotides, can enhance immune responses and protect against diseases. Here, we investigated dsRNA molecules [...] Read more.
The South Korean aquaculture industry has incurred considerable production losses due to various infectious diseases. Artificially synthesized polyinosinic–polycytidylic acid (poly I:C), structurally similar to double-stranded RNA (dsRNA) and cytidine–phosphate–guanosine oligodeoxynucleotides, can enhance immune responses and protect against diseases. Here, we investigated dsRNA molecules with different cytidine–phosphate–guanosine (CpG) motifs (dsRNA-CpGMix) as fused agents to treat Miamiensis avidus and viral hemorrhagic septicemia virus (VHSV) infection in olive flounders. We further investigated the efficacy of specific sequence motifs in dsRNA in modulating immunostimulatory effects. Fish treated with poly I:C or dsRNA-CpGMix exhibited higher survival rates than the control group. Olive flounder leukocytes stimulated with poly I:C or dsRNA-CpGMix showed increased scuticocidal activity in the presence of inactivated immune sera. dsRNA with CpG motif sequences induced higher resistance against M. avidus and VHSV infections than dsRNA without CpG motif sequences, and the dsRNA-CpGMix group showed upregulated ISG15 or Mx compared to the dsRNA-GFP group. Thus, dsRNA containing CpG motifs can be used as effective immunostimulants to enhance resistance against viral and parasitic diseases in olive flounder. The specific sequences of the CpG motifs in dsRNA may be important for enhancing immune responses and resistance against M. avidus and VHSV infections in olive flounders. Full article
(This article belongs to the Section Fish Pathology and Parasitology)
Show Figures

Figure 1

14 pages, 5245 KiB  
Article
Synergistic Effects of Metal–Organic Nanoplatform and Guanine Quadruplex-Based CpG Oligodeoxynucleotides in Therapeutic Cancer Vaccines with Different Tumor Antigens
by Xia Li, Mitsuhiro Ebara, Naoto Shirahata, Tomohiko Yamazaki and Nobutaka Hanagata
Vaccines 2024, 12(6), 649; https://doi.org/10.3390/vaccines12060649 - 11 Jun 2024
Cited by 2 | Viewed by 1549
Abstract
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine–phosphate–guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step [...] Read more.
Oligodeoxynucleotides (ODNs) containing unmethylated cytosine–phosphate–guanosine (CpG) motifs are readily recognized by Toll-like receptor 9 on immune cells, trigger an immunomodulatory cascade, induce a Th1 -biased immune milieu, and have great potential as an adjuvant in cancer vaccines. In this study, a green one-step synthesis process was adopted to prepare an amino-rich metal–organic nanoplatform (FN). The synthesized FN nanoplatform can simultaneously and effectively load model tumor antigens (OVA)/autologous tumor antigens (dLLC) and immunostimulatory CpG ODNs with an unmodified PD backbone and a guanine quadruplex structure to obtain various cancer vaccines. The FN nanoplatform and immunostimulatory CpG ODNs generate synergistic effects to enhance the immunogenicity of different antigens and inhibit the growth of established and distant tumors in both the murine E.G7-OVA lymphoma model and the murine Lewis lung carcinoma model. In the E.G7-OVA lymphoma model, vaccination efficiently increases the CD4+, CD8+, and tetramer+CD8+ T cell populations in the spleens. In the Lewis lung carcinoma model, vaccination efficiently increases the CD3+CD4+ and CD3+CD8+ T cell populations in the spleens and CD3+CD8+, CD3CD8+, and CD11b+CD80+ cell populations in the tumors, suggesting the alteration of tumor microenvironments from cold to hot tumors. Full article
(This article belongs to the Special Issue Cutting-Edge Cancer Vaccines Enhanced by Nanotechnology)
Show Figures

Figure 1

10 pages, 1101 KiB  
Article
Gum Arabic Increases Phagocytosis of Escherichia coli by Blood Leukocytes of Young and Old Healthy Volunteers
by Christin Freibrodt, Shima Baien, Maren von Köckritz-Blickwede, Nicole de Buhr, Roland Nau and Jana Seele
Antibiotics 2024, 13(6), 482; https://doi.org/10.3390/antibiotics13060482 - 24 May 2024
Viewed by 1494
Abstract
Background: Gum arabic, a polysaccharide exudate from Acacia senegal (L.) Willdenow trees, has already been used by African native people in natural medicine. Methods: Using whole-blood samples from young (20–35 years) and older (>80 years) healthy volunteers (each group n = 10), the [...] Read more.
Background: Gum arabic, a polysaccharide exudate from Acacia senegal (L.) Willdenow trees, has already been used by African native people in natural medicine. Methods: Using whole-blood samples from young (20–35 years) and older (>80 years) healthy volunteers (each group n = 10), the effect of an aqueous solution of GA on phagocytosis of Escherichia coli was examined with a gentamicin protection assay. Whole-blood samples of each volunteer were stimulated with GA and as a control with CpG oligodeoxynucleotides (Toll-like receptor -9 agonists) for 2 h, then co-incubated with E. coli for 30 min and thereafter treated with gentamicin for up to 240 min to kill extracellular bacteria. Then, whole-blood cells were lysed with distilled water, and colony-forming units were counted by quantitative plating. Cytokine enzyme-linked immunosorbent assay for the detection of TNF-α and IL-6 was performed using the blood supernatant. Results: The GA concentration tested (20 mg/mL) did not affect the viability of eukaryotic cells. Phagocytosis of E. coli by whole-blood leukocytes derived from young (p = 0.008) and older (p = 0.004) healthy volunteers was increased by 120.8% (young) and 39.2% (old) after stimulation with GA. In contrast, CpG only stimulated the bacterial phagocytosis by cells derived from young volunteers (p = 0.004). Stimulation of whole blood with GA increased the intracellular killing of E. coli in young (p = 0.045) and older volunteers (p = 0.008) and induced a TNF-α release in whole blood collected from older volunteers but not from younger ones (p = 0.008). Conclusions: These data encourage the isolation of active compounds of GA and the initiation of clinical trials addressing the preventive effect of GA on bacterial infections. Full article
Show Figures

Figure 1

Back to TopTop