Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ORFan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3870 KiB  
Article
Metagenomic Analyses of Water Samples of Two Urban Freshwaters in Berlin, Germany, Reveal New Highly Diverse Invertebrate Viruses
by Roland Zell, Marco Groth, Lukas Selinka and Hans-Christoph Selinka
Microorganisms 2024, 12(11), 2361; https://doi.org/10.3390/microorganisms12112361 - 19 Nov 2024
Viewed by 1242
Abstract
In an attempt to explore the RNA viromes of two German rivers, we searched the virus particle contents of one 50 L water sample each from the Teltow Canal and the Havel River for viruses assumed to infect invertebrates. More than 330 complete [...] Read more.
In an attempt to explore the RNA viromes of two German rivers, we searched the virus particle contents of one 50 L water sample each from the Teltow Canal and the Havel River for viruses assumed to infect invertebrates. More than 330 complete and partial virus genomes up to a length of 37 kb were identified, with noda-like and reo-like viruses being most abundant, followed by bunya-like and birna-like viruses. Viruses related to the Permutotetraviridae, Nidovirales, Flaviviridae, Rhabdoviridae and Chuviridae as well as the unclassified Jῑngmén virus and Negev virus groups were also present. The results indicate a broad extent of recombinant virus genomes, supporting the concept of the modularity of eukaryotic viruses. For example, novel combinations of genes encoding replicase and structural proteins with a jellyroll fold have been observed. Less than 35 viruses could be assigned to existing virus genera. These are (i) an avian deltacoronavirus which was represented by only one short contig, albeit with 98% similarity, (ii) a seadornavirus and a rotavirus, and (iii) some 30 nodaviruses. All remaining viruses are novel and too diverse for accommodation in existing genera. Many of the virus genomes exhibit ORFans encoding hypothetical proteins of up to 2000 amino acids without conserved protein domains. Full article
(This article belongs to the Special Issue Understanding of the Microbiome at the Genome Level)
Show Figures

Figure 1

7 pages, 3236 KiB  
Communication
A Putative Ormycovirus That Possibly Contributes to the Yellow Leaf Disease of Areca Palm
by Xiaoqing Niu, Zhongtian Xu, Yujing Tian, Siyun Xiao, Yuan Xie, Zhenguo Du, Weiquan Qin and Fangluan Gao
Forests 2024, 15(6), 1025; https://doi.org/10.3390/f15061025 - 13 Jun 2024
Cited by 1 | Viewed by 1316
Abstract
Yellow leaf disease (YLD) poses a significant challenge to areca palm cultivation, yet its etiology remains uncertain. During our investigation of YLD-affected areca palm plants, transcriptome sequencing revealed an RNA contig exhibiting striking similarities to the RNA-dependent RNA polymerase (RdRp) of ormycoviruses. Subsequent [...] Read more.
Yellow leaf disease (YLD) poses a significant challenge to areca palm cultivation, yet its etiology remains uncertain. During our investigation of YLD-affected areca palm plants, transcriptome sequencing revealed an RNA contig exhibiting striking similarities to the RNA-dependent RNA polymerase (RdRp) of ormycoviruses. Subsequent gene cloning techniques yielded the full-length sequence of this RNA, potentially representing either the complete or partial genome of a hitherto unidentified ormycovirus, tentatively named areca palm yellow leaf-associated ormycovirus (APYLaOMV). RT-PCR detection found that APYLaOMV is present in over 30% of YLD-affected areca palm samples but is absent in healthy ones, suggesting a potential link between APYLaOMV and YLD. In summary, these data could be valuable in understanding the etiology of YLD in areca palms. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

22 pages, 1175 KiB  
Review
The Lost and Found: Unraveling the Functions of Orphan Genes
by Ali Zeeshan Fakhar, Jinbao Liu, Karolina M. Pajerowska-Mukhtar and M. Shahid Mukhtar
J. Dev. Biol. 2023, 11(2), 27; https://doi.org/10.3390/jdb11020027 - 13 Jun 2023
Cited by 11 | Viewed by 6287
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The [...] Read more.
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes. Full article
(This article belongs to the Special Issue 2022 Feature Papers by JDB’s Editorial Board Members)
Show Figures

Graphical abstract

14 pages, 2022 KiB  
Article
Transcriptional Organization of the Salmonella Typhimurium Phage P22 pid ORFan Locus
by Sanne Wolput, Angela Makumi, Laura Wicke, Leonard E. Bäcker, William Cenens, Yves Briers, Nicolas A. Wenner, Siân V. Owen, Jay C. D. Hinton, Rob Lavigne and Abram Aertsen
Int. J. Mol. Sci. 2022, 23(3), 1253; https://doi.org/10.3390/ijms23031253 - 23 Jan 2022
Cited by 2 | Viewed by 3140
Abstract
Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between [...] Read more.
Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5′ untranslated region that is instructive for a secondary pid mRNA species, and has a 3′ Rho-independent termination loop that is responsible for stability of the pid transcript. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 3.0)
Show Figures

Figure 1

20 pages, 2023 KiB  
Article
Identification and Molecular Characterization of Novel Mycoviruses in Saccharomyces and Non-Saccharomyces Yeasts of Oenological Interest
by Dalila Crucitti, Marco Chiapello, Daniele Oliva, Marco Forgia, Massimo Turina, Francesco Carimi, Francesca La Bella and Davide Pacifico
Viruses 2022, 14(1), 52; https://doi.org/10.3390/v14010052 - 29 Dec 2021
Cited by 14 | Viewed by 3590
Abstract
Wine yeasts can be natural hosts for dsRNA, ssRNA viruses and retrotransposon elements. In this study, high-throughput RNA sequencing combined with bioinformatic analyses unveiled the virome associated to 16 Saccharomyces cerevisiae and 8 non-Saccharomyces strains of oenological interest. Results showed the presence [...] Read more.
Wine yeasts can be natural hosts for dsRNA, ssRNA viruses and retrotransposon elements. In this study, high-throughput RNA sequencing combined with bioinformatic analyses unveiled the virome associated to 16 Saccharomyces cerevisiae and 8 non-Saccharomyces strains of oenological interest. Results showed the presence of six viruses and two satellite dsRNAs from four different families, two of which—Partitiviridae and Mitoviridae—were not reported before in yeasts, as well as two ORFan contigs of viral origin. According to phylogenetic analysis, four new putative mycoviruses distributed in Totivirus, Cryspovirus, and Mitovirus genera were identified. The majority of commercial S. cerevisiae strains were confirmed to be the host for helper L-A type totiviruses and satellite M dsRNAs associated with the killer phenotype, both in single and mixed infections with L-BC totiviruses, and two viral sequences belonging to a new cryspovirus putative species discovered here for the first time. Moreover, single infection by a narnavirus 20S-related sequence was also found in one S. cerevisiae strain. Considering the non-Saccharomyces yeasts, Starmerella bacillaris hosted four RNAs of viral origin—two clustering in Totivirus and Mitovirus genera, and two ORFans with putative satellite behavior. This study confirmed the infection of wine yeasts by viruses associated with useful technological characteristics and demonstrated the presence of complex mixed infections with unpredictable biological effects. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
Laboratory Experiments to Evaluate the Effectiveness of Persulfate to Oxidize BTEX in Saline Environment and at Elevated Temperature Using Stable Isotopes
by Waleed Saeed, Orfan Shouakar-Stash, Jim Barker, Neil Thomson and Rick McGregor
Hydrology 2021, 8(3), 139; https://doi.org/10.3390/hydrology8030139 - 11 Sep 2021
Cited by 2 | Viewed by 2531
Abstract
In this study, batch experiments were carried out to investigate the effectiveness of persulfate (PS) as an oxidant agent to remediate benzene, toluene, ethylbenzene, and xylenes (BTEX) in saline environments and at high water temperatures (30 °C). This hydrological setting is quite common [...] Read more.
In this study, batch experiments were carried out to investigate the effectiveness of persulfate (PS) as an oxidant agent to remediate benzene, toluene, ethylbenzene, and xylenes (BTEX) in saline environments and at high water temperatures (30 °C). This hydrological setting is quite common in contaminated groundwater aquifers in Middle Eastern countries. In general, increasing the system temperature from 10 to 30 °C greatly enhanced the effectiveness of PS, and resulted in a faster oxidation rate for the target contaminants. When PS was added to the reactor at 30 °C, the targeted contaminants were almost completely oxidized over a 98-day reaction period. During the chemical oxidation of the BTEX, carbon and hydrogen isotope fractionations were monitored and utilized as potential proof of contaminant degradation. The calculated carbon-enrichment values were −1.9‰ for benzene, −1.5‰ for ethylbenzene and toluene, −0.4‰ for ρ,m-xylene, and −1.4‰ for o-xylene, while the hydrogen enrichment values were −9.5‰, −6.8‰, −2.1‰, −6.9‰, and −9.1‰, respectively. In comparison with other processes, the hydrogen and carbon isotope fractionations during the chemical oxidation by PS were smaller than the isotope fractionations resulting from sulfate reduction and denitrification. This observation demonstrates the differences in the transformation pathways and isotope fractionations when compounds undergo chemical oxidation or biodegradation. The distinct trend observed on the dual isotope plot (Δδ13C vs. Δδ2H) suggests that compound-specific isotope analysis can be utilized to monitor the chemical oxidation of BTEX by PS, and to distinguish treatment zones where PS and biodegradation technologies are applied simultaneously. Full article
Show Figures

Figure 1

15 pages, 2379 KiB  
Communication
Comparative Genomics of Prophages Sato and Sole Expands the Genetic Diversity Found in the Genus Betatectivirus
by Annika Gillis, Louise Hock and Jacques Mahillon
Microorganisms 2021, 9(6), 1335; https://doi.org/10.3390/microorganisms9061335 - 19 Jun 2021
Cited by 3 | Viewed by 3503
Abstract
Tectiviruses infecting the Bacillus cereus group represent part of the bacterial “plasmid repertoire” as they behave as linear plasmids during their lysogenic cycle. Several novel tectiviruses have been recently found infecting diverse strains belonging the B. cereus lineage. Here, we report and analyze [...] Read more.
Tectiviruses infecting the Bacillus cereus group represent part of the bacterial “plasmid repertoire” as they behave as linear plasmids during their lysogenic cycle. Several novel tectiviruses have been recently found infecting diverse strains belonging the B. cereus lineage. Here, we report and analyze the complete genome sequences of phages Sato and Sole. The linear dsDNA genome of Sato spans 14,852 bp with 32 coding DNA sequences (CDSs), whereas the one of Sole has 14,444 bp comprising 30 CDSs. Both phage genomes contain inverted terminal repeats and no tRNAs. Genomic comparisons and phylogenetic analyses placed these two phages within the genus Betatectivirus in the family Tectiviridae. Additional comparative genomic analyses indicated that the “gene regulation-genome replication” module of phages Sato and Sole is more diverse than previously observed among other fully sequenced betatectiviruses, displaying very low sequence similarities and containing some ORFans. Interestingly, the ssDNA binding protein encoded in this genomic module in phages Sato and Sole has very little amino acid similarity with those of reference betatectiviruses. Phylogenetic analyses showed that both Sato and Sole represent novel tectivirus species, thus we propose to include them as two novel species in the genus Betatectivirus. Full article
(This article belongs to the Special Issue Bacteriophage Genomics)
Show Figures

Figure 1

16 pages, 3438 KiB  
Article
1,2-DCA Natural Attenuation Evaluation in Groundwater: Insight by Dual Isotope 13C/37Cl and Molecular Analysis Approach
by Giovanna Carpani, Massimo Marchesi, Ilaria Pietrini, Luca Alberti, Luciano Massimo Zaninetta, Orfan Shouakar-Stash and Francesca de Ferra
Water 2021, 13(5), 728; https://doi.org/10.3390/w13050728 - 7 Mar 2021
Cited by 6 | Viewed by 3985
Abstract
Natural attenuation (NA) processes represent a valuable option in groundwater remediation. At a heavily 1,2-dichloroethane (1,2-DCA) contaminated site, Compound-Specific Isotope Analysis (CSIA) in combination with Biological Molecular Tools (BMTs) were implemented as a rigorous characterization approach to evaluate the occurrence of Natural Attenuation [...] Read more.
Natural attenuation (NA) processes represent a valuable option in groundwater remediation. At a heavily 1,2-dichloroethane (1,2-DCA) contaminated site, Compound-Specific Isotope Analysis (CSIA) in combination with Biological Molecular Tools (BMTs) were implemented as a rigorous characterization approach to evaluate the occurrence of Natural Attenuation in the proximity of the source area. By the use of microcosm experiments, the potential for natural and enhanced biodegradation under anaerobic conditions was documented, following the dichloroelimination pathway. Enrichment factors of −9.1‰ and −11.3‰ were obtained for 13C while Geobacter spp. and reductive dehalogenase genes (rdhs) were identified as main site-specific biomarkers. At pilot scale, enrichments of 13.5‰ and 6.3‰ for δ13C and δ37Cl, respectively, high levels of reductive dehalogenase (rdh group VI) along with the dominance of Geobacter spp. indicated the occurrence of significant dichloroelimination processes in groundwater under anaerobic conditions. By using the site-specific enrichment factors, degradation extents over approximately 70–80% were estimated, highlighting the relevant potential of NA in 1,2-DCA degradation in the vicinity of the source area at the site. The proposed fine-tuned protocol, including CSIA and BMTs, is proven to be effective as a groundwater remediation strategy, properly assessing and monitoring NA at site scale. Full article
(This article belongs to the Special Issue Groundwater and Soil Remediation)
Show Figures

Figure 1

12 pages, 3001 KiB  
Article
Groundwater and Solute Budget (A Case Study from Sabkha Matti, Saudi Arabia)
by Waleed Saeed, Orfan Shouakar-Stash, Warren Wood, Beth Parker and André Unger
Hydrology 2020, 7(4), 94; https://doi.org/10.3390/hydrology7040094 - 3 Dec 2020
Cited by 7 | Viewed by 4781
Abstract
Sabkha Matti is the largest inland sabkha (2950 km2) in the Arabian Peninsula. The drainage area supporting this sabkha is >250,000 km2 and is the discharge point for part of the ten thousand meter thick regional groundwater systems ranging in [...] Read more.
Sabkha Matti is the largest inland sabkha (2950 km2) in the Arabian Peninsula. The drainage area supporting this sabkha is >250,000 km2 and is the discharge point for part of the ten thousand meter thick regional groundwater systems ranging in age from Precambrian through Miocene in the Rub’ al Khali structural basin. A hydrologic budget was constructed for this sabkha, where water fluxes were calculated on the basis of hydraulic gradient and conductivities measured in both shallow and deep wells. The evaporation rates from the surface of the sabkha were estimated from the published data and indicate that almost all the annual rainfall is lost by surface evaporation. The water flux multiplied by its solute concentration showed that nearly all the solutes in the sabkha were derived by upward leakage from the underlying regional aquifers rather than the weathering of the aquifer framework, from precipitation, or from other sources. Steady-state estimates within a rectilinear control volume of the sabkha indicate that about 1 m3/year of water enters by lateral groundwater flow, 2 m3/year of water exits by lateral groundwater flow, 20 m3/year enters by upward leakage, 780 m3/year enters by recharge from rainfall, and 780 m3/year is lost by evaporation. The proposed conceptual model of the hydrology for sabkha Matti is assumed to apply to the rest of the inland sabkhas of the Arabia Peninsula and to many ancient environments of deposition observed in the geologic record. Full article
Show Figures

Figure 1

16 pages, 2762 KiB  
Article
A Brazilian Marseillevirus Is the Founding Member of a Lineage in Family Marseilleviridae
by Fábio P. Dornas, Felipe L. Assis, Sarah Aherfi, Thalita Arantes, Jônatas S. Abrahão, Philippe Colson and Bernard La Scola
Viruses 2016, 8(3), 76; https://doi.org/10.3390/v8030076 - 10 Mar 2016
Cited by 42 | Viewed by 7705
Abstract
In 2003, Acanthamoeba polyphaga mimivirus (APMV) was discovered as parasitizing Acanthamoeba. It was revealed to exhibit remarkable features, especially odd genomic characteristics, and founded viral family Mimiviridae. Subsequently, a second family of giant amoebal viruses was described, Marseilleviridae, whose prototype [...] Read more.
In 2003, Acanthamoeba polyphaga mimivirus (APMV) was discovered as parasitizing Acanthamoeba. It was revealed to exhibit remarkable features, especially odd genomic characteristics, and founded viral family Mimiviridae. Subsequently, a second family of giant amoebal viruses was described, Marseilleviridae, whose prototype member is Marseillevirus, discovered in 2009. Currently, the genomes of seven different members of this family have been fully sequenced. Previous phylogenetic analysis suggested the existence of three Marseilleviridae lineages: A, B and C. Here, we describe a new member of this family, Brazilian Marseillevirus (BrMV), which was isolated from a Brazilian sample and whose genome was fully sequenced and analyzed. Surprisingly, data from phylogenetic analyses and comparative genomics, including mean amino acid identity between BrMV and other Marseilleviridae members and the analyses of the core genome and pan-genome of marseilleviruses, indicated that this virus can be assigned to a new Marseilleviridae lineage. Even if the BrMV genome is one of the smallest among Marseilleviridae members, it harbors the second largest gene content into this family. In addition, the BrMV genome encodes 29 ORFans. Here, we describe the isolation and genome analyses of the BrMV strain, and propose its classification as the prototype virus of a new lineage D within the family Marseilleviridae. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

17 pages, 1374 KiB  
Article
Pan-Genome Analysis of Brazilian Lineage A Amoebal Mimiviruses
by Felipe L. Assis, Leena Bajrai, Jonatas S. Abrahao, Erna G. Kroon, Fabio P. Dornas, Kétyllen R. Andrade, Paulo V. M. Boratto, Mariana R. Pilotto, Catherine Robert, Samia Benamar, Bernard La Scola and Philippe Colson
Viruses 2015, 7(7), 3483-3499; https://doi.org/10.3390/v7072782 - 26 Jun 2015
Cited by 25 | Viewed by 9107
Abstract
Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal [...] Read more.
Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%–99% similar, whereas Kroon virus had a low similarity (90%–91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

24 pages, 1576 KiB  
Article
Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE) Reductive Dehalogenation
by Stefan Cretnik, Anat Bernstein, Orfan Shouakar-Stash, Frank Löffler and Martin Elsner
Molecules 2014, 19(5), 6450-6473; https://doi.org/10.3390/molecules19056450 - 20 May 2014
Cited by 45 | Viewed by 10249
Abstract
Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of [...] Read more.
Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE) and −12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰) and TCE (−3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms. Full article
(This article belongs to the Collection Isotope Effects)
Show Figures

Graphical abstract

Back to TopTop