Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (187)

Search Parameters:
Keywords = O-phenylenediamine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6445 KB  
Article
Potentiodynamic Fabrication of Aromatic Diamine Linkers on Electrochemically Reduced Graphene Oxide Surface for Environmental Pollutant Nitrobenzene Monitoring
by Karmegam Muthukrishnan, Venkatachalam Vinothkumar, Mathur Gopalakrishnan Sethuraman and Tae Hyun Kim
Biosensors 2026, 16(1), 33; https://doi.org/10.3390/bios16010033 - 1 Jan 2026
Viewed by 461
Abstract
The structure of self-assembled monolayers (SAMs) greatly influences electrochemical interface behavior. This study systematically examines how positional isomers of aromatic diamines (ADMs) assemble on a glassy carbon (GC) electrode and how such ordering affects the attachment and performance of electrochemically reduced graphene oxide [...] Read more.
The structure of self-assembled monolayers (SAMs) greatly influences electrochemical interface behavior. This study systematically examines how positional isomers of aromatic diamines (ADMs) assemble on a glassy carbon (GC) electrode and how such ordering affects the attachment and performance of electrochemically reduced graphene oxide (ERGO). SAMs of ortho-, meta-, and para-phenylenediamine (o-PDA, m-PDA, and p-PDA) were fabricated on GC and characterized using atomic force microscopy (AFM) and Raman spectroscopy. Among them, GC/p-PDA exhibited the most compact and homogeneous interfacial structure. ERGO was subsequently immobilized through the free amine functionalities of the SAM, as confirmed by attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Strong covalent coupling and electrostatic interactions between the positively charged ERGO and terminal amines enabled stable attachment. Under optimized conditions, the modified GC/p-PDA/ERGO electrode demonstrated exceptional electrocatalytic activity toward nitrobenzene (NBz) reduction, achieving a high sensitivity of 1410 μA mM−1 cm−2 and a low detection limit of 0.040 μM. In addition, this sensor displayed outstanding anti-interference capability, stability, and recovery in a water sample. These results establish GC/p-PDA/ERGO sensor as a robust and efficient electrocatalytically active interface for nitroaromatic pollutants detection and sustainable environmental monitoring. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

15 pages, 2482 KB  
Article
Enhancement of the Peroxidase Activity of Metal–Organic Framework with Different Clay Minerals for Detecting Aspartic Acid
by Chen Tian, Lang Zhang, Yali Yu, Ting Liu, Jianwu Chen, Jie Peng, Chu Dai and Jinhua Gan
Catalysts 2025, 15(12), 1172; https://doi.org/10.3390/catal15121172 - 17 Dec 2025
Viewed by 522
Abstract
The strategic engineering of metal–organic frameworks (MOFs) through integration with clay minerals offers a promising route to tailor their functional properties and expand their application scope. In this study, a series of clay-MOF composites was constructed by introducing MOFs onto the surfaces of [...] Read more.
The strategic engineering of metal–organic frameworks (MOFs) through integration with clay minerals offers a promising route to tailor their functional properties and expand their application scope. In this study, a series of clay-MOF composites was constructed by introducing MOFs onto the surfaces of different clay minerals. By varying the type of clay mineral, the nature and strength of surface-active sites could be effectively modulated. Notably, the Kaolinite-based MOFs (Ka-MOF) composite exhibited superior sensitivity for the detection of aspartic acid (AA), outperforming other composite nanozymes using o-phenylenediamine (OPD) and hydrogen peroxide (H2O2) as substrates, with a linear detection range of 0–37.56 μM and a low detection limit of 55.7 nM. The enhanced peroxidase-like activity is attributed to the substitution of silicon in the kaolinite structure by MOF components, which increases the density of Lewis acid–base sites. These sites facilitate H2O2 adsorption and promote its decomposition to generate singlet oxygen (1O2), thereby enhancing the catalytic oxidation process. Furthermore, the probe yielded satisfactory recoveries of aspartic acid (94.2% to 98.5%) in different real water samples through spiking recovery experiments. This work not only elucidates the influence of crystal surface engineering on the optical and catalytic properties of nanozymes but also provides a robust platform for tracing amino acids and studying their environmental chemical behaviors. Full article
Show Figures

Figure 1

27 pages, 5501 KB  
Article
Fabrication of Polyamide Thin-Film Composite/Polyethersulfone-Coreshell-Fe3O4/ZnO Membranes for the Efficient Removal of Pb(II) from Wastewater
by Nompumelelo Sharol Mbali Kubheka, Muthumuni Managa, Makwena Justice Moloto and Edward Ndumiso Nxumalo
Membranes 2025, 15(11), 341; https://doi.org/10.3390/membranes15110341 - 17 Nov 2025
Viewed by 723
Abstract
Thin-film composite nanofiltration membranes were fabricated via the interfacial polymerization method from optimized polyethersulfone (PES) mixed matrix membranes, using m-phenylenediamine and trimesoyl chloride monomers, which produced a selective polyamide layer and were used for heavy metal removal. The concentration of trimesoyl chloride (TMC) [...] Read more.
Thin-film composite nanofiltration membranes were fabricated via the interfacial polymerization method from optimized polyethersulfone (PES) mixed matrix membranes, using m-phenylenediamine and trimesoyl chloride monomers, which produced a selective polyamide layer and were used for heavy metal removal. The concentration of trimesoyl chloride (TMC) is a critical factor to govern the properties of the selective polyamide layer, which directly influences the surface morphology and selective performance of (0.5 wt%) PES-coreshell-Fe3O4/ZnO membranes. Morphological structure, illustrated by SEM images, elucidated the role of TMC addition. FTIR spectra validated the successful formation of the amine and acyl chloride groups. Performance studies illustrated that NF3 (made from 0.1 w/v% of TMC) showed a unique salt rejection trend (NaCl > Na2SO4 > MgCl2) with an optimal salt rejection of 52.64%, 50.91%, and 12.67%. A low concentration of 0.1 w/v% of the NF3 membrane was the most optimal high-performance membrane. The adsorption rate of NF3 for Pb(II) ions in real environmental wastewater is attributed to the tailored surface chemistry of the polyamide layered thin-film/PES-coreshell-Fe3O4/ZnO nanocomposites of the membranes. The maximum Langmuir adsorption capacity at the optimal pH = 5 was 8.8573 mg/g at 25 °C. The fabricated adsorptive nanofiltration membranes alleviated the presence of Pb(II) ions and other competing ions present in environmental wastewater. Full article
Show Figures

Figure 1

1038 KB  
Proceeding Paper
A Green and Efficient One-Pot Synthesis of 2,3-Diphenylquinoxaline Using Sodium Hypochlorite as a Sustainable Oxidant
by Nitin R. Deore, Vivek P. Shewale, J. Oscar C. Jimenez-Halla, Pragya, Arun Gabaji Dholi, Darien I. Martinez-Valencia, Tushar Janardan Pawar and Sachin V. Patil
Chem. Proc. 2025, 18(1), 106; https://doi.org/10.3390/ecsoc-29-26872 - 12 Nov 2025
Viewed by 148
Abstract
A highly efficient and sustainable one-pot method for the synthesis of 2,3-diphenylquinoxaline (DPQ) is presented. The reaction employs sodium hypochlorite as an inexpensive and eco-friendly oxidant for the conversion of benzoin, followed by condensation with o-phenylenediamine in an ethanol/water system. This green approach [...] Read more.
A highly efficient and sustainable one-pot method for the synthesis of 2,3-diphenylquinoxaline (DPQ) is presented. The reaction employs sodium hypochlorite as an inexpensive and eco-friendly oxidant for the conversion of benzoin, followed by condensation with o-phenylenediamine in an ethanol/water system. This green approach demonstrates remarkable versatility, affording excellent yields under photochemical (96%), reflux (92%), and electrochemical (83%) conditions. To provide mechanistic insight, computational studies were conducted, revealing the reaction pathway and identifying key energetic barriers. This work offers a practical and environmentally benign alternative for synthesizing important quinoxaline derivatives. Full article
Show Figures

Scheme 1

24 pages, 4817 KB  
Article
Composites of Natural-Polymer-Cross-Linked Poly(ortho-phenylenediamine)-Grafted SiO2 for Removal of Anionic and Cationic Dyes from Wastewater
by Sara A. Alqarni
Polymers 2025, 17(21), 2818; https://doi.org/10.3390/polym17212818 - 22 Oct 2025
Viewed by 738
Abstract
This study synthesizes three new composites: chitin-cross-linked poly(ortho-phenylenediamine)-grafted silicon dioxide (CT-PoPD-grafted SiO2), chitosan-cross-linked PoPD-grafted SiO2 (CS-PoP-grafted SiO2), and guar-gum-cross-linked PoPD-grafted SiO2 (GG-PoPD-grafted SiO2). These biopolymer-based materials were developed as cost-effective, biocompatible adsorbents with increased surface [...] Read more.
This study synthesizes three new composites: chitin-cross-linked poly(ortho-phenylenediamine)-grafted silicon dioxide (CT-PoPD-grafted SiO2), chitosan-cross-linked PoPD-grafted SiO2 (CS-PoP-grafted SiO2), and guar-gum-cross-linked PoPD-grafted SiO2 (GG-PoPD-grafted SiO2). These biopolymer-based materials were developed as cost-effective, biocompatible adsorbents with increased surface area for removing Acid Red 1 AR1) and Crystal Violet (CV) dyes. Structural and morphological analyses through Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) confirmed their successful synthesis. Adsorption studies were conducted under various conditions, including adsorbent dosage, pH, temperature, and contact time. Among the composites, GG-PoPD-grafted SiO2 demonstrated superior performance, achieving 99.1% and 95.6% removal of AR1 and CV, respectively. Kinetic analysis revealed a pseudo-second-order model, while thermodynamic results indicated a spontaneous and endothermic adsorption process. In conclusion, the GG-PoPD-grafted SiO2 composite exhibits significant potential as an effective and sustainable material for wastewater treatment. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

32 pages, 12724 KB  
Article
Sustainable Synthesis of 1,2-Disubstituted Benzimidazoles as Promising α-Glucosidase Inhibitors: In Vitro and In Silico Evaluation
by Graziella Tocco, Antonio Laus, Cristina Manis, Pierluigi Caboni, Antonella Fais and Benedetta Era
Pharmaceuticals 2025, 18(10), 1469; https://doi.org/10.3390/ph18101469 - 30 Sep 2025
Viewed by 757
Abstract
Background: Inhibiting α-glucosidase and α-amylase is a well-established strategy for managing postprandial hyperglycemia in type 2 diabetes mellitus. However, the adverse effects of current α-glucosidase inhibitors (α-GIs) underscore the need for safer alternatives. Methods: This study introduces an efficient, metal-free, and environmentally friendly [...] Read more.
Background: Inhibiting α-glucosidase and α-amylase is a well-established strategy for managing postprandial hyperglycemia in type 2 diabetes mellitus. However, the adverse effects of current α-glucosidase inhibitors (α-GIs) underscore the need for safer alternatives. Methods: This study introduces an efficient, metal-free, and environmentally friendly protocol for the selective, high-yield synthesis of 1,2-disubstituted benzimidazoles. The reaction between o-phenylenediamine and various aromatic aldehydes proceeds smoothly in water at room temperature, using cost-effective and eco-friendly catalysts such as acetylsalicylic acid (ASA) or salicylic acid (SA). The methodology exhibits broad versatility, enabled by the use of different o-phenylenediamines and a wide range of aromatic and heteroaromatic aldehydes. Results: Selected compounds were assessed for their inhibitory activity against α-glucosidase and α-amylase. While all exhibited low α-amylase inhibition, several showed significant α-glucosidase inhibition, with compounds 8s (IC50 = 0.39 ± 0.04 μM), 8k (IC50 = 7.4 ± 1.6 μM) and 8r (IC50 = 13.8 ± 2.7 μM) emerging as the most promising candidates. Notably, none of these compounds affected Caco-2 cell viability at concentrations up to 30 μM. Additionally, compounds 8r and 8s exhibited antioxidant properties, which may be relevant in counteracting the excessive production of free radicals associated with diabetes. Preliminary molecular docking and 500 ns molecular dynamics (MD) simulations were carried out on compounds 3k, 8i, 8k, and 8p8s to support and interpret the experimental biological findings qualitatively. Full article
Show Figures

Graphical abstract

14 pages, 4225 KB  
Article
Portable Bacterial Cellulose-Based Fluorescent Sensor for Rapid and Sensitive Detection of Copper in Food and Environmental Samples
by Hongyuan Zhang, Qian Zhang, Xiaona Ji, Bing Han, Jieqiong Wang and Ce Han
Molecules 2025, 30(17), 3633; https://doi.org/10.3390/molecules30173633 - 5 Sep 2025
Cited by 1 | Viewed by 1571
Abstract
Copper ions (Cu2+), indispensable in physiological processes yet toxic at elevated concentrations, require sensitive on-site monitoring. Here, a portable fluorescent sensing film (Y-CDs@BCM) was fabricated by anchoring yellow-emitting carbon dots (Y-CDs) into bacterial cellulose films, which enables rapid and sensitive detection [...] Read more.
Copper ions (Cu2+), indispensable in physiological processes yet toxic at elevated concentrations, require sensitive on-site monitoring. Here, a portable fluorescent sensing film (Y-CDs@BCM) was fabricated by anchoring yellow-emitting carbon dots (Y-CDs) into bacterial cellulose films, which enables rapid and sensitive detection of Cu2+ in complex real-world samples. The yellow fluorescent carbon dots (Y-CDs) were synthesized with the aid of o-phenylenediamine and 1-octyl-3-methylimidazolium tetrafluoroborate as precursors, exhibiting excellent fluorescence stability. The fluorescence of Y-CDs was selectively quenched by Cu2+ via the inner filter effect (IFE), allowing quantitative analysis with superior sensitivity compared to existing methods. By adding bacterial cellulose (BC) as a solid support, aggregation-induced fluorescence quenching was effectively reduced, and sensor robustness and portability were improved. Through smartphone-based colorimetric analysis, the Y-CDs@BCM sensor enabled rapid, visual interpretation of Cu2+ detection (within 1 min). Furthermore, cell viability and in vivo assays confirmed the biocompatibility of Y-CDs, indicating their suitability for biological imaging. This work presents an environmentally friendly, reliable, and practical method for on-site Cu2+ monitoring, emphasizing its broad application potential in food safety control and environmental analysis. Full article
(This article belongs to the Special Issue Applications of Fluorescent Sensors in Food and Environment)
Show Figures

Figure 1

31 pages, 6393 KB  
Review
Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring
by Matiar M. R. Howlader, Wei-Ting Ting and Md Younus Ali
Pharmaceuticals 2025, 18(9), 1257; https://doi.org/10.3390/ph18091257 - 24 Aug 2025
Cited by 2 | Viewed by 2016
Abstract
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food [...] Read more.
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food products is crucial for regulating safe use and preventing unnecessary antibiotic exposure. Electrochemical sensors are low-cost, sensitive, and easily detect CAP. This paper reviews recent research on electrochemical sensors for CAP detection, with a focus on the materials and fabrication techniques employed. The sensors are evaluated based on key performance parameters, including limit of detection, sensitivity, linear range, selectivity, and the ability to perform simultaneous detection. Specifically, we highlight the use of metal and carbon-based electrode modifications, including gold nanoparticles (AuNPs), nickel–cobalt (Ni-Co) hollow nano boxes, platinum–palladium (Pt-Pd), graphene (Gr), and covalent organic frameworks (COFs), as well as molecularly imprinted polymers (MIPs) such as polyaniline (PANI) and poly(o-phenylenediamine) (P(o-PD)). The mechanisms by which these modifications enhance CAP detection are discussed, including improved conductivity, increased surface-to-volume ratio, and enhanced binding site availability. The reviewed sensors demonstrated promising results, with some exhibiting high selectivity and sensitivity, and the effective detection of CAP in complex sample matrices. This review aims to support the development of next-generation sensors for antibiotic monitoring and contribute to global efforts to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Application of Biosensors in Pharmaceutical Research)
Show Figures

Graphical abstract

27 pages, 2602 KB  
Article
Folate-Modified Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and In Vitro PDT Treatment of Breast Cancer Cell Lines
by Anna V. Bychkova, Maria G. Gorobets, Anna V. Toroptseva, Alina A. Markova, Minh Tuan Nguyen, Yulia L. Volodina, Margarita A. Gradova, Madina I. Abdullina, Oksana A. Mayorova, Valery V. Kasparov, Vadim S. Pokrovsky, Anton V. Kolotaev and Derenik S. Khachatryan
Pharmaceutics 2025, 17(8), 982; https://doi.org/10.3390/pharmaceutics17080982 - 30 Jul 2025
Cited by 1 | Viewed by 1554
Abstract
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: [...] Read more.
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: Composition, stability and integrity of the coating, and peroxidase-like activity of FAMs are characterized using UV/Vis spectrophotometry (colorimetric test using o-phenylenediamine (OPD), Bradford protein assay, etc.), spectrofluorimetry, dynamic light scattering (DLS) and electron magnetic resonance (EMR). The selectivity of the FAMs accumulation in cancer cells is analyzed using flow cytometry and confocal laser scanning microscopy. Results: FAMs (dN~55 nm by DLS) as a drug delivery platform have been administered to cancer cells (human breast adenocarcinoma MCF-7 and MDA-MB-231 cell lines) in vitro. Methylene blue, as a model photosensitizer, has been non-covalently bound to FAMs. An increase in photoinduced cytotoxicity has been found upon excitation of the photosensitizer bound to the coating of FAMs compared to the single photosensitizer at equivalent concentrations. The suitability of the nanosystems for photodynamic therapy has been confirmed. Conclusions: FAMs are able to effectively enter cells with increased folate receptor expression and thus allow antitumor photosensitizers to be delivered to cells without any loss of their in vitro photodynamic efficiency. Therapeutic and diagnostic applications of FAMs in oncology are discussed. Full article
Show Figures

Graphical abstract

14 pages, 1360 KB  
Article
Increasing the Sensitivity of Aspergillus Galactomannan ELISA Using Silver Nanoparticle-Based Surface-Enhanced Raman Spectroscopy
by A. D. Vasilyeva, L. V. Yurina, E. G. Evtushenko, E. S. Gavrilina, V. B. Krylov, N. E. Nifantiev and I. N. Kurochkin
Sensors 2025, 25(14), 4376; https://doi.org/10.3390/s25144376 - 13 Jul 2025
Cited by 2 | Viewed by 1169
Abstract
Galactomannan (GM) is a polysaccharide secreted by opportunistic pathogenic fungi of the Aspergillus genus. It is prescribed as a diagnostic biomarker of invasive aspergillosis in immunocompromised patients by the guidelines for diagnosis and management of Aspergillus diseases. It has been shown previously that [...] Read more.
Galactomannan (GM) is a polysaccharide secreted by opportunistic pathogenic fungi of the Aspergillus genus. It is prescribed as a diagnostic biomarker of invasive aspergillosis in immunocompromised patients by the guidelines for diagnosis and management of Aspergillus diseases. It has been shown previously that the measurement of soluble horseradish peroxidase (HRP) using surface-enhanced Raman scattering (SERS) of 2,3-diaminophenazine enzymatic reaction product on silver nanoparticles is largely superior in detection limit compared to colorimetric readout. In this study, a highly sensitive SERS-based HRP measurement protocol was applied to enzyme-linked immunosorbent assay (ELISA) for GM quantification in biological fluids. The detection limit for GM was 4.3 pg per sample, which is one and a half orders of magnitude lower compared to colorimetric detection with o-phenylenediamine as a substrate and five times more sensitive than ELISA using 3,3′,5,5′-tetramethylbenzidine. Full article
Show Figures

Graphical abstract

18 pages, 2923 KB  
Article
Nitrogen-Doped Carbon Dots as a Fluorescent “Off–On” Probe for Selective Ascorbic Acid Detection via H2O2-Mediated Quenching
by Jingjing Jia, Xue Liu and Wenjing Wang
Nanomaterials 2025, 15(13), 976; https://doi.org/10.3390/nano15130976 - 23 Jun 2025
Cited by 1 | Viewed by 1769
Abstract
Nitrogen-doped carbon dots (NCDs) exhibiting superior fluorescence characteristics were synthesized employing o-phenylenediamine and 2-methylimidazole as precursors. The synthesized NCDs exhibited yellow photoluminescence with an excitation/emission maxima of 410/554 nm with a quantum yield of 28.41%. The presence of pyridinic N, pyrrolic N, graphitic [...] Read more.
Nitrogen-doped carbon dots (NCDs) exhibiting superior fluorescence characteristics were synthesized employing o-phenylenediamine and 2-methylimidazole as precursors. The synthesized NCDs exhibited yellow photoluminescence with an excitation/emission maxima of 410/554 nm with a quantum yield of 28.41%. The presence of pyridinic N, pyrrolic N, graphitic N, and amino N functionalities on the NCDs’ surface provided strong evidence for the successful nitrogen doping of the carbon dots. Upon exposure to hydrogen peroxide (H2O2), the NCDs exhibited a significant reduction in fluorescence intensity, which could be restored by the addition of ascorbic acid (AA), demonstrating a quantitative relationship between ascorbic acid and fluorescence efficiency. A novel fluorescence “off–on” system utilizing these NCDs was developed for the quantification of AA. The sensing mechanism relies on H2O2-induced fluorescence quenching via the selective oxidation of the NCDs’ surface, followed by fluorescence restoration upon AA addition due to the reduction in surface defects. Meanwhile, further experiments confirmed that the quenching mechanism was static quenching. The NCDs demonstrated a limit of detection (LOD) of 0.605 μM for AA detection. The use of NCDs for AA sensing was validated through the analysis of commercially available beverages. This study aimed to establish a simplified method for ascorbic acid detection. The experimental findings indicated that the developed technique exhibited high accuracy in quantifying ascorbic acid. These findings suggest that the developed NCDs possess considerable potential as a multifunctional sensing tool for various analytical applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

12 pages, 4317 KB  
Article
One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism
by Beibei Wang, Ling Sun, Kai Liu, Di Wu, Jinqiu Wang and Fang Geng
Chemistry 2025, 7(3), 94; https://doi.org/10.3390/chemistry7030094 - 6 Jun 2025
Viewed by 1498
Abstract
Multicolour graphene quantum dots (GQDs), from blue to orange emitting, were successfully synthesized via a one-step hydrothermal method using potassium hydrogen phthalate and o-phenylenediamine as the raw materials. After purification by silica gel column chromatography, four kinds of GQDs with maximum emission wavelengths [...] Read more.
Multicolour graphene quantum dots (GQDs), from blue to orange emitting, were successfully synthesized via a one-step hydrothermal method using potassium hydrogen phthalate and o-phenylenediamine as the raw materials. After purification by silica gel column chromatography, four kinds of GQDs with maximum emission wavelengths of 420 nm (blue), 500 nm (green), 540 nm (yellow), and 555 nm (orange) were obtained, and all had a high quantum yield (9.7%, 8.8%, 9.3%, and 10.3%, respectively). The structural characterization revealed that the synthesized GQDs had a regular morphology, with a size of 2–3 nm and a thickness of 1–2 nm. The D-band-to-G-band ratio was less than 0.3, indicating that the GQDs had a high degree of graphitization. In addition, the emission peaks of the GQDs were red-shifted as the particle size increased, confirming that their luminescence was dominated by the quantum confinement effect. By analyzing the surface states and the functional groups of the multicolour GQDs, it was found that the GQDs had a similar elemental composition, which further proved that the emission wavelengths did not depend on the surface element composition, but conformed to the luminescence mechanism regulated by the quantum-limited effect. Furthermore, the four types of GQDs exhibited low cytotoxicity and good stability, suggesting their potential applications in biomarkers and for the synchronous detection of a variety of analytes. Full article
(This article belongs to the Section Chemistry at the Nanoscale)
Show Figures

Graphical abstract

25 pages, 899 KB  
Review
A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers
by Mohd Azerulazree Jamilan, Balqis Kamarudin, Zainiharyati Mohd Zain, Kavirajaa Pandian Sambasevam, Faizatul Shimal Mehamod and Mohd Fairulnizal Md Noh
Polymers 2025, 17(10), 1415; https://doi.org/10.3390/polym17101415 - 21 May 2025
Cited by 2 | Viewed by 1630
Abstract
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a [...] Read more.
Vitamins are crucial micro-nutrients for overall well-being, making continuous monitoring essential. There are demands to provide an alternative detection, especially using a portable detection or a point-of-care-testing (POCT) device. One promising approach is employing an in situ electro-polymerised MIP (eMIP), which offers a straightforward polymerisation technique on screen-printed electrodes (SPEs). Here, we report a review based on three databases (PubMed, Scopus, and Web of Science) from 2014 to 2024 using medical subject heading (MeSH) terms “electrochemical polymerisation” OR “electropolymerisation” crossed with the terms “molecularly imprinted polymer” AND “vitamin A” OR “vitamin D” OR “vitamin E” OR “vitamin K” OR “fat soluble vitamin” OR “vitamin B” OR “vitamin C” OR “water soluble vitamin”. The resulting 12 articles covered the detection of vitamins in ascorbic acid, riboflavin, cholecalciferol, calcifediol, and menadione using monomers of catechol (CAT), 3,4-ethylenedioxythiophene (EDOT), o-aminophenol (oAP), o-phenylenediamine (oPD), pyrrole, p-aminophenol (pAP), p-phenylenediamine (pPD), or resorcinol (RES), using common bare electrodes including graphite rod electrode (GRE), glassy carbon electrode (GCE), gold electrode (GE), and screen-printed carbon electrode (SPCE). The most common electrochemical detections were differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV). The imprinting factor (IF) of the eMIP-modified electrodes were from 1.6 to 21.0, whereas the cross-reactivity was from 0.0% to 29.9%. Several types of food and biological samples were tested, such as supplement tablets, poultry and pharmaceutical drugs, soft drinks, beverages, milk, infant formula, human and calf serum, and human plasma. However, more discoveries and development of detection methods needs to be performed, especially for the vitamins that have not been studied yet. This will allow the improvement in the application of eMIPs on portable-based detection and POCT devices. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

12 pages, 8366 KB  
Article
Active Poly(o-phenylenediamine)-Intercalated Layered δ-MnO2 Cathode for High-Performance Aqueous Zinc-Ion Batteries
by Ziqian Yuan, Bosi Yin, Wenhui Mi, Minghui Liu and Siwen Zhang
Polymers 2025, 17(8), 1003; https://doi.org/10.3390/polym17081003 - 8 Apr 2025
Cited by 3 | Viewed by 1227
Abstract
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive [...] Read more.
Aqueous zinc-ion batteries (ZIBs) represent an emerging energy storage solution that offers significant advantages in terms of safety, cost-effectiveness, and longevity in cycling. Among the various materials available, manganese-based oxides stand out as the most promising options for cathodes due to their impressive theoretical specific capacity, suitable operating voltage, and abundant natural availability. In published reports, pre-embedding is frequently used to modify the layered cathode; however, non-electrochemically active molecular embedding often results in a decrease in battery capacity. In this paper, a hydrothermal method is employed to intercalate poly(o-phenylenediamine) (PoPD) into δ-MnO2 (MO) to produce PoPD-MO cathode materials. Here, PoPD serves a dual role in the cathode: (1) PoPD is inserted into the interlayer of MO, providing support within the intercalation layer, enhancing material stability, increasing ionic storage sites, and creating space for more Zn2+ to be embedded, and (2) inserting PoPD into the interlayer structure of MO effectively expands the space between layers, thus allowing for greater ion storage, which in turn enhances the rate and efficiency of electrochemical reactions. Consequently, PoPD-MO shows remarkable cycling durability and adaptability in ZIBs, achieving a specific capacity of 359 mAh g−1 at a current density of 0.1 A g−1, and even under the strain of a high current density of 3 A g−1, it maintains a respectable capacity of 107 mAh g−1. Based on this, PoPD-MO may emerge as a new cathode material with promising applications in the future. Full article
(This article belongs to the Special Issue Polymeric Conductive Materials for Energy Storage)
Show Figures

Figure 1

16 pages, 5848 KB  
Article
Molecularly Imprinted Electrochemical Sensor Based on MWCNTs/GQDs for the Detection of Sulfamethazine in Aquaculture Seawater
by Jianlei Chen, Tianruo Zhang, Yong Xu, Hao Li, Hongwu Cui, Xinguo Zhao, Yun Zhou, Keming Qu and Zhengguo Cui
Biosensors 2025, 15(3), 184; https://doi.org/10.3390/bios15030184 - 13 Mar 2025
Cited by 7 | Viewed by 2024
Abstract
In this work, a novel molecularly imprinted electrochemical sensor was proposed based on molecular imprinting technology for the detection of sulfamethazine. A glassy carbon electrode was modified with a composite material of carbon nanotubes and graphene quantum dots to effectively improve sensitivity. The [...] Read more.
In this work, a novel molecularly imprinted electrochemical sensor was proposed based on molecular imprinting technology for the detection of sulfamethazine. A glassy carbon electrode was modified with a composite material of carbon nanotubes and graphene quantum dots to effectively improve sensitivity. The molecularly imprinted electrochemical sensor was then prepared by electropolymerization using sulfamethazine as the template and o-phenylenediamine as the functional monomer on the modified electrode. Under optimal measurement conditions, electrochemical tests of different sulfamethazine concentrations (0.5 μM–200 μM) showed excellent linearity and a detection limit of 0.068 μM. In addition, the sensor demonstrated satisfactory selectivity, stability, and reusability. Furthermore, the sensor was applied to the spiked analysis of sulfamethazine in grouper aquaculture water, achieving recovery rates between 95.4% and 104.8%, with a relative standard deviation (RSD) of less than 4.14%. These results indicated that the developed method was effective for the analysis of sulfamethazine in aquaculture seawater, providing a new approach for the detection of antibiotic residues in seawater samples. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Figure 1

Back to TopTop