Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Northern High Plains aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 24184 KiB  
Article
Hydrogeological Parameters Identification in the Qingtongxia Irrigation Area Using Canal Stage Fluctuations
by Zizhao Cai, Chuan Lu, Wei Xu, Ping Wu, Lei Fang and Yongping Li
Water 2025, 17(6), 861; https://doi.org/10.3390/w17060861 - 17 Mar 2025
Viewed by 400
Abstract
Accurate characterization of aquifer hydrogeological parameters is critical for sustainable groundwater resource management. Traditional methods such as pumping tests often assume aquifer homogeneity and require substantial resources, limiting their applicability for large-scale heterogeneous systems. This study proposes a novel approach to estimate the [...] Read more.
Accurate characterization of aquifer hydrogeological parameters is critical for sustainable groundwater resource management. Traditional methods such as pumping tests often assume aquifer homogeneity and require substantial resources, limiting their applicability for large-scale heterogeneous systems. This study proposes a novel approach to estimate the spatial distribution of hydraulic conductivity (T) and specific storage (Ss) in the Qingtongxia Irrigation Area, utilizing canal stage fluctuations as natural stimuli. By analyzing high-frequency groundwater level responses from monitoring wells during irrigation channel operations, we employed a Sequential Linear Estimator (SLE) method combined with canal stage tomography to invert aquifer parameters. The results demonstrate that the inverted hydraulic conductivity distribution aligns well with lithological variations and historical data, showing higher values in the southern alluvial fan and lower values in the northern plains. The SLE method effectively captured aquifer heterogeneity, with RMSE and correlation coefficients between pumping test and inversion results improving to 1.81 and 0.76 after excluding outliers. This work highlights the potential of natural stimuli (e.g., irrigation-induced canal fluctuations) for basin-scale hydrogeological parameter estimation, offering a cost-effective alternative to traditional methods. The findings provide valuable insights for groundwater modeling and resource management in arid regions with intensive irrigation systems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

25 pages, 10105 KiB  
Article
Assessing the Potential of Volcanic and Sedimentary Rock Aquifers in Africa: Emphasizing Transmissivity, Water Quality, and Recharge as Key Evaluation Metrics
by Kristine Walraevens, George Bennett, Nawal Alfarrah, Tesfamichael Gebreyohannes, Gebremedhin Berhane, Miruts Hagos, Abdelwassie Hussien, Fenta Nigate, Ashebir Sewale Belay, Adugnaw Birhanu and Alemu Yenehun
Water 2025, 17(1), 109; https://doi.org/10.3390/w17010109 - 3 Jan 2025
Viewed by 2710
Abstract
This study provides a comprehensive analysis of the groundwater potential of hard rock aquifers in five diverse African case study areas: Lake Tana Basin and Beles Basin in northwestern Ethiopia and Mount Meru in northern Tanzania (comprising volcanic aquifers); the Mekelle area in [...] Read more.
This study provides a comprehensive analysis of the groundwater potential of hard rock aquifers in five diverse African case study areas: Lake Tana Basin and Beles Basin in northwestern Ethiopia and Mount Meru in northern Tanzania (comprising volcanic aquifers); the Mekelle area in northern Ethiopia and Jifarah Plain in Libya (consisting of sedimentary aquifers). The evaluation of recharge, transmissivity, and water quality formed the basis of qualitative and quantitative assessment. Multiple methods, including water table fluctuation (WTF), chloride mass balance (CMB), physical hydrological modeling (WetSpass), baseflow separation (BFS), and remote sensing techniques like GRACE satellite data, were employed to estimate groundwater recharge across diverse hydrogeological settings. Topographic contrast, fractured orientation, lineament density, hydro-stratigraphic connections, hydraulic gradient, and distribution of high-flux springs were used to assess IGF from Lake Tana to Beles Basin. The monitoring, sampling, and pumping test sites took into account the high hydromorphological and geological variabilities. Recharge rates varied significantly, with mean values of 315 mm/year in Lake Tana Basin, 193 mm/year in Mount Meru, and as low as 4.3 mm/year in Jifarah Plain. Transmissivity ranged from 0.4 to 6904 m2/day in Lake Tana Basin, up to 790 m2/day in Mount Meru’s fractured lava aquifers, and reached 859 m2/day in the sedimentary aquifers of the Mekelle area. Water quality issues included high TDS levels (up to 3287 mg/L in Mekelle and 11,141 mg/L in Jifarah), elevated fluoride concentrations (>1.5 mg/L) in 90% of Mount Meru samples, and nitrate pollution in shallow aquifers linked to agricultural practice. This study also highlights the phenomenon of inter-basin deep groundwater flow, emphasizing its role in groundwater potential assessment and challenging conventional water balance assumptions. The findings reveal that hard rock aquifers, particularly weathered/fractured basalt aquifers in volcanic regions, exhibit high potential, while pyroclastic aquifers generally demonstrate lower potential. Concerns regarding high fluoride levels are identified in Mount Meru aquifers. Among sedimentary aquifers in the Mekelle area and Jifarah Plain, limestone intercalated with marl or dolomite rock emerges as having high potential. However, high TDS and high sulfate concentrations are quality issues in some of the areas, quite above the WHO’s and each country’s drinking water standards. The inter-basin groundwater flow, investigated in this study of Beles Basin, challenges the conventional water balance assumption that the inflow into a hydrological basin is equivalent to the outflow out of the basin, by emphasizing the importance of considering groundwater influx from neighboring basins. These insights contribute novel perspectives to groundwater balance and potential assessment studies, challenging assumptions about groundwater divides. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

25 pages, 9972 KiB  
Article
Integrated Assessment of the Hydrogeochemical and Human Risks of Fluoride and Nitrate in Groundwater Using the RS-GIS Tool: Case Study of the Marginal Ganga Alluvial Plain, India
by Dev Sen Gupta, Ashwani Raju, Abhinav Patel, Surendra Kumar Chandniha, Vaishnavi Sahu, Ankit Kumar, Amit Kumar, Rupesh Kumar and Samyah Salem Refadah
Water 2024, 16(24), 3683; https://doi.org/10.3390/w16243683 - 20 Dec 2024
Cited by 3 | Viewed by 1343
Abstract
Groundwater contamination with sub-lethal dissolved contaminants poses significant health risks globally, especially in rural India, where access to safe drinking water remains a critical challenge. This study explores the hydrogeochemical characterization and associated health risks of groundwater from shallow aquifers in the Marginal [...] Read more.
Groundwater contamination with sub-lethal dissolved contaminants poses significant health risks globally, especially in rural India, where access to safe drinking water remains a critical challenge. This study explores the hydrogeochemical characterization and associated health risks of groundwater from shallow aquifers in the Marginal Ganga Alluvial Plain (MGAP) of northern India. The groundwater chemistry is dominated by Ca-Mg-CO3 and Ca-Mg-Cl types, where there is dominance of silicate weathering and the ion-exchange processes are responsible for this solute composition in the groundwater. All the ionic species are within the permissible limits of the World Health Organization, except fluoride (F) and nitrate (NO3). Geochemical analysis using bivariate relationships and saturation plots attributes the occurrence of F to geogenic sources, primarily the chemical weathering of granite-granodiorite, while NO3 contaminants are linked to anthropogenic inputs, such as nitrogen-rich fertilizers, in the absence of a large-scale urban environment. Multivariate statistical analyses, including hierarchical cluster analysis and factor analysis, confirm the predominance of geogenic controls, with NO3-enriched samples derived from anthropogenic factors. The spatial distribution and probability predictions of F and NO3 were generated using a non-parametric co-kriging technique approach, aiding in the delineation of contamination hotspots. The integration of the USEPA human health risk assessment methodology with the urbanization index has revealed critical findings, identifying approximately 23% of the study area as being at high risk. This comprehensive approach, which synergizes geospatial analysis and statistical methods, proves to be highly effective in delineating priority zones for health intervention. The results highlight the pressing need for targeted mitigation measures and the implementation of sustainable groundwater management practices at regional, national, and global levels. Full article
(This article belongs to the Special Issue Groundwater Quality and Contamination at Regional Scales)
Show Figures

Figure 1

19 pages, 6449 KiB  
Article
Statistical Analysis of Climate Trends and Impacts on Groundwater Sustainability in the Lower Indus Basin
by Waqas Ahmed, Suhail Ahmed, Jehangir F. Punthakey, Ghulam Hussain Dars, Muhammad Shafqat Ejaz, Abdul Latif Qureshi and Michael Mitchell
Sustainability 2024, 16(1), 441; https://doi.org/10.3390/su16010441 - 4 Jan 2024
Cited by 6 | Viewed by 3088
Abstract
Agricultural intensification is increasing global demand for water, with groundwater especially susceptible given its year-round reliability. Climate change impacts on groundwater recharge exacerbate uncertainties for future access and use, especially for large aquifers across alluvial plains such as the Indus Basin of Pakistan. [...] Read more.
Agricultural intensification is increasing global demand for water, with groundwater especially susceptible given its year-round reliability. Climate change impacts on groundwater recharge exacerbate uncertainties for future access and use, especially for large aquifers across alluvial plains such as the Indus Basin of Pakistan. To generate better understanding of climate change impacts on groundwater balances in such contexts, we used MODFLOW 2005 to quantify the groundwater budget of the Northern Rohri Canal Command Area under RCP 4.5 and 8.5 climatic scenarios, while also taking climatic regionalisation into account. Under a baseline scenario, total annual pumping in the northern Rohri command was estimated to be 3.619 billion cubic metres (BCM), and the total net loss in storage over the simulation period from October 2010 to April 2014 was estimated at 1.244 BCM per year. By 2047, net decline in storage is projected to more than double to 2.185 per year under RCP 4.5 scenario and 2.214 under RCP 8.5. Our estimates suggest that a sustainable yield across the command area should be managed at approximately 3 ± 0.3 BCM per year to ensure sufficient adaptive reserves of groundwater for access during times of drought and inadequate surface supply, while also reducing waterlogging impacts from high watertables. This first-time estimate of sustainable yield provides irrigation system managers with an overall guide from which divisional-scale measures to achieve the goal can be identified through stakeholder engagement. Full article
Show Figures

Figure 1

14 pages, 2312 KiB  
Article
Spatiotemporal Economic Analysis of Corn and Wheat Production in the Texas High Plains
by Aminun Naher, Lal K. Almas, Bridget Guerrero and Sania Shaheen
Water 2023, 15(20), 3553; https://doi.org/10.3390/w15203553 - 12 Oct 2023
Cited by 3 | Viewed by 1739
Abstract
The aim of this study is to visualize the historical changes in wheat and corn cropping patterns in the Texas High Plains from the perspective of geographical concentration and spatial autocorrelation. Historical county-level agricultural census data were collected from the United States Department [...] Read more.
The aim of this study is to visualize the historical changes in wheat and corn cropping patterns in the Texas High Plains from the perspective of geographical concentration and spatial autocorrelation. Historical county-level agricultural census data were collected from the United States Department of Agriculture and the National Agricultural Statistics Service from 1978 to 2017. Exploratory data analysis techniques were employed to examine the geographical concentration and spatial dependence of crop production among nearby locations. The results of temporal changes indicate that the harvested acres of corn and wheat tended to decrease throughout the study period. Total and irrigated harvested corn and wheat acreages were concentrated in a smaller number of counties over time while wheat production was mainly concentrated in the northern part of the region. The Moran’s I test statistic for total and irrigated areas of cropland suggest that there was spatial dependence among the neighboring counties in crop production in this region. In summary, there was a spatiotemporal change in cropping patterns in the Texas High Plains over the study period. Based on the results of the spatiotemporal changes in cropping patterns in the Texas High Plains, policy makers should promote and support non-irrigated varieties of crops in order to decrease the dependence on irrigation water from the Ogallala Aquifer. Full article
(This article belongs to the Special Issue Agricultural Practices to Improve Irrigation Sustainability)
Show Figures

Figure 1

26 pages, 11666 KiB  
Article
Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan
by Muhammad Afzal, Tie Liu, Asim Qayyum Butt, Adeel Ahmed Nadeem, Sikandar Ali and Xiaohui Pan
Remote Sens. 2023, 15(16), 3988; https://doi.org/10.3390/rs15163988 - 11 Aug 2023
Cited by 8 | Viewed by 3873
Abstract
Groundwater is a precious natural resource that is vital to various aspects of life. Punjab is experiencing groundwater stress due to urbanization and population growth, leading to overuse and reduced aquifer recharge. Sustainable groundwater supplies can only be created through better management and [...] Read more.
Groundwater is a precious natural resource that is vital to various aspects of life. Punjab is experiencing groundwater stress due to urbanization and population growth, leading to overuse and reduced aquifer recharge. Sustainable groundwater supplies can only be created through better management and artificial recharge techniques. This study uses multi-influencing factor, literature-based, and combined techniques to identify and characterize groundwater-managed aquifer recharge potential sites (GWMARPSs) in Punjab. There are limitations to the previous work in this field, and these factors have not been used to estimate GWRPSs in the study area. The study uses GIS and RS techniques to overlay twelve geo-informative layers, with rainfall being the most significant factor. High-quality data and observations from the field are incorporated into the model. The study classifies the GWMARPSs into five categories, with Punjab having 0.34%, 13.29%, 60.68%, 25.26%, and 0.43% of the least, poorly, moderately, well-, and highly suitable sites. Punjab’s southern regions are least suitable for recharge, while some areas in eastern and northern Punjab are well-suited for recharge. Alluvial plains, valleys, low-lying areas, and areas with volcanic landforms are classified as least to poorly suitable zones. Model predictions are validated using piezometric level data and ROC and exhibit good performance (AUC, 0.74). This study could serve as a baseline for future groundwater research. Full article
Show Figures

Figure 1

17 pages, 5036 KiB  
Article
Impacts of Ongoing Land-Use Change on Watershed Hydrology and Crop Production Using an Improved SWAT Model
by Baogui Li, Gary W. Marek, Thomas H. Marek, Dana O. Porter, Srinivasulu Ale, Jerry E. Moorhead, David K. Brauer, Raghavan Srinivasan and Yong Chen
Land 2023, 12(3), 591; https://doi.org/10.3390/land12030591 - 1 Mar 2023
Cited by 4 | Viewed by 2838
Abstract
The southern Ogallala Aquifer continues to deplete due to decades of irrigation with minimal recharge. Recently enacted regulations limiting groundwater withdrawals and the potential for farm profitability with cotton production systems indicate driving forces for increased cotton production acreage in the Northern High [...] Read more.
The southern Ogallala Aquifer continues to deplete due to decades of irrigation with minimal recharge. Recently enacted regulations limiting groundwater withdrawals and the potential for farm profitability with cotton production systems indicate driving forces for increased cotton production acreage in the Northern High Plains of Texas (NHPT). This study focused on evaluating the land-use change from corn or winter wheat to cotton under irrigation and dryland conditions in the Palo Duro watershed (PDW) in the NHPT using an improved Soil and Water Assessment Tool (SWAT) model. Land-use change from irrigated corn to irrigated cotton led to reductions in average (2000–2014) annual irrigation, actual evapotranspiration (ETa), and surface runoff by 21%, 7%, and 63%, respectively. Nevertheless, the replacement of irrigated wheat with irrigated cotton caused irrigation and ETa to increase by 46% and 18%, respectively. Land-use conversion from dryland wheat to dryland cotton showed 0.1% and 15% decreases in ETa and surface runoff, respectively. More than 40% reductions in simulated cotton yields were found when the cotton planting area was moving northward to the cooler NHPT. The ongoing change in land use provided an option to lengthen the water availability of the southern Ogallala Aquifer for irrigation. Full article
(This article belongs to the Section Water, Energy, Land and Food (WELF) Nexus)
Show Figures

Figure 1

21 pages, 4870 KiB  
Article
Distribution Characteristics and Formation Mechanisms of Highly Mineralized Groundwater in the Hetao Plain, Inner Mongolia
by Qiuyao Dong, Jincheng Li, Yanpei Cheng, Yu Ren, Dong Zhang, Dong Wang, Xiaoyue Sun and Wengeng Cao
Water 2022, 14(20), 3247; https://doi.org/10.3390/w14203247 - 14 Oct 2022
Cited by 4 | Viewed by 3133
Abstract
As the largest artesian irrigation area in northern China, the Hetao Plain is also one of the major grain-producing areas in China. Meanwhile, there is a large amount of highly mineralized groundwater resulting in the soil salinization and desertification in this region. In [...] Read more.
As the largest artesian irrigation area in northern China, the Hetao Plain is also one of the major grain-producing areas in China. Meanwhile, there is a large amount of highly mineralized groundwater resulting in the soil salinization and desertification in this region. In addition, this study also uses the traditional hydro-geochemical methods to investigate the spatial evolution characteristics and formation mechanisms of highly mineralized groundwater. The results indicate that there is a large amount of highly mineralized groundwater (salinity > 3 g/L) in the shallow aquifer over the Hetao Plain. As far as the spatial patterns are concerned, there are significant spatial differences. In accordance with the structural, paleogeographic, landform, and hydrogeological conditions, the highly mineralized groundwater in the Hetao Plain can be divided into five zones, namely, the front fan depression, the north bank of the Yellow River, Xishanzui, Hasuhai in the Hubao Plain, and Dalad banner on the south bank of the Yellow River. Among them, the highly mineralized groundwater of Xishanzui exhibits the largest value of the salinity > 10 g/L. The main cations are Mg2+ and Na+, while the main anions are Cl and SO42−. Moreover, the groundwater in the highly mineralized area contains a large amount of I. According to the analysis of Piper, Gibbs diagrams of groundwater, the proportion coefficients of various components and the indication of isotope, it can be seen that most of the chemical ions in groundwater in the highly mineralized zone come from evaporation-concentration, which are mainly affected by climate, sedimentary environment, hydrogeological conditions and hydrology. The source of high mineralization in Xishanzui are different from other high mineralization regions, and the highly mineralized groundwater in Xishanzui is formed by the infestation of deep underground salt brine. These results can provide scientific basis for the rational allocation of regional water resources and the promotion of water resources development and utilization. Full article
Show Figures

Figure 1

17 pages, 2523 KiB  
Article
Key Factors Dominating the Groundwater Chemical Composition in a Grain Production Base: A Case Study of Muling–Xingkai Plain, Northeast China
by Chen Su, Zhuang Li, Wenzhong Wang, Zhongshuang Cheng, Zhaoxian Zheng and Zongyu Chen
Water 2022, 14(14), 2222; https://doi.org/10.3390/w14142222 - 14 Jul 2022
Cited by 4 | Viewed by 3619
Abstract
Groundwater quality in the Muling–Xingkai Plain (MXP) is closely related to food security and human health. The chemical composition of groundwater in MXP has attracted great attention. A total of 168 groundwater samples were collected in MXP, and principal component analysis, chemical ion [...] Read more.
Groundwater quality in the Muling–Xingkai Plain (MXP) is closely related to food security and human health. The chemical composition of groundwater in MXP has attracted great attention. A total of 168 groundwater samples were collected in MXP, and principal component analysis, chemical ion analysis and stable isotopic analysis were used to explore key factors affecting the chemical composition and hydrochemical evolution process of groundwater. Results show sources of chemical ions in groundwater are silicate minerals, carbonate minerals and domestic sewage. Domestic sewage is responsible for groundwater with high levels of Cl, SO42− and NO3, but a reduction environment can lead to groundwater with a high level of NH4+ due to nitrification. Human activity and soil media together influence groundwater chemical composition. Groundwater with a high level of chemical ions is mainly collected from wells near river channels, where coarse-textured soils are overlying aquifers. The black soil far away from river channels can retard the infiltration of wastewater. Agricultural activities do not directly lead to deterioration of groundwater qualities, and agricultural non-point-source pollution does not occur in MXP. Nearly 70% of the population in MXP is living in the southern plain, where the influence of sewage on groundwater chemical composition is obvious. Thus, shallow groundwater far away from river channels is the best choice for irrigation. Some measures should be implemented to control the discharge of domestic sewage for the protection of groundwater. In addition, it is necessary to avoid the transformation of the redox environment of groundwater in the northern plain. Full article
(This article belongs to the Special Issue Groundwater Chemistry and Quality in Coastal Aquifers)
Show Figures

Figure 1

22 pages, 7154 KiB  
Article
Agricultural Irrigation Effects on Hydrological Processes in the United States Northern High Plains Aquifer Simulated by the Coupled SWAT-MODFLOW System
by Sijal Dangol, Xuesong Zhang, Xin-Zhong Liang and Fernando Miralles-Wilhelm
Water 2022, 14(12), 1938; https://doi.org/10.3390/w14121938 - 16 Jun 2022
Cited by 7 | Viewed by 4007
Abstract
Groundwater use for irrigation has a major influence on agricultural productivity and local water resources. This study evaluated the groundwater irrigation schemes, SWAT auto-irrigation scheduling based on plant water stress (Auto-Irr), and prescribed irrigation based on well pumping rates in MODFLOW (Well-Irr), in [...] Read more.
Groundwater use for irrigation has a major influence on agricultural productivity and local water resources. This study evaluated the groundwater irrigation schemes, SWAT auto-irrigation scheduling based on plant water stress (Auto-Irr), and prescribed irrigation based on well pumping rates in MODFLOW (Well-Irr), in the U.S. Northern High Plains (NHP) aquifer using coupled SWAT-MODFLOW model simulations for the period 1982–2008. Auto-Irr generally performed better than Well-Irr in simulating groundwater irrigation volume (reducing the mean bias from 86 to −30%) and groundwater level (reducing the normalized root-mean-square-error from 13.55 to 12.47%) across the NHP, as well as streamflow interannual variations at two stations (increasing NSE from 0.51, 0.51 to 0.55, 0.53). We also examined the effects of groundwater irrigation on the water cycle. Based on simulation results from Auto-Irr, historical irrigation led to significant recharge along the Elkhorn and Platte rivers. On average over the entire NHP, irrigation increased surface runoff, evapotranspiration, soil moisture and groundwater recharge by 21.3%, 4.0%, 2.5% and 1.5%, respectively. Irrigation improved crop water productivity by nearly 27.2% for corn and 23.8% for soybean. Therefore, designing sustainable irrigation practices to enhance crop productivity must consider both regional landscape characteristics and downstream hydrological consequences. Full article
(This article belongs to the Special Issue SWAT Modeling - New Approaches and Perspective)
Show Figures

Figure 1

22 pages, 5902 KiB  
Article
Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy)
by Filomena Canora, Rosalba Muzzillo and Francesco Sdao
Water 2022, 14(12), 1851; https://doi.org/10.3390/w14121851 - 9 Jun 2022
Cited by 17 | Viewed by 4590
Abstract
This study aims at a groundwater vulnerability assessment of the Metaponto coastal plain, located in the Basilicata region (southern Italy). In the last century, intensive agriculture, zootechnical and industrial activities have significantly changed the plain. These changes led to negative impacts on the [...] Read more.
This study aims at a groundwater vulnerability assessment of the Metaponto coastal plain, located in the Basilicata region (southern Italy). In the last century, intensive agriculture, zootechnical and industrial activities have significantly changed the plain. These changes led to negative impacts on the hydrogeological system intensifying the risk of the aquifer to pollution. The paper presents the assessment of the intrinsic vulnerability of the coastal aquifer carried out by the GIS-based application of the SINTACS method. It considers several aquifer parameters such as water table depth, effective infiltration, unsaturated conditions, soil media, aquifer media, hydraulic conductivity and topography. Furthermore, the anthropogenic influence in the study area was considered by applying the SINTACS-LU method, in which the parameter of land use (LU) was added. The SINTACS and SINTACS-LU vulnerability indexes were provided by summing the product of ratings and weights assigned to each parameter. The analysis of the intrinsic vulnerability map allowed for determining three classes ranging from low to high vulnerability. In both cases, the southeastern part of the coastal plain, closest to the sea, shows the highest vulnerability class, indicating that it is the most vulnerable to contamination due to the hydrogeological intrinsic factors. The wide central part of the study area shows a moderate class of vulnerability and the low class is scattered in small parts in the northern portion of the plain, which represents the areas less contaminable in space and time in the case of potential pollution. In the SINTACS-LU map, some areas classified as highly vulnerable in the SINTACS method show a minor vulnerability class. These areas are localized in natural and wooded sectors of the Metaponto plain, which are less populated, where human impact on the groundwater is minimal. Full article
(This article belongs to the Special Issue Groundwater Vulnerability to Pollution Assessment)
Show Figures

Figure 1

18 pages, 11185 KiB  
Article
Fluid Production Dataset for the Assessment of the Anthropogenic Subsidence in the Po Plain Area (Northern Italy)
by Celine Eid, Christoforos Benetatos and Vera Rocca
Resources 2022, 11(6), 53; https://doi.org/10.3390/resources11060053 - 1 Jun 2022
Cited by 5 | Viewed by 3215
Abstract
Fluid produced/injected volumes from/into underground natural formations and their spatial allocation play a key role in addressing the superposition of anthropogenic subsidence effects, but the definition of coherent datasets is usually very challenging. In this paper, the creation of a gas and water [...] Read more.
Fluid produced/injected volumes from/into underground natural formations and their spatial allocation play a key role in addressing the superposition of anthropogenic subsidence effects, but the definition of coherent datasets is usually very challenging. In this paper, the creation of a gas and water production dataset for the Po Plain area in northern Italy is presented, focusing on the Emilia-Romagna region (an industrialized, highly-populated area characterized by rapid subsidence). The produced volumes and their spatial/temporal allocation are gathered from different sources, analyzed, and organized via dedicated georeferenced maps. The geological framework of the Po Plain is delineated, with attention to the superficial aquifers. Reference ranges of petrophysical and pseudo-elastic parameters are reported for both aquifer and reservoir formations. Water extractions from the superficial unconsolidated sediments are widespread, both in space and time; instead, primary gas production and underground storage of natural gas, involving deeper formations, are spatially and temporally well constrained. Drastic increases in water production and high concentrations of gas production temporally coincided between the 1950s and 1970s. The ‘hotspots’ of the strongest superposition are recognized in Piacenza, Ferrara, Bologna, and Ravenna provinces. Qualitative and quantitative information represent a reference source for both Oil and Gas Societies and Regional/National authorities in addressing the subsidence analysis to plan the field production life and predict the environmental consequences. Full article
Show Figures

Figure 1

30 pages, 9611 KiB  
Article
Modeling of Groundwater Potential Using Cloud Computing Platform: A Case Study from Nineveh Plain, Northern Iraq
by Ali ZA. Al-Ozeer, Alaa M. Al-Abadi, Tariq Abed Hussain, Alan E. Fryar, Biswajeet Pradhan, Abdullah Alamri and Khairul Nizam Abdul Maulud
Water 2021, 13(23), 3330; https://doi.org/10.3390/w13233330 - 24 Nov 2021
Cited by 15 | Viewed by 3418
Abstract
Knowledge of the groundwater potential, especially in an arid region, can play a major role in planning the sustainable management of groundwater resources. In this study, nine machine learning (ML) algorithms—namely, Artificial Neural Network (ANN), Decision Jungle (DJ), Averaged Perceptron (AP), Bayes Point [...] Read more.
Knowledge of the groundwater potential, especially in an arid region, can play a major role in planning the sustainable management of groundwater resources. In this study, nine machine learning (ML) algorithms—namely, Artificial Neural Network (ANN), Decision Jungle (DJ), Averaged Perceptron (AP), Bayes Point Machine (BPM), Decision Forest (DF), Locally-Deep Support Vector Machine (LD-SVM), Boosted Decision Tree (BDT), Logistic Regression (LG), and Support Vector Machine (SVM)—were run on the Microsoft Azure cloud computing platform to model the groundwater potential. We investigated the relationship between 512 operating boreholes with a specified specific capacity and 14 groundwater-influencing occurrence factors. The unconfined aquifer in the Nineveh plain, Mosul Governorate, northern Iraq, was used as a case study. The groundwater-influencing factors used included elevation, slope, curvature, topographic wetness index, stream power index, soil, land use/land cover (LULC), geology, drainage density, aquifer saturated thickness, aquifer hydraulic conductivity, aquifer specific yield, depth to groundwater, distance to faults, and fault density. Analysis of the contribution of these factors in groundwater potential using information gain ratio indicated that aquifer saturated thickness, rainfall, hydraulic conductivity, depth to groundwater, specific yield, and elevation were the most important factors (average merit > 0.1), followed by geology, fault density, drainage density, soil, LULC, and distance to faults (average merit < 0.1). The average merits for the remaining factors were zero, and thus, these factors were removed from the analysis. When the selected ML classifiers were used to estimate groundwater potential in the Azure cloud computing environment, the DJ and BDT models performed the best in terms of all statistical error measures used (accuracy, precision, recall, F-score, and area under the receiver operating characteristics curve), followed by DF and LD-SVM. The probability of groundwater potential from these algorithms was mapped and visualized into five groundwater potential zones: very low, low, moderate, high, and very high, which correspond to the northern (very low to low), southern (moderate), and middle (high to very high) portions of the study area. Using a cloud computing service provides an improved platform for quickly and cheaply running and testing different algorithms for predicting groundwater potential. Full article
Show Figures

Graphical abstract

17 pages, 9296 KiB  
Article
Hydrostratigraphic Framework and Physicochemical Status of Groundwater in the Gioia Tauro Coastal Plain (Calabria—Southern Italy)
by Giuseppe Cianflone, Giovanni Vespasiano, Rosanna De Rosa, Rocco Dominici, Carmine Apollaro, Orlando Vaselli, Luca Pizzino, Cristiano Tolomei, Francesco Capecchiacci and Maurizio Polemio
Water 2021, 13(22), 3279; https://doi.org/10.3390/w13223279 - 19 Nov 2021
Cited by 11 | Viewed by 3436
Abstract
In this study, we analysed the Gioia Tauro Plain (Tyrrhenian coast, southern Italy) in terms of hydrostratigraphy and the physicochemical status of groundwater. We investigated the hydrostratigraphic framework of the area identifying a deep aquifer (made by late Miocene succession), an aquitard (consisting [...] Read more.
In this study, we analysed the Gioia Tauro Plain (Tyrrhenian coast, southern Italy) in terms of hydrostratigraphy and the physicochemical status of groundwater. We investigated the hydrostratigraphic framework of the area identifying a deep aquifer (made by late Miocene succession), an aquitard (consisting of Pliocene clayey and silty deposits) and a shallow aquifer (including Late Pleistocene and Holocene marine and alluvial sediments) using subsoil data (boreholes and geophysics). Our reconstruction showed that the structural geology controls the spatial pattern of the aquitard top and the shallow aquifer thickness. Furthermore, we evaluated the hydraulic conductivity for the shallow aquifer using an empirical method, calibrated by slug tests, obtaining values ranging from 10−4 to 10−5 m/s with a maximum of 10−3 m/s located close to inland dune fields. The piezometric level of the shallow aquifer recorded a significant drop between the 1970s and 2021 (−35 m as the worst value). It is the effect of climate and soil use changes, the latter being the increased water demand for kiwi cultivation. Despite the overexploitation of the shallow aquifer, shallow groundwater is fresh (736 µS/cm as mean electrical conductivity) except for a narrow coastal area where the electrical conductivity is more than 1500 µS/cm, which can be due to the seawater intrusion. What was more complex was the physicochemical status of the deep aquifer characterised by high temperature (up to 25.8 °C) and electrical conductivity up to 10,520 µS/cm along the northern and southern plain boundaries marked by tectonic structures. This issue suggested the dominant role of the local fault system that is likely affecting the deep groundwater flow and its chemical evolution. Full article
Show Figures

Figure 1

21 pages, 6413 KiB  
Article
Reactive Silica Traces Manure Spreading in Alluvial Aquifers Affected by Nitrate Contamination: A Case Study in a High Plain of Northern Italy
by Edoardo Severini, Marco Bartoli, Monica Pinardi and Fulvio Celico
Water 2020, 12(9), 2511; https://doi.org/10.3390/w12092511 - 9 Sep 2020
Cited by 13 | Viewed by 3214
Abstract
In the northern sector of the Po River Plain (Italy), widespread intensive agriculture and animal farming are supported by large amounts of water from Alpine lakes and their emissaries. Flood irrigation and excess fertilization with manure affect both the hydrology and the chemical [...] Read more.
In the northern sector of the Po River Plain (Italy), widespread intensive agriculture and animal farming are supported by large amounts of water from Alpine lakes and their emissaries. Flood irrigation and excess fertilization with manure affect both the hydrology and the chemical quality of surface and groundwater, resulting in diffuse nitrogen pollution. However, studies analyzing the mechanisms linking agricultural practices with vertical and horizontal nitrogen paths are scarce in this area. We investigated groundwater quality and quantity in an unconfined, coarse-grained alluvial aquifer adjacent to the Mincio River (a tributary of the Po River), where steep summer gradients of nitrate (NO3) concentrations are reported. The effects of manure on solutes’ vertical transport during precipitation events in fertilized and in control soils were simulated under laboratory conditions. The results show high SiO2 and NO3 leaching in fertilized soils. Similarly, field data are characterized by high SiO2 and NO3 concentrations, with a comparable spatial distribution but a different temporal evolution, suggesting their common origin but different processes affecting their concentrations in the study area. Our results show that SiO2 can be used as a conservative tracer of manure spreading, as it does not undergo biogeochemical processes that significantly alter its concentrations. On the contrary, nitrate displays large short-term variations related to aquifer recharge (i.e., flood irrigation and precipitation). In fact, aquifer recharge may promote immediate solubilization and stimulate nitrification, resulting in high NO3 concentrations up to 95.9 mg/L, exceeding the Water Framework Directive (WFD) thresholds. When recharge ends, anoxic conditions likely establish in the saturated zone, favoring denitrification and resulting in a steep decrease in NO3 concentrations. Full article
Show Figures

Figure 1

Back to TopTop