Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Hydrogeology, Geological Formation, and Aquifer Characterization of Study Area
2.3. Data Collection and Thematic Layer Preparation
2.4. Weight Allocation and Normalization
3. Results and Discussion
3.1. Parameters That Control Managed Aquifer Recharge Potential Sites
3.2. Delineation of Favorable Managed Aquifer Recharge Potential Sites
3.3. Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raghunath, H.M. Ground Water: Hydrogeology, Ground Water Survey and Pumping Tests, Rural Water Supply and Irrigation Systems; New Age International: New York, NY, USA, 1987. [Google Scholar]
- Foster, S. Groundwater: Assessing vulnerability and promoting protection of a threatened resource. In Water—The Key to Socio-economic Development and Quality of Life, Proceedings of the 8th Stockholm Water Symposium, Stockholm, Sweden, 10–13 August 1998; IRC International Water and Sanitation Centre: Stockholm, Sweden, 1998; pp. 79–90. [Google Scholar]
- Xiao, F.; Simcik, M.F.; Halbach, T.R.; Gulliver, J.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: Migration and implications for human exposure. Water Res. 2015, 72, 64–74. [Google Scholar] [CrossRef]
- Ahmed, U.; Sarwar, A.; Khalil, F.A.; Gulzar, S.; Qayum, N.; Qureshi, R. Mapping Groundwater Potential Zones Using Satellite Remote Sensing and GIS. In GIScience for the Sustainable Management of Water Resources; Apple Academic Press: Palm Bay, FC, USA, 2022; pp. 109–126. [Google Scholar]
- World Bank. Managing Groundwater Resources in Pakistan’s Indus Basin. Available online: https://www.worldbank.org/en/news/feature/2021/03/25/managing-groundwater-resources-in-pakistan-indus-basin (accessed on 25 July 2023).
- PBS. Home|Pakistan Bureau of Statistics. 2017. Available online: https://www.pbs.gov.pk/ (accessed on 13 April 2023).
- Wazir, M.A.; Goujon, A. Assessing the 2017 Census of Pakistan using Demographic Analysis: A Sub-National Perspective; Vienna Institute of Demography Working Papers; Vienna Institute of Demography: Vienna, Austria, 2019. [Google Scholar]
- Watto, M.A. The Economics of Groundwater Irrigation in the Indus Basin, Pakistan: Tube-Well Adoption, Technical and Irrigation Water Efficiency and Optimal Allocation. Ph.D. Thesis, University of Western Australia, Crawley, Australia, 2015. [Google Scholar]
- Nadeem, A.A.; Zha, Y.; Mehmood, K.; Awais, M.; Afzal, M.M.; Hussain, H. Quantification of temporal variations in groundwater level using satellite imagery technique: A case study of Rachna Doab, Pakistan. Int. J. Environ. Sci. Technol. 2023, 20, 2565–2580. [Google Scholar] [CrossRef]
- Salma, S.; Rehman, S.; Shah, M.A. Rainfall trends in different climate zones of Pakistan. Pak. J. Meteorol. 2012, 9. [Google Scholar]
- Nawaz, Z.; Li, X.; Chen, Y.; Guo, Y.; Wang, X.; Nawaz, N. Temporal and spatial characteristics of precipitation and tem-perature in Punjab, Pakistan. Water 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Liedl, R.; Kavousi, A. Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan. Environ. Earth Sci. 2015, 74, 1463–1486. [Google Scholar] [CrossRef]
- Gintamo, T.T. Ground water potential evaluation based on integrated GIS and remote sensing techniques, in bilate River Catchment: South Rift Valley of Ethiopia. Am. Sci. Res. J. Eng. Technol. Sci. 2015, 10, 85–120. [Google Scholar]
- Shaban, A.; Khawlie, M.; Abdallah, C.; Faour, G. Geologic controls of submarine groundwater discharge: Application of remote sensing to north Lebanon. Environ. Geol. 2005, 47, 512–522. [Google Scholar] [CrossRef]
- The Hydrogeology of Adama-Wonji Basin and Assessment of Groundwater Level Changes in Wonji Wetland, Main Ethiopian Rift: Results from 2D Tomography and Electrical Sounding Methods|SpringerLink. Available online: https://link.springer.com/article/10.1007/s12665-010-0619-y (accessed on 25 July 2023).
- Geology Map of Punjab Pakistan—Google Search. Available online: https://www.google.com.hk/search?q=geology+map+of+punjab+pakistan&newwindow=1&client=firefox-b-d&sxsrf=AB5stBg9emeY1GTZOGQBOddz_DtC1XQLtw%3A1690281166064&ei=zqS_ZPrJA_Hk0PEPwsW0yAY&oq=geologymap++on+punjab+pakistan&gs_lp=Egxnd3Mtd2l6LXNlcnAiHmdlb2xvZ3ltYXAgIG9uIHB1bmphYiBwYWtpc3RhbioCCAAyBxAjGLACGCdI6hxQ4wtYnBBwAHgDkAEBmAGIBqABgRKqAQkzLTEuMC4yLjG4AQPIAQD4AQHCAgQQABhH4gMEGAAgQYgGAZAGBg&sclient=gws-wiz-serp (accessed on 25 July 2023).
- Malkani, M.S.; Haroon, Y. Lithostratigraphy, Structure, Geological History, Economic Geology and Paleontology of Mari Bugti Hills and Surrounding Areas of Balochistan, South Punjab and North Sindh (Pakistan). Open J. Geol. 2022, 12, 13–56. [Google Scholar] [CrossRef]
- Safdar, F.; Khokhar, M.F.; Arshad, M.; Adil, I.H. Climate Change Indicators and Spatiotemporal Shift in Monsoon Patterns in Pakistan. Adv. Meteorol. 2019, 2019, e8281201. [Google Scholar] [CrossRef] [Green Version]
- Masoud, A.M.; Pham, Q.B.; Alezabawy, A.K.; El-Magd, S.A.A. Efficiency of geospatial technology and multi-criteria decision analysis for groundwater potential mapping in a Semi-Arid region. Water 2022, 14, 882. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Shah, T.; Akhtar, M. The Groundwater Economy of Pakistan; International Water Management Institute: Lahore, Pakistan, 2003; Volume 64. [Google Scholar]
- Qureshi, A.S. Improving food security and livelihood resilience through groundwater management in Pakistan. Glob. Adv. Res. J. Agric. Sci. 2015, 4, 687–710. [Google Scholar]
- Siddiqi, A.; Wescoat, J.L., Jr. Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. Water Int. 2013, 38, 571–586. [Google Scholar] [CrossRef]
- The Punjab Water Act. 2019. Available online: http://punjablaws.gov.pk/laws/2743.html (accessed on 13 April 2023).
- Qureshi, A.S.; Gill, M.A.; Sarwar, A. Sustainable groundwater management in Pakistan: Challenges and opportunities. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2010, 59, 107–116. [Google Scholar] [CrossRef]
- Sarwar, A.; Eggers, H. Development of a conjunctive use model to evaluate alternative management options for surface and groundwater resources. Hydrogeol. J. 2006, 14, 1676–1687. [Google Scholar] [CrossRef]
- Rangzan, K.; Charchi, A.; Abshirini, E.; Dinger, J. Remote sensing and GIS approach for water-well site selection, southwest Iran. Environ. Eng. Geosci. 2008, 14, 315–326. [Google Scholar] [CrossRef]
- Thangarajan, M. Groundwater: Resource Evaluation, Augmentation, Contamination, Restoration, Modeling and Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Bennett, G.D. Analysis of Aquifer Tests in the Punjab Region of West Pakistan; US Government Printing Office: Washington, DA, USA, 1967.
- ALaghari, N.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources man-agement. Hydrol. Earth Syst. Sci. 2012, 16, 1063–1083. [Google Scholar] [CrossRef] [Green Version]
- Schmid, W.; Punthakey, J.; Hodgson, G.; Kirby, M.; Ahmad, M.; Podger, G.M.; Stewart, J.; Basharat, M.; Khero, Z.; Bodla, H.U. Development of a Regional Groundwater Model for the Indus Basin Irrigation System of Pakistan; CSIRO: Canberra, Australia, 2017.
- Arshad, A.; Zhang, Z.; Zhang, W.; Dilawar, A. Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: A case study from an agro-urban region of Pakistan. Geosci. Front. 2020, 11, 1805–1819. [Google Scholar] [CrossRef]
- Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209–1222. [Google Scholar] [CrossRef]
- Alam, F.; Azmat, M.; Zarin, R.; Ahmad, S.; Raziq, A.; Young, H.-W.V.; Nguyen, K.-A.; Liou, Y.-A. Identification of potential natural aquifer recharge sites in Islamabad, Pakistan, by integrating GIS and RS techniques. Remote Sens. 2022, 14, 6051. [Google Scholar] [CrossRef]
- Andualem, T.G.; Demeke, G.G. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2019, 24, 100610. [Google Scholar] [CrossRef]
- Kabeto, J.; Adeba, D.; Regasa, M.S.; Leta, M.K. Groundwater Potential Assessment Using GIS and Remote Sensing Techniques: Case Study of West Arsi Zone, Ethiopia. Water 2022, 14, 1838. [Google Scholar] [CrossRef]
- Parks, S.; Byrnes, J.; Abdelsalam, M.G.; Dávila, D.A.L.; Atekwana, E.A.; Atya, M.A. Assessing groundwater accessibility in the Kharga Basin, Egypt: A remote sensing approach. J. Afr. Earth Sci. 2017, 136, 272–281. [Google Scholar] [CrossRef]
- Singh, S.K.; Zeddies, M.; Shankar, U.; Griffiths, G.A. Potential groundwater recharge zones within New Zealand. Geosci. Front. 2019, 10, 1065–1072. [Google Scholar] [CrossRef]
- Raza, I.; Farooq, B.; Khurram, S.; Khalid, P.; Ehsan, M.I.; Muhammad, S. Delineation of Ground Water Recharge Potential Zones in Lahore District, Punjab, Using Remote Sensing and GIS Techniques. Int. J. Econ. Environ. Geol. 2022, 13, 16–23. [Google Scholar] [CrossRef]
- Maqsoom, A.; Aslam, B.; Khalid, N.; Ullah, F.; Anysz, H.; Almaliki, A.H.; Almaliki, A.A.; Hussein, E.E. Delineating groundwater recharge potential through remote sensing and geographical information systems. Water 2022, 14, 1824. [Google Scholar] [CrossRef]
- da Costa, A.M.; de Salis, H.H.C.; Viana, J.H.M.; Pacheco, F.A.L. Groundwater recharge potential for sustainable water use in urban areas of the Jequitiba River Basin, Brazil. Sustainability 2019, 11, 2955. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Srivastava, P.K. Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int. 2010, 35, 233–245. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Dissanayake, D.; Mayadunna, B.B.; Weerasekera, W.L. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front. 2016, 7, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Abrams, W.; Ghoneim, E.; Shew, R.; LaMaskin, T.; Al-Bloushi, K.; Hussein, S.; AbuBakr, M.; Al-Mulla, E.; Al-Awar, M.; El-Baz, F. Delineation of groundwater potential (GWP) in the northern United Arab Emirates and Oman using geospatial technologies in conjunction with Simple Additive Weight (SAW), Analytical Hierarchy Process (AHP), and Probabilistic Frequency Ratio (PFR) techniques. J. Arid. Environ. 2018, 157, 77–96. [Google Scholar] [CrossRef]
- Fashae, O.A.; Tijani, M.N.; Talabi, A.O.; Adedeji, O.I. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Appl. Water Sci. 2014, 4, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, I.; Singh, U.K.; Chakma, S. Evaluation of groundwater quality for irrigation water supply using multi-criteria decision-making techniques and GIS in an agroeconomic tract of Lower Ganga basin, India. J. Environ. Manag. 2022, 309, 114691. [Google Scholar] [CrossRef]
- Pant, S.; Kumar, A.; Ram, M.; Klochkov, Y.; Sharma, H.K. Consistency indices in analytic hierarchy process: A review. Mathematics 2022, 10, 1206. [Google Scholar] [CrossRef]
- Saraf, A.K.; Choudhury, P.R. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sens. 1998, 19, 1825–1841. [Google Scholar] [CrossRef]
- Shabani, M.; Masoumi, Z.; Rezaei, A. Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying. Geo-Spat. Inf. Sci. 2022, 25, 600–618. [Google Scholar] [CrossRef]
- Waseem, M.; Jaffry, A.H.; Azam, M.; Ahmad, I.; Abbas, A.; Lee, J.-E. Spatiotemporal analysis of drought and agriculture standardized residual yield series nexuses across Punjab, Pakistan. Water 2022, 14, 496. [Google Scholar] [CrossRef]
- Abbas, S.; Kousar, S.; Khan, M.S. The role of climate change in food security; empirical evidence over Punjab regions, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 53718–53736. [Google Scholar] [CrossRef]
- Geological Map of Pakistan. (East and West Pakistan). ESDAC—European Commission. Available online: https://esdac.jrc.ec.europa.eu/content/geological-map-pakistan-east-and-west-pakistan (accessed on 25 July 2023).
- Bera, K.; Newcomer, M.E.; Banik, P. Groundwater recharge site suitability analysis through multi-influencing factors (MIF) in West Bengal dry-land areas, West Bengal, India. Acta Geochim. 2022, 41, 1030–1048. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Cheng, Y.-S.; Lin, H.-I.; Lee, C.-H. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Rane, N.L.; Jayaraj, G.K. Comparison of multi-influence factor, weight of evidence and frequency ratio techniques to evaluate groundwater potential zones of basaltic aquifer systems. Environ. Dev. Sustain. 2022, 24, 2315–2344. [Google Scholar] [CrossRef]
- Tziritis, E.; Sachsamanoglou, E.; Aschonitis, V. Assessing Groundwater Evolution with a Combined Approach of Hy-drogeochemical Modelling and Data Analysis: Application to the Rhodope Coastal Aquifer (NE Greece). Water 2023, 15, 230. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Raviraj, A.; Kuruppath, N.; Kannan, B. Identification of potential groundwater recharge zones using remote sensing and geographical information system in Amaravathy basin. J. Remote Sens. GIS 2017, 6, 213. [Google Scholar]
- Sheikh, M.A.; Rina, K. A geospatial approach for delineation of groundwater potential zones in a part of national capital region, India. Int. Res. J. Earth Sci. 2017, 5, 1–10. [Google Scholar]
- Patra, S.; Mishra, P.; Mahapatra, S.C. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J. Clean. Prod. 2018, 172, 2485–2502. [Google Scholar] [CrossRef]
- Doke, A.B.; Zolekar, R.B.; Patel, H.; Das, S. Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India. Ecol. Indic. 2021, 127, 107685. [Google Scholar] [CrossRef]
- Ali, S.; Chen, Y.; Azmat, M.; Kayumba, P.M.; Ahmed, Z.; Mind’je, R.; Ghaffar, A.; Qin, J.; Tariq, A. Long-Term Performance Evaluation of the Latest Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Highlands of Indo-Pak (1981–2009). Remote Sens. 2022, 14, 4773. [Google Scholar] [CrossRef]
- Latif, M.; Syed, F.S.; Hannachi, A. Rainfall trends in the South Asian summer monsoon and its related large-scale dy-namics with focus over Pakistan. Clim. Dyn. 2017, 48, 3565–3581. [Google Scholar] [CrossRef]
- Epuh, E.E.; Okolie, C.J.; Daramola, O.E.; Ogunlade, F.S.; Oyatayo, F.J.; Akinnusi, S.A.; Emmanuel, E.-O.I. An integrated lineament extraction from satellite imagery and gravity anomaly maps for groundwater exploration in the Gongola Basin. Remote Sens. Appl. Soc. Environ. 2020, 20, 100346. [Google Scholar] [CrossRef]
- Kazemi, R.; Porhemmat, J.; Kheirkhah, M. Investigation of lineaments related to ground water occurrence in a karstic area; a case study in Lar catchment, Iran. Res. J. Environ. Sci. 2009, 3, 367–375. [Google Scholar] [CrossRef]
- Mallast, U.; Gloaguen, R.; Geyer, S.; Rödiger, T.; Siebert, C. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrol. Earth Syst. Sci. 2011, 15, 2665–2678. [Google Scholar] [CrossRef] [Green Version]
- Aju, C.D.; Achu, A.L.; Raicy, M.C. Identification of suitable sites and structures for artificial groundwater recharge for sustainable water resources management in Vamanapuram River Basin, South India. HydroResearch 2021, 4, 24–37. [Google Scholar] [CrossRef]
- Sánchez-Murillo, R.; Birkel, C. Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region. Geophys. Res. Lett. 2016, 43, 5060–5069. [Google Scholar] [CrossRef]
- Moghaddam, D.D.; Rezaei, M.; Pourghasemi, H.R.; Pourtaghie, Z.S.; Pradhan, B. Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arab. J. Geosci. 2015, 8, 913–929. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Rezaei, A. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci. Inform. 2015, 8, 171–186. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol. J. 2014, 22, 643–662. [Google Scholar] [CrossRef]
- Nejad, S.G.; Falah, F.; Daneshfar, M.; Haghizadeh, A.; Rahmati, O. Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto Int. 2017, 32, 167–187. [Google Scholar]
- Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, RS and analytic hierarchy process (AHP) technique. Appl. Water Sci. 2017, 7, 503–519. [Google Scholar] [CrossRef] [Green Version]
Data Type | Source | Period |
---|---|---|
Rainfall Map | Pakistan Metrological Station | 1980–2018 |
Soil Map | Soil Survey of Punjab | 1961 |
Geology Map | Geological Survey Pakistan | 1964 |
ASTER-DEM | USGS Earth Explorer | 2021 |
Landsat data (OLI 8.1) | USGS Earth Explorer | 2021 |
Piezometer data | Irrigation Department | 2003–2019 |
Reference | Rf | Ge | So | LULC | Le | TWI | Sl | K | DWT | DTR | Dd | As |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[53] | 3.0 | 2.5 | 2.0 | 1.5 | 1.5 | |||||||
[42] | 7.5 | 6.0 | 5.5 | 6.5 | 7.0 | 5.0 | 5.0 | |||||
[57] | 2.2 | 8.3 | 2.1 | 4.2 | 3.3 | 5.6 | ||||||
[58] | 6.0 | 5.0 | 4.0 | 6.0 | 6.7 | |||||||
[36] | 6.0 | 4.0 | 3.0 | 2.0 | ||||||||
[59] | 7.0 | 6.0 | 7.5 | 7.0 | 3.0 | 4.5 | ||||||
[43] | 8.0 | 6.0 | 5.0 | 5.0 | 4.0 | 3.0 | 3.0 | 2.2 | ||||
[34] | 6.0 | 7.0 | 2.5 | 3.0 | 4.0 | 5.0 | 3.5 | |||||
[37] | 6.4 | 6.8 | 6.1 | 5.9 | 6.4 | 7.7 | ||||||
[31] | 5.2 | 7.7 | 5.1 | 5.8 | 2.0 | 3.0 | 5.0 | 4.0 | ||||
[4] | 7.5 | 5.0 | 5.0 | 4.4 | 5.1 | 6.0 | 6.0 | |||||
[60] | 8.0 | 8.0 | 8.0 | 4.0 | 8.0 | 3.0 | 2.0 | 6.0 |
MIF Technique | Literature-Based Technique | Combined Technique | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Weight Assigned | Relative Weight | Priority | Weight Assigned | Relative Weight | Priority | Weight Assigned | Relative Weight | Priority |
Rainfall | 8.00 | 1.04 | 19.5% | 7.03 | 1.11 | 21.2% | 7.51 | 1.03 | 23.2% |
Geology | 8.00 | 1.04 | 19.5% | 5.78 | 1.13 | 13.4% | 6.89 | 1.04 | 16.7% |
Soil | 7.00 | 1.04 | 12.9% | 5.96 | 1.13 | 14.2% | 6.48 | 1.02 | 10.0% |
LULC | 7.00 | 1.04 | 12.9% | 4.50 | 1.12 | 7.6% | 5.75 | 1.02 | 10.0% |
Lineament | 6.00 | 1.03 | 8.5% | 4.64 | 1.14 | 8.2% | 5.32 | 1.01 | 6.0% |
TWI | 4.00 | 1.01 | 3.4% | 3.00 | 1.11 | 6.7% | 3.50 | 1.01 | 3.6% |
Slope | 5.00 | 1.02 | 5.4% | 4.27 | 1.10 | 6.5% | 4.63 | 1.01 | 6.0% |
K | 4.00 | 1.01 | 3.4% | 3.00 | 1.10 | 5.1% | 3.50 | 1.01 | 3.6% |
DWT | 3.00 | 1.01 | 2.3% | 5.00 | 1.07 | 5.9% | 4.00 | 1.01 | 3.6% |
DTR | 2.00 | 1.02 | 1.8% | 2.50 | 1.09 | 3.2% | 2.25 | 1.02 | 1.9% |
DD | 5.00 | 1.02 | 5.2% | 4.45 | 1.08 | 4.9% | 4.72 | 1.02 | 5.8% |
Aspect | 5.00 | 1.02 | 5.2% | 6.35 | 1.04 | 3.0% | 5.67 | 1.03 | 9.7% |
MIF Technique | Literature-Based Technique | Combined Technique | |
---|---|---|---|
Principal eigenvectors | 12.28 | 13.22 | 12.23 |
Class interval | 0.03 | 0.11 | 0.02 |
Class type | Inconsistent | Inconsistent | Inconsistent |
Random index | 1.45 | 1.45 | 1.45 |
Consistency ratio | 0.017 < 0.1 | 0.077 < 0.1 | 0.015 < 0.1 |
Contribution to GWRPS | Very Poor | Low | Moderate | Good | Excellent |
---|---|---|---|---|---|
Reclassified Value | 1 | 2 | 3 | 4 | 5 |
Rainfall | 100–200 | 200–600 | 600–800 | 800–1400 | 1400–1800 |
Drainage Density | 0.09–0.47 | 0.47–0.63 | 0.63–0.76 | 0.76–0.86 | 0.86–0.94 |
Slope | 0–1.1 | 1.1–3.2 | 3.2–9.6 | 9.6–18.9 | 18.9–75.4 |
TWI | 13.96–29.29 | 9.56–13.96 | 6.36–9.56 | 2.72–6.36 | −5.57–2.72 |
Lineament Density | 0.01–0.075 | 0.075–0.15 | 0.15–0.32 | 0.32–0.59 | 0.59–0.789 |
Aspect Range | 67.5–112.5 | (22.5–67.5), (112.5–157.5), (247.5–292.5) | (202.5–247.5), (292.5–337.5) | (0.01–22.5), (157.5–202.5), (337.5–360) | (−1–1) |
Distance to the River (km) | 35–108.6 | 13.01–35 | 5.0–13.01 | 1.3–5 | 0–1.3 |
Hydraulic Conductivity (m/s) × 10−3 | 1.41–8.78 | 8.78–12.34 | 12.34–16.51 | 16.51–22.89 | 22.89–32.70 |
Depth to Water Table (m) | 0–5 | 5–10.1 | 10.1–15.2 | 15.2–25.1 | 25.1–33.62 |
Soil Types | Rough, broken land | Calcareous clayey soils, clayey soils | Noncalcareous clayey soils; calcareous loamy, clayey, silty clay soils; salt-affected soils; calcareous silty soils–gullied land; mountainous land with soil cover | Calcareous sandy soils and dunes, calcareous loamy soils, mountainous land with soil cover, noncalcareous loamy soils, noncalcareous silty soils, calcareous sandy soils | Flooded soils, dunes, and sandy soils |
Land use/Landcover Class | Built-up area | Bare area with sparse natural vegetation | Range land—natural shrubs, herbs, and natural vegetation in wet areas | Crops—marginal and irrigated saline, rainfed, irrigated, orchards | Crops in floodplains, wet areas, forest |
Geology Types | Igneous and metamorphic rocks | Triassic, Permian, sedimentary rocks; Triassic limestone, dolomite, sandstone; Piedmont deposits | Eocene sedimentary rock deposits, eolian sand deposits, streambed and meander belt deposits, Chung formation, Cambrian sedimentary rocks, eolian sand, barchan dunes | Loess and floodplain deposits, streambed and meander belt deposits, Pab sandstone, Miocene sedimentary rocks, Paleocene sedimentary rocks, Pliocene and Miocene sedimentary rocks | Deposits of silt, sand, and gravel; sheet and flood deposits; floodplain deposits, floodplain streams; floodplain extinct stream deposits |
GWMARPS Classes | MIF Technique Class % Age Contribution | Literature-Based Technique Class % Age Contribution | Combined Technique Class % Age Contribution |
---|---|---|---|
Least suitable | 0.22 | 0.15 | 0.34 |
Poorly suitable | 10.20 | 9.50 | 13.29 |
Moderately suitable | 59.67 | 61.44 | 60.68 |
Well Suitable | 29.16 | 28.45 | 25.26 |
Highly suitable | 0.74 | 0.46 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, M.; Liu, T.; Butt, A.Q.; Nadeem, A.A.; Ali, S.; Pan, X. Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan. Remote Sens. 2023, 15, 3988. https://doi.org/10.3390/rs15163988
Afzal M, Liu T, Butt AQ, Nadeem AA, Ali S, Pan X. Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan. Remote Sensing. 2023; 15(16):3988. https://doi.org/10.3390/rs15163988
Chicago/Turabian StyleAfzal, Muhammad, Tie Liu, Asim Qayyum Butt, Adeel Ahmed Nadeem, Sikandar Ali, and Xiaohui Pan. 2023. "Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan" Remote Sensing 15, no. 16: 3988. https://doi.org/10.3390/rs15163988
APA StyleAfzal, M., Liu, T., Butt, A. Q., Nadeem, A. A., Ali, S., & Pan, X. (2023). Geospatial Assessment of Managed Aquifer Recharge Potential Sites in Punjab, Pakistan. Remote Sensing, 15(16), 3988. https://doi.org/10.3390/rs15163988