Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = Nonintrusive Load Monitoring (NILM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2511 KB  
Article
Adversarial and Hierarchical Distribution Alignment Network for Nonintrusive Load Monitoring
by Haozhe Xiong, Daojun Tan, Yuxuan Hu, Xuan Cai and Pan Hu
Electronics 2026, 15(3), 655; https://doi.org/10.3390/electronics15030655 - 2 Feb 2026
Abstract
Nonintrusive Load Monitoring (NILM) models often suffer from significant performance degradation when deployed across different households and datasets, primarily because of distribution discrepancies. To address this challenge, this study proposes an adversarial hierarchical distribution alignment unsupervised domain adaptation network for nonintrusive load disaggregation. [...] Read more.
Nonintrusive Load Monitoring (NILM) models often suffer from significant performance degradation when deployed across different households and datasets, primarily because of distribution discrepancies. To address this challenge, this study proposes an adversarial hierarchical distribution alignment unsupervised domain adaptation network for nonintrusive load disaggregation. The network aims to reduce the distribution divergence between the source and target domains in both the feature and label spaces, enabling effective adaptation to transfer learning scenarios in which the source domain has limited labeled data and the target domain has abundant unlabeled data. The proposed method integrates adversarial training with a hierarchical distribution alignment strategy that uses Correlation Alignment (CORAL) to align global marginal distributions. It employs Multi-Kernel Maximum Mean Discrepancy (MK-MMD) to constrain the conditional distributions of individual appliances, thereby enhancing cross-domain generalization. Extensive experiments on three public datasets demonstrate that, in both in-domain and cross-domain settings, the proposed method consistently reduces Mean Absolute Error (MAE) and Signal Aggregation Error (SAE), outperforming baseline approaches in cross-domain generalization. Full article
38 pages, 1015 KB  
Review
User Activity Detection and Identification of Energy Habits in Home Energy-Management Systems Using AI and ML: A Comprehensive Review
by Filip Durlik, Jakub Grela, Dominik Latoń, Andrzej Ożadowicz and Lukasz Wisniewski
Energies 2026, 19(3), 641; https://doi.org/10.3390/en19030641 - 26 Jan 2026
Viewed by 122
Abstract
The residential energy sector contributes substantially to global energy-related emissions. Effective energy management requires an understanding occupant behavior through activity detection and habit identification. Recent advances in artificial intelligence (AI) and machine learning (ML) enable the automatic detection of user activities and prediction [...] Read more.
The residential energy sector contributes substantially to global energy-related emissions. Effective energy management requires an understanding occupant behavior through activity detection and habit identification. Recent advances in artificial intelligence (AI) and machine learning (ML) enable the automatic detection of user activities and prediction of energy needs based on historical consumption data. Non-intrusive load monitoring (NILM) facilitates device-level disaggregation without additional sensors, supporting demand forecasting and behavior-aware control in Home Energy Management Systems (HEMSs). This review synthesizes various AI and ML approaches for detecting user activities and energy habits in HEMSs from 2020 to 2025. The analyses revealed that deep learning (DL) models, with their ability to capture complex temporal and nonlinear patterns in multisensor data, achieve superior accuracy in activity detection and load forecasting, with occupancy detection reaching 95–99% accuracy. Hybrid systems combining neural networks and optimization algorithms demonstrate enhanced robustness, but challenges remain in limited cross-building generalization, insufficient interpretability of deep models, and the absence of dataset standardized. Future work should prioritize lightweight, explainable edge-ready models, federated learning, and integration with digital twins and control systems. It should also extend energy optimization toward occupant wellbeing and grid flexibility, using standardized protocols and open datasets for ensuring trustworthy and sustainability. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
17 pages, 2935 KB  
Article
A Hybrid Deep Learning Framework for Non-Intrusive Load Monitoring
by Xiangbin Kong, Zhihang Gui, Minghu Wu, Chuyu Miao and Zhe Luo
Electronics 2026, 15(2), 453; https://doi.org/10.3390/electronics15020453 - 21 Jan 2026
Viewed by 203
Abstract
In recent years, load disaggregation and non-intrusive load-monitoring (NILM) methods have garnered widespread attention for optimizing energy management systems, becoming crucial tools for achieving energy efficiency and analyzing power consumption. However, existing NILM methods face challenges in accurately handling appliances with multiple operational [...] Read more.
In recent years, load disaggregation and non-intrusive load-monitoring (NILM) methods have garnered widespread attention for optimizing energy management systems, becoming crucial tools for achieving energy efficiency and analyzing power consumption. However, existing NILM methods face challenges in accurately handling appliances with multiple operational states and suffer from low accuracy and poor computational efficiency, particularly in modeling long-term dependencies and complex appliance load patterns. This article proposes an improved NILM model optimized based on transformers. The model first utilizes a convolutional neural network (CNN) to extract features from the input sequence and employs a bidirectional long short-term memory (BiLSTM) network to model long-term dependencies. Subsequently, multiple transformer blocks are used to capture dependencies within the sequence. To validate the effectiveness of the proposed model, we applied it to real-world household energy datasets: UK-DALE and REDD. Compared with suboptimal models, our model significantly improves the F1 score by 24.5% and 22.8%. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

24 pages, 5097 KB  
Article
A Hybrid Federated Learning Framework for Enhancing Privacy and Robustness in Non-Intrusive Load Monitoring
by Jing Rong, Qiuzhan Zhou and Huinan Wu
Sensors 2026, 26(2), 443; https://doi.org/10.3390/s26020443 - 9 Jan 2026
Viewed by 205
Abstract
Non-intrusive load monitoring (NILM), as a key technology in smart-grid advanced metering infrastructure, aims to disaggregate mains power from smart meters into individual load-level power consumption. Traditional NILM methods require centralizing sensitive measurement data from users, which poses significant privacy risks. Federated learning [...] Read more.
Non-intrusive load monitoring (NILM), as a key technology in smart-grid advanced metering infrastructure, aims to disaggregate mains power from smart meters into individual load-level power consumption. Traditional NILM methods require centralizing sensitive measurement data from users, which poses significant privacy risks. Federated learning (FL) enables collaborative training without centralized measurement data, effectively preserving privacy. However, FL-based NILM systems face serious threats from attacks such as model inversion and parameter poisoning, and rely heavily on the availability of a central server, whose failure may compromise measurement robustness. This paper proposes a hybrid FL framework that dynamically switches between centralized FL (CFL) and decentralized FL (DFL) modes, enhancing measurement privacy and system robustness simultaneously. In CFL mode, layer-sensitive pruning and robust parameter aggregation methods are developed to defend against model inversion and parameter poisoning attacks; even with 30% malicious clients, the proposed defense limits the increases in key error metrics to under 15.4%. In DFL mode, a graph attention network (GAT)-based dynamic topology adapts to mitigate topology poisoning attacks, achieving an approximately 17.2% reduction in MAE after an attack and rapidly restoring model performance. Extensive evaluations using public datasets demonstrate that the proposed framework significantly enhances the robustness of smart-grid measurements and effectively safeguards measurement privacy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Graphical abstract

31 pages, 6164 KB  
Article
Sustainable Optimization of Residential Electricity Consumption Using Predictive Modeling and Non-Intrusive Load Monitoring
by Nashitah Alwaz, Muhammad Mehran Bashir, Attique Ur Rehman, Israr Ullah and Micheal Galea
Sustainability 2025, 17(24), 11193; https://doi.org/10.3390/su172411193 - 14 Dec 2025
Viewed by 487
Abstract
To ensure reliable, efficient and sustainable operation of modern power networks, accurate load forecasting is an important task in system planning and control. It is also a crucial task for the efficient operation of smart grids to maintain a balance between load shifting, [...] Read more.
To ensure reliable, efficient and sustainable operation of modern power networks, accurate load forecasting is an important task in system planning and control. It is also a crucial task for the efficient operation of smart grids to maintain a balance between load shifting, load management and power dispatch. In this regard, this research study aims to investigate the efficiency of various machine learning models for whole-house energy consumption prediction and appliance-level load disaggregation using Non-Intrusive Load Monitoring (NILM). The primary objective is to determine which model offers the most accurate forecasts for both individual appliance consumption patterns and the total amount of energy used by the household. The empirical study presents comparative performance analysis of machine learning models, i.e., Random Forest, Decision Tree, K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), Gradient Boosting and Support Vector Regressor (SVR) for load forecasting and load disaggregation. This research is conducted on PRECON: Pakistan Residential Electricity Dataset consisting of 42 Pakistani households. The dataset was recorded originally as one minute per sample, but the proposed study aggregated it to hourly samples to evaluate models’ alignment with the typical sampling rate of smart meters in Pakistan. It enables the models to more accurately depict implementation scenarios in real-world settings. The statistical measures MAE, MSE, RMSE and R2 have been employed for performance evaluation. The proposed Random Forest algorithm out-performs all other employed models, with the lowest error values (MAE: 0.1316, MSE: 0.0367, RMSE: 0.1916) and the highest R2 score of 0.9865. Furthermore, for detecting appliance events from aggregate power data, ensemble models such as Random Forest performed better than other models for ON/OFF prediction. To evaluate the suitability of machine learning models for real-time, appliance-level energy forecasting using Non-Intrusive Load Monitoring (NILM), this study presents a novel evaluation framework that combines learning speed and edge adaptability with conventional performance metrics (e.g., R2, MAE). This paper introduces a NILM-based approach for load forecasting and appliance-level ON/OFF prediction, representing its capacity to improve residential energy efficiency and encourage sustainable energy consumption, while emphasizing operational metrics for implementation in embedded smart grid systems—an area mainly neglected in prior NILM-based research articles. The results provide useful information for improving demand-side energy management, facilitating more effective load disaggregation, and maximizing the energy efficiency and responsiveness of smart grids. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

28 pages, 11485 KB  
Article
Assessing Computational Resources and Performance of Non-Intrusive Load Monitoring (NILM) Algorithms on Edge Computing Devices
by David Serna, Carlos Arias, Tatiana Manrique, Alejandro Guerrero and Javier Sierra
Energies 2025, 18(22), 5991; https://doi.org/10.3390/en18225991 - 15 Nov 2025
Viewed by 1156
Abstract
Non-Intrusive Load Monitoring (NILM) enables appliance-level energy analysis from aggregated electrical signals, offering valuable insights for smart energy systems. While most NILM research focuses on high-resource environments, this study evaluates the feasibility of deploying NILM algorithms on constrained edge computing platforms. Two representative [...] Read more.
Non-Intrusive Load Monitoring (NILM) enables appliance-level energy analysis from aggregated electrical signals, offering valuable insights for smart energy systems. While most NILM research focuses on high-resource environments, this study evaluates the feasibility of deploying NILM algorithms on constrained edge computing platforms. Two representative models for event detection and for energy disaggregation were trained on a high-end PC and tested on both the PC and two edge devices. A modular software framework using a virtual container and virtual environments ensured reproducibility across platforms. Experiments using datasets under simulated real-time streaming conditions revealed that although all devices achieved consistent detection, classification, and disaggregation performance, edge platforms struggled with real-time inference due to processing latency and memory limitations. This study presents a detailed comparison of execution time, resource usage, and model performance, highlighting the trade-offs associated with NILM deployment on embedded systems and proposing future directions for optimization and integration into smart grids. Full article
Show Figures

Figure 1

15 pages, 3389 KB  
Article
Photovoltaic Decomposition Method Based on Multi-Scale Modeling and Multi-Feature Fusion
by Zhiheng Xu, Peidong Chen, Ran Cheng, Yao Duan, Qiang Luo, Huahui Zhang, Zhenning Pan and Wencong Xiao
Energies 2025, 18(19), 5271; https://doi.org/10.3390/en18195271 - 4 Oct 2025
Viewed by 629
Abstract
Deep learning-based Non-Intrusive Load Monitoring (NILM) methods have been widely applied to residential load identification. However, photovoltaic (PV) loads exhibit strong non-stationarity, high dependence on weather conditions, and strong coupling with multi-source data, which limit the accuracy and generalization of existing models. To [...] Read more.
Deep learning-based Non-Intrusive Load Monitoring (NILM) methods have been widely applied to residential load identification. However, photovoltaic (PV) loads exhibit strong non-stationarity, high dependence on weather conditions, and strong coupling with multi-source data, which limit the accuracy and generalization of existing models. To address these challenges, this paper proposes a multi-scale and multi-feature fusion framework for PV disaggregation, consisting of three modules: Multi-Scale Time Series Decomposition (MTD), Multi-Feature Fusion (MFF), and Temporal Attention Decomposition (TAD). These modules jointly capture short-term fluctuations, long-term trends, and deep dependencies across multi-source features. Experiments were conducted on real residential datasets from southern China. Results show that, compared with representative baselines such as SGN-Conv and MAT-Conv, the proposed method reduces MAE by over 60% and SAE by nearly 70% for some users, and it achieves more than 45% error reduction in cross-user tests. These findings demonstrate that the proposed approach significantly enhances both accuracy and generalization in PV load disaggregation. Full article
Show Figures

Figure 1

34 pages, 6187 KB  
Article
An Automated Domain-Agnostic and Explainable Data Quality Assurance Framework for Energy Analytics and Beyond
by Balázs András Tolnai, Zhipeng Ma, Bo Nørregaard Jørgensen and Zheng Grace Ma
Information 2025, 16(10), 836; https://doi.org/10.3390/info16100836 - 26 Sep 2025
Viewed by 974
Abstract
Nonintrusive load monitoring (NILM) relies on high-resolution sensor data to disaggregate total building energy into end-use load components, for example HVAC, ventilation, and appliances. On the ADRENALIN corpus, simple NaN handling with forward fill and mean substitution reduced average NMAE from 0.82 to [...] Read more.
Nonintrusive load monitoring (NILM) relies on high-resolution sensor data to disaggregate total building energy into end-use load components, for example HVAC, ventilation, and appliances. On the ADRENALIN corpus, simple NaN handling with forward fill and mean substitution reduced average NMAE from 0.82 to 0.76 for the Bayesian baseline, from 0.71 to 0.64 for BI-LSTM, and from 0.59 to 0.53 for the Time–Frequency Mask (TFM) model, across nine buildings and four temporal resolutions. However, many NILM models still show degraded accuracy due to unresolved data-quality issues, especially missing values, timestamp irregularities, and sensor inconsistencies, a limitation underexplored in current benchmarks. This paper presents a fully automated data-quality assurance pipeline for time-series energy datasets. The pipeline performs multivariate profiling, statistical analysis, and threshold-based diagnostics to compute standardized quality metrics, which are aggregated into an interpretable Building Quality Score (BQS) that predicts NILM performance and supports dataset ranking and selection. Explainability is provided by SHAP and a lightweight large language model, which turns visual diagnostics into concise, actionable narratives. The study evaluates practical quality improvement through systematic handling of missing values, linking metric changes to downstream error reduction. Using random-forest surrogates, SHAP identifies missingness and timestamp irregularity as dominant drivers of error across models. Core contributions include the definition and validation of BQS, an interpretable scoring and explanation framework for time-series quality, and an end-to-end evaluation of how quality diagnostics affect NILM performance at scale. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science for Smart Cities)
Show Figures

Figure 1

32 pages, 1238 KB  
Article
GRU-BERT for NILM: A Hybrid Deep Learning Architecture for Load Disaggregation
by Annysha Huzzat, Ahmed S. Khwaja, Ali A. Alnoman, Bhagawat Adhikari, Alagan Anpalagan and Isaac Woungang
AI 2025, 6(9), 238; https://doi.org/10.3390/ai6090238 - 22 Sep 2025
Cited by 2 | Viewed by 1675
Abstract
Non-Intrusive Load Monitoring (NILM) aims to disaggregate a household’s total aggregated power consumption into appliance-level usage, enabling intelligent energy management without the need for intrusive metering. While deep learning has improved NILM significantly, existing NILM models struggle to capture load patterns across both [...] Read more.
Non-Intrusive Load Monitoring (NILM) aims to disaggregate a household’s total aggregated power consumption into appliance-level usage, enabling intelligent energy management without the need for intrusive metering. While deep learning has improved NILM significantly, existing NILM models struggle to capture load patterns across both longer time intervals and subtle timings for appliances involving brief or overlapping usage patterns. In this paper, we propose a novel GRU+BERT hybrid architecture, exploring both unidirectional (GRU+BERT) and bidirectional (Bi-GRU+BERT) variants. Our model combines Gated Recurrent Units (GRUs) to capture sequential temporal dependencies with Bidirectional Encoder Representations from Transformers (BERT), which is a transformer-based model that captures rich contextual information across the sequence. The bidirectional variant (Bi-GRU+BERT) processes input sequences in both forward (past to future) and backward (future to past) directions, enabling the model to learn relationships between power consumption values at different time steps more effectively. The unidirectional variant (GRU+BERT) provides an alternative suited for appliances with structured, sequential multi-phase usage patterns, such as dishwashers. By placing the Bi-GRU or GRU layer before BERT, our models first capture local time-based load patterns and then use BERT’s self-attention to understand the broader contextual relationships. This design addresses key limitations of both standalone recurrent and transformer-based models, offering improved performance on transient and irregular appliance loads. Evaluated on the UK-DALE and REDD datasets, the proposed Bi-GRU+BERT and GRU+BERT models show competitive performance compared to several state-of-the-art NILM models while maintaining a comparable model size and training time, demonstrating their practical applicability for real-time energy disaggregation, including potential edge and cloud deployment scenarios. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

21 pages, 2320 KB  
Article
Residential Electricity Consumption Behaviors in Eastern Romania: A Non-Invasive Survey-Based Assessment of Consumer Patterns
by Codrin Donciu, Elena Serea and Marinel Costel Temneanu
Energies 2025, 18(18), 4883; https://doi.org/10.3390/en18184883 - 14 Sep 2025
Viewed by 1126
Abstract
This study investigates residential electricity consumption behaviors in the Moldova region of Romania, with a focus on identifying consumption patterns through a non-invasive, survey-based approach. Unlike intrusive monitoring or smart metering methods, the survey collected detailed self-reported data on appliance use, time-of-use awareness, [...] Read more.
This study investigates residential electricity consumption behaviors in the Moldova region of Romania, with a focus on identifying consumption patterns through a non-invasive, survey-based approach. Unlike intrusive monitoring or smart metering methods, the survey collected detailed self-reported data on appliance use, time-of-use awareness, and household characteristics across 55 residential units. The analysis introduced an error-based metric comparing calculated and billed consumption, modeled under a normal distribution to assess estimation accuracy. Results reveal a stable dominance of mid-range consumption bands, alongside emerging stratification, with an increasing share of households transitioning to higher consumption levels. Appliance-level analyses highlight systematic underestimation of high-load devices, such as washing machines and HVAC systems, reflecting perceptual gaps in consumer awareness. Furthermore, demographic profiling indicates that in many households, high-duration and high-load consumers differ, with women more frequently assuming dual roles in energy-intensive tasks within the traditional Eastern European context. The findings demonstrate the potential of non-invasive survey methods to capture behavioral dimensions of energy use that remain underexplored in the absence of smart metering infrastructure, offering new insights into demand-side heterogeneity in peripheral EU regions. Full article
Show Figures

Figure 1

50 pages, 2995 KB  
Review
A Survey of Traditional and Emerging Deep Learning Techniques for Non-Intrusive Load Monitoring
by Annysha Huzzat, Ahmed S. Khwaja, Ali A. Alnoman, Bhagawat Adhikari, Alagan Anpalagan and Isaac Woungang
AI 2025, 6(9), 213; https://doi.org/10.3390/ai6090213 - 3 Sep 2025
Cited by 1 | Viewed by 2934
Abstract
To cope with the increasing global demand of energy and significant energy wastage caused by the use of different home appliances, smart load monitoring is considered a promising solution to promote proper activation and scheduling of devices and reduce electricity bills. Instead of [...] Read more.
To cope with the increasing global demand of energy and significant energy wastage caused by the use of different home appliances, smart load monitoring is considered a promising solution to promote proper activation and scheduling of devices and reduce electricity bills. Instead of installing a sensing device on each electric appliance, non-intrusive load monitoring (NILM) enables the monitoring of each individual device using the total power reading of the home smart meter. However, for a high-accuracy load monitoring, efficient artificial intelligence (AI) and deep learning (DL) approaches are needed. To that end, this paper thoroughly reviews traditional AI and DL approaches, as well as emerging AI models proposed for NILM. Unlike existing surveys that are usually limited to a specific approach or a subset of approaches, this review paper presents a comprehensive survey of an ensemble of topics and models, including deep learning, generative AI (GAI), emerging attention-enhanced GAI, and hybrid AI approaches. Another distinctive feature of this work compared to existing surveys is that it also reviews actual cases of NILM system design and implementation, covering a wide range of technical enablers including hardware, software, and AI models. Furthermore, a range of new future research and challenges are discussed, such as the heterogeneity of energy sources, data uncertainty, privacy and safety, cost and complexity reduction, and the need for a standardized comparison. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

17 pages, 1292 KB  
Article
An Instrumental High-Frequency Smart Meter with Embedded Energy Disaggregation
by Dimitrios Kolosov, Matthew Robinson, Pascal A. Schirmer and Iosif Mporas
Sensors 2025, 25(17), 5280; https://doi.org/10.3390/s25175280 - 25 Aug 2025
Cited by 1 | Viewed by 1791
Abstract
Most available smart meters sample at low rates and transmit the acquired measurements to a cloud server for further processing. This article presents a prototype smart meter operating at a high sampling frequency (15 kHz) and performing energy disaggregation locally, thus negating the [...] Read more.
Most available smart meters sample at low rates and transmit the acquired measurements to a cloud server for further processing. This article presents a prototype smart meter operating at a high sampling frequency (15 kHz) and performing energy disaggregation locally, thus negating the need to transmit the acquired high-frequency measurements. The prototype’s architecture comprises a custom signal conditioning circuit and an embedded board that performs energy disaggregation using a deep learning model. The influence of the sampling frequency on the model’s accuracy and the edge device power consumption, throughput, and latency across different hardware platforms is evaluated. The architecture embeds NILM inference into the meter hardware while maintaining a compact and energy-efficient design. The presented smart meter is benchmarked across six embedded platforms, evaluating model accuracy, latency, power usage, and throughput. Furthermore, three novel hardware-aware performance metrics are introduced to quantify NILM efficiency per unit cost, throughput, and energy, offering a reproducible framework for future NILM-enabled edge meter designs. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 3585 KB  
Article
FedTP-NILM: A Federated Time Pattern-Based Framework for Privacy-Preserving Distributed Non-Intrusive Load Monitoring
by Chi Zhang, Biqi Liu, Xuguang Hu, Zhihong Zhang, Zhiyong Ji and Chenghao Zhou
Machines 2025, 13(8), 718; https://doi.org/10.3390/machines13080718 - 12 Aug 2025
Viewed by 1034
Abstract
Existing non-intrusive load monitoring (NILM) methods predominantly rely on centralized models, which introduce privacy vulnerabilities and lack scalability in large industrial park scenarios equipped with distributed energy resources. To address this issue, a Federated Temporal Pattern-based NILM framework (FedTP-NILM) is proposed. It aims [...] Read more.
Existing non-intrusive load monitoring (NILM) methods predominantly rely on centralized models, which introduce privacy vulnerabilities and lack scalability in large industrial park scenarios equipped with distributed energy resources. To address this issue, a Federated Temporal Pattern-based NILM framework (FedTP-NILM) is proposed. It aims to ensure data privacy while enabling efficient load monitoring in distributed and heterogeneous environments, thereby extending the applicability of NILM technology in large-scale industrial park scenarios. First, a federated aggregation method is proposed, which integrates the FedYogi optimization algorithm with a secret sharing mechanism to enable the secure aggregation of local data. Second, a pyramid neural network architecture is presented to capture complex temporal dependencies in load identification tasks. It integrates temporal encoding, pooling, and decoding modules, along with an enhanced feature extractor, to better learn and distinguish multi-scale temporal patterns. In addition, a hybrid data augmentation strategy is proposed to expand the distribution range of samples by adding noise and linear mixing. Finally, experimental results validate the effectiveness of the proposed federated learning framework, demonstrating superior performance in both distributed energy device identification and privacy preservation. Full article
Show Figures

Figure 1

20 pages, 2792 KB  
Article
Capturing High-Frequency Harmonic Signatures for NILM: Building a Dataset for Load Disaggregation
by Farid Dinar, Sébastien Paris and Éric Busvelle
Sensors 2025, 25(15), 4601; https://doi.org/10.3390/s25154601 - 25 Jul 2025
Cited by 2 | Viewed by 1484
Abstract
Advanced Non-Intrusive Load Monitoring (NILM) research is important to help reduce energy consumption. Very-low-frequency approaches have traditionally faced challenges in separating appliance uses due to low discriminative information. The richer signatures available in high-frequency electrical data include many harmonic orders that have the [...] Read more.
Advanced Non-Intrusive Load Monitoring (NILM) research is important to help reduce energy consumption. Very-low-frequency approaches have traditionally faced challenges in separating appliance uses due to low discriminative information. The richer signatures available in high-frequency electrical data include many harmonic orders that have the potential to advance disaggregation. This has been explored to some extent, but not comprehensively due to a lack of an appropriate public dataset. This paper presents the development of a cost-effective energy monitoring system scalable for multiple entries while producing detailed measurements. We will detail our approach to creating a NILM dataset comprising both aggregate loads and individual appliance measurements, all while ensuring that the dataset is reproducible and accessible. Ultimately, the dataset can be used to validate NILM, and we show through the use of machine learning techniques that high-frequency features improve disaggregation accuracy when compared with traditional methods. This work addresses a critical gap in NILM research by detailing the design and implementation of a data acquisition system capable of generating rich and structured datasets that support precise energy consumption analysis and prepare the essential materials for advanced, real-time energy disaggregation and smart energy management applications. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

40 pages, 886 KB  
Article
Machine Learning in Smart Buildings: A Review of Methods, Challenges, and Future Trends
by Fatema El Husseini, Hassan N. Noura, Ola Salman and Khaled Chahine
Appl. Sci. 2025, 15(14), 7682; https://doi.org/10.3390/app15147682 - 9 Jul 2025
Cited by 4 | Viewed by 5042
Abstract
Machine learning (ML) has emerged as a transformative force in smart building management due to its ability to significantly enhance energy efficiency and promote sustainability within the built environment. This review examines the pivotal role of ML in optimizing building operations through the [...] Read more.
Machine learning (ML) has emerged as a transformative force in smart building management due to its ability to significantly enhance energy efficiency and promote sustainability within the built environment. This review examines the pivotal role of ML in optimizing building operations through the application of predictive analytics and sophisticated automated control systems. It explores the diverse applications of ML techniques in critical areas such as energy forecasting, non-intrusive load monitoring (NILM), and predictive maintenance. A thorough analysis then identifies key challenges that impede widespread adoption, including issues related to data quality, privacy concerns, system integration complexities, and scalability limitations. Conversely, the review highlights promising emerging opportunities in advanced analytics, the seamless integration of renewable energy sources, and the convergence with the Internet of Things (IoT). Illustrative case studies underscore the tangible benefits of ML implementation, demonstrating substantial energy savings ranging from 15% to 40%. Future trends indicate a clear trajectory towards the development of highly autonomous building management systems and the widespread adoption of occupant-centric designs. Full article
Show Figures

Figure 1

Back to TopTop