Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (72)

Search Parameters:
Keywords = Nile valley

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 15580 KiB  
Article
Groundwater Potential Mapping in Semi-Arid Areas Using Integrated Remote Sensing, GIS, and Geostatistics Techniques
by Ahmed El-sayed Mostafa, Mahrous A. M. Ali, Faissal A. Ali, Ragab Rabeiy, Hussein A. Saleem, Mosaad Ali Hussein Ali and Ali Shebl
Water 2025, 17(13), 1909; https://doi.org/10.3390/w17131909 - 27 Jun 2025
Cited by 1 | Viewed by 685 | Correction
Abstract
Groundwater serves as a vital resource for sustainable water supply, particularly in semi-arid regions where surface water availability is limited. This study explores groundwater potential zones in the East Desert, Qift–Qena, Egypt, using a multidisciplinary approach that integrates remote sensing (RS), geographic information [...] Read more.
Groundwater serves as a vital resource for sustainable water supply, particularly in semi-arid regions where surface water availability is limited. This study explores groundwater potential zones in the East Desert, Qift–Qena, Egypt, using a multidisciplinary approach that integrates remote sensing (RS), geographic information systems (GIS), geostatistics, and field validation with water wells to develop a comprehensive groundwater potential mapping framework. Sentinel-2 imagery, ALOS PALSAR DEM, and SMAP datasets were utilized to derive critical thematic layers, including land use/land cover, vegetation indices, soil moisture, drainage density, slope, and elevation. The results of the groundwater potentiality map of the study area from RS reveal four distinct zones: low, moderate, high, and very high. The analysis indicates a notable spatial variability in groundwater potential, with “high” (34.1%) and “low” (33.8%) potential zones dominating the landscape, while “very high” potential areas (4.8%) are relatively scarce. The limited extent of “very high” potential zones, predominantly concentrated along the Nile River valley, underscores the river’s critical role as the primary source of groundwater recharge. Moderate potential zones include places where infiltration is possible but limited, such as gently sloping terrain or regions with slightly broken rock structures, and they account for 27.3%. These layers were combined with geostatistical analysis of data from 310 groundwater wells, which provided information on static water level (SWL) and total dissolved solids (TDS). GIS was employed to assign weights to the thematic layers based on their influence on groundwater recharge and facilitated the spatial integration and visualization of the results. Geostatistical interpolation methods ensured the reliable mapping of subsurface parameters. The assessment utilizing pre-existing well data revealed a significant concordance between the delineated potential zones and the actual availability of groundwater resources. The findings of this study could significantly improve groundwater management in semi-arid/arid zones, offering a strategic response to water scarcity challenges. Full article
Show Figures

Figure 1

23 pages, 3195 KiB  
Article
The Impact of Expanding Eucalyptus Plantations on the Hydrology of a Humid Highland Watershed in Ethiopia
by Habtamu M. Fenta, Tammo S. Steenhuis, Teshager A. Negatu, Fasikaw A. Zimale, Wim Cornelis and Seifu A. Tilahun
Hydrology 2025, 12(5), 121; https://doi.org/10.3390/hydrology12050121 - 17 May 2025
Viewed by 794
Abstract
Changes in climate and land use significantly impact downstream water availability. Quantifying these effects in the Ethiopian Highlands is crucial, as 85% of the transboundary water in Egypt and Sudan originates from these highlands. While the impact of climate change on water availability [...] Read more.
Changes in climate and land use significantly impact downstream water availability. Quantifying these effects in the Ethiopian Highlands is crucial, as 85% of the transboundary water in Egypt and Sudan originates from these highlands. While the impact of climate change on water availability has been widely studied, few experimental studies have examined how it is affected by eucalyptus reforestation. Therefore, the objective was to investigate how eucalyptus expansion impairs water availability in the Ethiopian Highlands. The study was conducted in the 39 km2 Amen watershed, located in the upper reaches of the Blue Nile. Rainfall data were collected from local agencies from 1990 to 2024, while streamflow data were available only for 2002–2009 and 2015–2018. Actual evapotranspiration was obtained using the WaPOR portal, and land use was derived from Landsat 5 TM and Landsat 8 OLI. The satellite images showed that the eucalyptus acreage increased from 238 ha in 2001 to 799 ha in 2024, or 24 ha y−1. The actual evapotranspiration of eucalyptus was up to 30% greater than that of other land uses during the dry monsoon phase (January to March), resulting in decreased water storage in the watershed over a 23-year period. Since runoff is generated by saturation excess runoff, it takes longer for the valley bottoms to become saturated. In the 2002–2009 period, it took an average of around 160 mm of cumulative effective rain for significant runoff to start, and from 2015 to 2018, 274 mm was needed. Additionally, base flow decreased significantly. The annual runoff trended upward when the annual rainfall was more than the additional amount of water evaporated by eucalyptus, but decreased otherwise. Full article
Show Figures

Figure 1

15 pages, 1455 KiB  
Article
Successful Inactivation of High-Consequence Pathogens in PrimeStore Molecular Transport Media
by Briana Spruill-Harrell, Gregory Kocher, Maurice Boda, Kristen Akers, Denise Freeburger, Nicole Murphy, Jens H. Kuhn, Gerald Fischer, Irina Maljkovic Berry, Prabha Chandrasekaran and Jerry Torrison
Viruses 2025, 17(5), 639; https://doi.org/10.3390/v17050639 - 29 Apr 2025
Viewed by 918
Abstract
Handling cultured isolates and clinical, environmental, or wildlife surveillance samples containing Risk Group 3 and 4 pathogens presents considerable biosafety challenges in minimizing human exposure during processing and transport. Safe handling typically requires high- or maximum-containment facilities, demanding substantial logistical planning and resources. [...] Read more.
Handling cultured isolates and clinical, environmental, or wildlife surveillance samples containing Risk Group 3 and 4 pathogens presents considerable biosafety challenges in minimizing human exposure during processing and transport. Safe handling typically requires high- or maximum-containment facilities, demanding substantial logistical planning and resources. We evaluated PrimeStore Molecular Transport Medium (PS-MTM), a guanidine-based solution created to kill pathogens and preserve nucleic acids at ambient temperatures, for inactivating Crimean-Congo hemorrhagic fever, eastern equine encephalitis, Ebola, Hendra, Japanese encephalitis, Lassa, Marburg, Nipah, Rift Valley fever, and West Nile viruses. To mimic diagnostic conditions, human whole blood spiked with any of these viruses was incubated with PS-MTM for 20-, 30-, or 60-min. Samples with titers up to 107 PFU/mL exposed to PS-MTM at all time points resulted in complete loss of infectivity judged by plaque assays. A 30-min incubation provided a 50% safety margin over the minimum inactivation time and was used for quantification with the tissue culture infectious dose (TCID50) assay, enabling evaluation of PS-MTM’s activity for viruses that do or do not produce well-defined plaques. Results confirmed that PS-MTM inactivated all tested viruses at titers up to 107 TCID50/mL, underscoring its reliability for enhancing biosafety in diagnostics, outbreak management, and surveillance. Full article
Show Figures

Graphical abstract

34 pages, 26643 KiB  
Article
Biostratigraphy, Paleoenvironments, and Paleobiogeography of the Middle–Upper Eocene Ostracods from Northwestern and Northeastern Banks of the Nile Valley, Egypt
by Safaa Abu Bakr, Ibrahim M. Abd El-Gaied, Mostafa M. Sayed, Petra Heinz, Michael Wagreich and Abdelaziz Mahmoud
Diversity 2025, 17(4), 293; https://doi.org/10.3390/d17040293 - 19 Apr 2025
Viewed by 530
Abstract
The middle and upper Eocene sedimentary successions exposed along the northwestern and northeastern portions of the Nile Valley, Egypt, have been thoroughly examined for their ostracod assemblages. This study enhances the understanding of biostratigraphic zonations and evaluates the paleobiogeographic distribution and paleoenvironmental conditions [...] Read more.
The middle and upper Eocene sedimentary successions exposed along the northwestern and northeastern portions of the Nile Valley, Egypt, have been thoroughly examined for their ostracod assemblages. This study enhances the understanding of biostratigraphic zonations and evaluates the paleobiogeographic distribution and paleoenvironmental conditions that prevailed during the deposition of this sedimentary record. Lithostratigraphically, the studied successions are subdivided into four stratigraphic units, arranged in ascending order as follows: the Qarara, the El Fashn, the Gehannam, and the Beni Suef formations. A total of 125 rock samples were selected and well analyzed, resulting in the identification of sixty-five ostracod species and subspecies belonging to thirty-three genera, fifteen families, and three superfamilies. The stratigraphic distribution of the recorded ostracod taxa contributed to the construction of four local biozones, spanning the interval from the upper Lutetian to lower Priabonian: Schizocythere fadlensis Zone (upper Lutetian–lower Bartonian), Loxoconcha pseudopunctatella Zone, Dygmocythere ismaili Zone (Bartonian), and Asymmetricythere hiltermanni Zone (Bartonian–Priabonian). These biozones are well described, discussed, and correlated with those previously documented in different areas of Egypt and neighboring countries. The statistical analysis, supported by ternary plot diagrams, indicates that the depositional environments of the studied rock units fluctuated between shallow inner neritic and deeper outer neritic marine environments. The identified taxa display a wide geographic distribution and show a significant similarity with those identified in the southern, northern, and eastern Tethyan provinces, suggesting a direct marine connection during the Eocene. Full article
Show Figures

Figure 1

14 pages, 2687 KiB  
Article
Baseline Seroprevalence of Arboviruses in Liberia Using a Multiplex IgG Immunoassay
by Albert To, Varney M. Kamara, Davidetta M. Tekah, Mohammed A. Jalloh, Salematu B. Kamara, Teri Ann S. Wong, Aquena H. Ball, Ludwig I. Mayerlen, Kyle M. Ishikawa, Hyeong Jun Ahn, Bode Shobayo, Julius Teahton, Brien K. Haun, Wei-Kung Wang, John M. Berestecky, Vivek R. Nerurkar, Peter S. Humphrey and Axel T. Lehrer
Trop. Med. Infect. Dis. 2025, 10(4), 92; https://doi.org/10.3390/tropicalmed10040092 - 3 Apr 2025
Viewed by 2266
Abstract
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine [...] Read more.
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine the seroprevalence of arbovirus exposure across the country using a resource-sparing, multiplex immunoassay to determine IgG responses to immunodominant antigens. 532 human serum samples, from healthy adults, collected from 10 counties across Liberia, were measured for IgG reactivity against antigens of eight common flavi-, alpha-, and orthobunya/nairoviruses suspected to be present in West Africa. Approximately 32.5% of our samples were reactive to alphavirus (CHIKV) E2, ~7% were reactive separately to West Nile (WNV) and Zika virus (ZIKV) NS1, while 4.3 and 3.2% were reactive to Rift Valley Fever virus (RVFV) N and Dengue virus-2 (DENV-2) NS1, respectively. Altogether, 21.6% of our samples were reactive to ≥1 flavivirus NS1s. Of the CHIKV E2 reactive samples, 8.5% were also reactive to at least one flavivirus NS1, and six samples were concurrently reactive to antigens of all three arbovirus groups, suggesting a high burden of multiple arbovirus infections for some participants. These insights suggest the presence of these four arbovirus families in Liberia with low and moderate rates of flavi- and alphavirus infections, respectively, in healthy adults. Further confirmational investigation, such as mosquito surveillance or other serological tests, is warranted and should be conducted before initiating additional flavivirus vaccination campaigns. The findings of these studies can help guide healthcare resource mobilization, vector control, and animal husbandry practices. Full article
(This article belongs to the Special Issue Beyond Borders—Tackling Neglected Tropical Viral Diseases)
Show Figures

Figure 1

34 pages, 22233 KiB  
Article
Planktonic Foraminifera of the Middle and Upper Eocene Successions at the Northwestern and Northeastern Sides of the Nile Valley, Egypt: Stratigraphic and Paleoenvironmental Implications
by Safaa Abu Bakr, Ibrahim M. Abd El-Gaied, Sayed M. Abd El-Aziz, Mostafa M. Sayed and Abdelaziz Mahmoud
Diversity 2025, 17(2), 116; https://doi.org/10.3390/d17020116 - 5 Feb 2025
Cited by 2 | Viewed by 1109
Abstract
This study deals with the biostratigraphic determination and paleoenvironmental reconstruction of the middle–upper Eocene sediments along the northwestern and northeastern banks of the Nile Valley, Egypt. The studied successions are classified into four rock units as follow: The Qarara (Lutetian–Bartonian), the El Fashn [...] Read more.
This study deals with the biostratigraphic determination and paleoenvironmental reconstruction of the middle–upper Eocene sediments along the northwestern and northeastern banks of the Nile Valley, Egypt. The studied successions are classified into four rock units as follow: The Qarara (Lutetian–Bartonian), the El Fashn (Bartonian), the Gehannam, and the Beni Suef (Bartonian–Priabonian) formations. A total of eighty planktonic foraminifera species belonging to twenty-two genera and eight families are identified, and their vertical distribution enabled us to recognize four planktonic biozones, namely the Morozovelloides lehneri Zone (late Lutetian–early Bartonian), Orbulinoides beckmanni Zone (early Bartonian), Morozovelloides crassatus Zone (late Bartonian), and Globigerinatheka semiinvoluta Zone (late Bartonian–early Priabonian). The faunal assemblages characterizing these zones showed a great similarity with those recorded in the lower latitudes (tropical and sub-tropical) regions and correlated with the planktonic zones in the northern and southern Tethyan provinces. The appearance of Orbulinoides beckmanni distinguishes the early Bartonian period, its lowest occurrence defines the upper boundary of the Morozovelloides lehneri Zone, and its highest occurrence marks the lower boundary of the Morozovelloides crassatus Zone. The disappearance of the spinose forms of morozovellids and the large acarininids, besides the highest occurrence of Morozovelloides crassatus, defines the lower boundary of the Globigerinatheka semiinvoluta Zone. The middle/upper Eocene boundary is traced based on the last and first appearance of the marker planktonic species and located herein within the Globigerinatheka semiinvoluta Zone. The paleontological data, including the planktonic to benthic foraminiferal ratio (P/B), statistical analyses of different foraminiferal groups, and ternary plot diagrams in conjunction with the sedimentological features, indicate changes in the depositional settings, fluctuating between the inner to middle and outer neritic environment and the uppermost bathyal environment at some levels. Full article
Show Figures

Figure 1

20 pages, 1735 KiB  
Article
Chemical Characterization and Differential Lipid-Modulating Effects of Selected Plant Extracts from Côa Valley (Portugal) in a Cell Model for Liver Steatosis
by Ricardo Amorim, Mário Pedro Marques, Catarina Melim, Carla Varela, Vilma A. Sardão, José Teixeira, Maria Inês Dias, Lillian Barros, Paulo J. Oliveira and Célia Cabral
Pharmaceuticals 2025, 18(1), 39; https://doi.org/10.3390/ph18010039 - 1 Jan 2025
Viewed by 1272
Abstract
Background/Objectives: Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Equisetum ramosissimum Desf. (hemorrhages, urethritis, hepatitis), Rumex scutatus L. subsp. induratus (Boiss. and Reut.) Malag. (inflammation, [...] Read more.
Background/Objectives: Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Equisetum ramosissimum Desf. (hemorrhages, urethritis, hepatitis), Rumex scutatus L. subsp. induratus (Boiss. and Reut.) Malag. (inflammation, constipation), Geranium purpureum Vill., and Geranium lucidum L. (pain relief, gastric issues). Given their rich ethnomedicinal history, we evaluated their protective effects on an in vitro model of metabolic dysfunction-associated steatotic liver disease (MASLD). Methods: Decoction (D) and hydroalcoholic (EtOH80%) extracts were prepared and chemically characterized. Their safety profile and effects on lipid accumulation were assessed in palmitic acid (PA)-treated HepG2 cells using resazurin, sulforhodamine B, and Nile Red assays. Results: Chemical analysis revealed diverse phenolic compounds, particularly kaempferol derivatives in E. ramosissimum. All extracts showed minimal cytotoxicity at 25–50 µg/mL. At 100 µg/mL, only E. ramosissimum extracts maintained high cell viability. In the lipotoxicity model, E. ramosissimum decoction demonstrated the most potent effect, significantly reducing PA-induced neutral lipid accumulation in a dose-dependent manner, while other extracts showed varying degrees of activity. Conclusions: These findings highlight E. ramosissimum’s decoction, rich in kaempferol derivatives, as particularly effective in reducing lipid accumulation in this MASLD cell model while also providing a comprehensive characterization of traditionally used plants from the Côa Valley region. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

29 pages, 53708 KiB  
Article
Optimizing Site Selection for Construction: Integrating GIS Modeling, Geophysical, Geotechnical, and Geomorphological Data Using the Analytic Hierarchy Process
by Doaa Wahba, Awad A. Omran, Ashraf Adly, Ahmed Gad, Hasan Arman and Heba El-Bagoury
ISPRS Int. J. Geo-Inf. 2025, 14(1), 3; https://doi.org/10.3390/ijgi14010003 - 25 Dec 2024
Cited by 6 | Viewed by 2226
Abstract
Identifying suitable sites for urban, industrial, and tourist development is important, especially in areas with increasing population and limited land availability. Kharga Oasis, Egypt, stands out as a promising area for such development, which can help reduce overcrowding in the Nile Valley and [...] Read more.
Identifying suitable sites for urban, industrial, and tourist development is important, especially in areas with increasing population and limited land availability. Kharga Oasis, Egypt, stands out as a promising area for such development, which can help reduce overcrowding in the Nile Valley and Delta. However, soil and various environmental factors can affect the suitability of civil engineering projects. This study used Geographic Information Systems (GISs) and a multi-criteria decision-making approach to assess the suitability of Kharga Oasis for construction activities. Geotechnical parameters were obtained from seismic velocity data, including Poisson’s ratio, stress ratio, concentration index, material index, N-value, and foundation-bearing capacity. A comprehensive analysis of in situ and laboratory-based geological and geotechnical data from 24 boreholes examined soil plasticity, water content, unconfined compressive strength, and consolidation parameters. By integrating geotechnical, geomorphological, geological, environmental, and field data, a detailed site suitability map was created using the analytic hierarchy process to develop a weighted GIS model that accounts for the numerous elements influencing civil project design and construction. The results highlight suitable sites within the study area, with high and very high suitability classes covering 56.87% of the land, moderate areas representing 27.61%, and unsuitable areas covering 15.53%. It should be noted that many settlements exist in highly vulnerable areas, emphasizing the importance of this study. This model identifies areas vulnerable to geotechnical and geoenvironmental hazards, allowing for early decision-making at the beginning of the planning process and reducing the waste of effort. The applied model does not only highlight suitable sites in the Kharga Oasis, Egypt, but, additionally, it provides a reproducible method for efficiently assessing land use suitability in other regions with similar geological and environmental conditions around the world. Full article
Show Figures

Figure 1

19 pages, 4984 KiB  
Article
Fabrication of an In Situ pH-Responsive Raloxifene-Loaded Invasome Hydrogel for Breast Cancer Management: In Vitro and In Vivo Evaluation
by Hanan O. Farouk, Marwa M. Nagib, Amr Gamal Fouad, Demiana M. Naguib, Sherif Faysal Abdelfattah Khalil, Amany Belal, Samar F. Miski, Nisreen Khalid Aref Albezrah, Shatha Hallal Al-Ziyadi, Gi-Hui Kim, Ahmed H. E. Hassan, Kyung-Tae Lee and Doaa S. Hamad
Pharmaceuticals 2024, 17(11), 1518; https://doi.org/10.3390/ph17111518 - 11 Nov 2024
Cited by 2 | Viewed by 1574
Abstract
Background/Objectives: Raloxifene (RLF) is a therapeutic option for invasive breast cancer because it blocks estrogen receptors selectively. Low solubility, limited targeting, first-pass action, and poor absorption are some of the challenges that make RLF in oral form less effective. This study aimed to [...] Read more.
Background/Objectives: Raloxifene (RLF) is a therapeutic option for invasive breast cancer because it blocks estrogen receptors selectively. Low solubility, limited targeting, first-pass action, and poor absorption are some of the challenges that make RLF in oral form less effective. This study aimed to create an intra-tumoral in situ pH-responsive formulation of RLF–invasome (IPHRLI) for breast cancer treatment, with the goals of sustaining RLF release, minimizing adverse effects, and enhancing solubility, bioavailability, targeting, and effectiveness. Methods: Numerous RLF–invasome formulations were optimized using design expert software (version 12.0.6.0, StatEase Inc., Minneapolis, MN, USA). Integrating an optimal formulation with an amalgam of chitosan and glyceryl monooleate resulted in the IPHRLI formulation. In vivo testing of the IPHRLI formulation was conducted utilizing the Ehrlich cancer model. Results: Requirements for an optimum RLF–invasome formulation were met by a mixture of phospholipids (2.46%), ethanol (2.84%), and cineole (0.5%). The IPHRLI formulation substantially sustained its release by 75.41% after 8 h relative to free RLF. The bioavailability of intra-tumoral IPHRLI was substantially raised by 4.07-fold compared to oral free RLF. Histopathological and tumor volume analyses of intra-tumoral IPHRLI confirmed its efficacy and targeting effect. Conclusions: the intra-tumoral administration of the IPHRLI formulation may provide a potential strategy for breast cancer management. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

20 pages, 1817 KiB  
Article
Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution
by Sultan Aati, Hanan O. Farouk, Marwa H. Elkarmalawy, Hanan Y. Aati, Nahla Sameh Tolba, Hossam M. Hassan, Mostafa E. Rateb and Doaa S. Hamad
Pharmaceutics 2024, 16(11), 1432; https://doi.org/10.3390/pharmaceutics16111432 - 10 Nov 2024
Cited by 3 | Viewed by 1964
Abstract
Background: Itraconazole (ITZ) is an antiangiogenic agent recognized as a potent suppressor of endothelial cell growth that suppresses angiogenesis. Nevertheless, its exploitation is significantly restricted by its low bioavailability and systematic side effects. The objective of this study was to utilize glycerosomes (GLY), [...] Read more.
Background: Itraconazole (ITZ) is an antiangiogenic agent recognized as a potent suppressor of endothelial cell growth that suppresses angiogenesis. Nevertheless, its exploitation is significantly restricted by its low bioavailability and systematic side effects. The objective of this study was to utilize glycerosomes (GLY), glycerol-developed vesicles, as innovative nanovesicles for successful ITZ pulmonary drug delivery. Methods: The glycerosomes were functionalized with hyaluronic acid (HA-GLY) to potentiate the anticancer efficacy of ITZ and extend its local bio-fate. ITZ-HA-GLY were fabricated using soybean phosphatidylcholine, tween 80, HA, and sonication time via a thin-film hydration approach according to a 24 full factorial design. The impact of formulation parameters on ITZ-HA-GLY physicochemical properties, as well as the optimal formulation option, was evaluated using Design-Expert®. Sulphorhodamine-B (SRB) colorimetric cytotoxicity assay of the optimized ITZ-HA-GLY versus ITZ suspension was explored in the human A549 cell line. The in vivo pharmacokinetics and bio-distribution examined subsequent to intratracheal administrations of ITZ suspension, and ITZ-HA-GLY were scrutinized in rats. Results: The optimized ITZ-HA-GLY unveiled vesicles of size 210.23 ± 6.43 nm, zeta potential of 41.06 ± 2.62 mV, and entrapment efficiency of 73.65 ± 1.76%. Additionally, ITZ-HA-GLY manifested a far lower IC50 of 13.03 ± 0.2 µg/mL on the A549 cell line than that of ITZ suspension (28.14 ± 1.6 µg/mL). Additionally, the biodistribution analysis revealed a higher concentration of ITZ-HA-GLY within the lung tissues by 3.64-fold as compared to ITZ suspension. Furthermore, the mean resistance time of ITZ-HA-GLY declined more slowly with 14 h as compared to ITZ suspension, confirming the accumulation of ITZ inside the lungs and their promising usage as a target for the treatment of lung disease. Conclusions: These data indicate that the improved ITZ-HA-GLY demonstrates significant promise and represents an exciting prospect in intratracheal delivery systems for lung cancer treatment, meriting further investigation. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Respiratory Diseases)
Show Figures

Figure 1

29 pages, 4666 KiB  
Article
Land Suitability Assessment and Crop Water Requirements for Twenty Selected Crops in an Arid Land Environment
by Salman A. H. Selmy, Raimundo Jimenez-Ballesta, Dmitry E. Kucher, Ahmed S. A. Sayed, Francisco J. García-Navarro, Yujian Yang and Ibraheem A. H. Yousif
Agronomy 2024, 14(11), 2601; https://doi.org/10.3390/agronomy14112601 - 4 Nov 2024
Cited by 3 | Viewed by 3278
Abstract
Expanding projects to reclaim marginal land is the most effective way to reduce land use pressures in densely populated areas, such as Egypt’s Nile Valley and Delta; however, this requires careful, sustainable land use planning. This study assessed the agricultural potential of the [...] Read more.
Expanding projects to reclaim marginal land is the most effective way to reduce land use pressures in densely populated areas, such as Egypt’s Nile Valley and Delta; however, this requires careful, sustainable land use planning. This study assessed the agricultural potential of the El-Dabaa area in the northern region of the Western Desert, Egypt. It focused on assessing land capability, evaluating crop suitability, mapping soil variability, and calculating crop water requirements for twenty different crops. In this work, we evaluated land capability using the modified Storie index model and assessed soil suitability using the land use suitability evaluation tool (LUSET). We also calculated crop water requirements (CWRs) utilizing the FAO-CROPWAT 8.0 model. Additionally, we employed ArcGIS 10.8 to create spatial variability maps of soil properties, land capability classes, and suitability classes. Using a systematic sampling grid, 100 soil profiles were excavated to represent the spatial variability of the soil in the study area, and the physicochemical parameters of the soil samples were analyzed. The results indicated that the study area is primarily characterized by flat to gently sloping surfaces with deep soils. Furthermore, there are no restrictions on soil salinity or alkalinity, no sodicity hazards, and low CaCO3 levels. On the other hand, the soils in the study area are coarse textured and have low levels of CEC and organic matter (OM), which are the major soil limiting factors. As a result, the land with fair capability (Grade 3) accounted for the vast majority of the study area (87.3%), covering 30599.4 ha. Land with poor capability (Grade 4) accounted for 6.5% of the total area, while non-agricultural land (Grade 5) accounted for less than 1%. These findings revealed that S2 and S3 are the dominant soil suitability classes for all the studied crops, indicating moderate and marginal soil suitabilities. Furthermore, there were only a few soil proportions classified as unsuitable (N class) for fruit crops, maize, and groundnuts. Among the crops studied, barley, wheat, sorghum, alfalfa, olives, citrus, potatoes, onions, tomatoes, sunflowers, safflowers, and soybeans are the most suitable for cultivation in the study area. The reference evapotranspiration (ETo) varied between 2.6 and 5.9 mm day−1, with higher rates observed in the summer months and lower rates in the winter months. Therefore, the increase in summer ETo rates and the decrease in winter ones result in higher CWRs during the summer season and lower ones during the winter season. The CWRs for the crops we studied ranged from 183.9 to 1644.8 mm season−1. These research findings suggest that the study area is suitable for cultivating a variety of crops. Crop production in the study area can be improved by adding organic matter to the soil, choosing drought-resistant crop varieties, employing effective irrigation systems, and implementing proper management practices. This study also provides valuable information for land managers to identify physical constraints and management needs for sustainable crop production. Furthermore, it offers valuable insights to aid investors, farmers, and governments in making informed decisions for agricultural development in the study region and similar arid and semiarid regions worldwide. Full article
(This article belongs to the Special Issue Soil Health and Properties in a Changing Environment)
Show Figures

Figure 1

16 pages, 3414 KiB  
Article
Green and Sensitive Analysis of the Antihistaminic Drug Pheniramine Maleate and Its Main Toxic Impurity Using UPLC and TLC Methods, Blueness Assessment, and Greenness Assessments
by Nessreen S. Abdelhamid, Huda Salem AlSalem, Faisal K. Algethami, Eglal A. Abdelaleem, Alaa M. Mahmoud, Dalal A. Abou El Ella and Mohammed Gamal
Chemosensors 2024, 12(10), 206; https://doi.org/10.3390/chemosensors12100206 - 9 Oct 2024
Cited by 4 | Viewed by 1487
Abstract
For the first time, two direct and eco-friendly chromatographic approaches were adapted for the simultaneous estimation of pheniramine maleate (PAM) and its major toxic impurity, 2-benzyl pyridine (BNZ). Method A used reversed-phase ultra-performance liquid chromatography; separation was achieved within 4 min using a [...] Read more.
For the first time, two direct and eco-friendly chromatographic approaches were adapted for the simultaneous estimation of pheniramine maleate (PAM) and its major toxic impurity, 2-benzyl pyridine (BNZ). Method A used reversed-phase ultra-performance liquid chromatography; separation was achieved within 4 min using a C18 column with a developing system of methanol/water (60:40 v/v) with a 0.1 mL/min flow rate. Photodiode array detection was adjusted at 215 nm. The method was linear in the ranges of 5.0–70.0 and 0.05–10.0 µg/mL for PAM and BNZ, correspondingly. Method B used thin-layer chromatography; separation was applied on silica gel TLC F254 using ethanol/ethyl acetate/liquid ammonia (8:2:0.1, in volumes) at room temperature, at 265 nm. Linearity was assured at concentration ranges 0.5–8.0 and 0.1–3.0 µg/band for the two components, respectively. Generally, the new UPLC and TLC methods outperform the old ones in terms of quickness, greenness, and sensitivity. Concisely, the greenness features were partially achieved using the Green Analytical Procedure Index (GAPI) and the Analytical Greenness (AGREE) pictograms. In contrast, the usefulness of the novel approaches was assured via the Blue Applicability Grade Index (BAGI) tool. Full article
(This article belongs to the Special Issue Green Analytical Chemistry: Current Trends and Future Developments)
Show Figures

Graphical abstract

21 pages, 10207 KiB  
Article
Hydrothermal Karstification of the Pre-Messinian Eonile Canyon: Geomorphological and Geochemical Evidences for Hypogene Speleogenesis in the Middle Nile Valley of Egypt
by Ashraf A. Mostafa, Hatem M. El-Desoky, Diaa A. Saadawi, Ahmed M. Abdel-Rahman, John Webb, Hassan Alzahrani, Fahad Alshehri, Abdurraouf Okok, Ahmed E. Khalil and Eman A. Marghani
Minerals 2024, 14(9), 946; https://doi.org/10.3390/min14090946 - 16 Sep 2024
Cited by 2 | Viewed by 1762
Abstract
The surface and subsurface karst features of the Eocene limestone plateaus along the Middle Nile Valley in Egypt were formerly believed to be epigene in origin and to have developed during post-Eocene pluvial periods. However, the morphology of the caves and their restriction [...] Read more.
The surface and subsurface karst features of the Eocene limestone plateaus along the Middle Nile Valley in Egypt were formerly believed to be epigene in origin and to have developed during post-Eocene pluvial periods. However, the morphology of the caves and their restriction to particular stratigraphic intervals suggests that they are hypogene. The geochemistry and mineralogy of the soft, thick-bedded, brown/black cave infills shows that these sediments originated from hydrothermal processes, as evidenced by their Fe, Mn, Co, Ni, and Cu concentrations. Thus, the karst features are hypogene and probably formed during the opening of the Red Sea Rift at the end of the Oligocene and early Miocene. At this time, there was abundant volcanic activity, as shown by basalt lavas ~70 km northwest of Assiut; this triggered the release of large amounts of CO2 that made the hydrothermal waters acidic and dissolved the caves. Full article
Show Figures

Figure 1

26 pages, 6984 KiB  
Article
Phytochemical Composition and Bioactivities of Some Hydrophytes: Antioxidant, Antiparasitic, Antibacterial, and Anticancer Properties and Mechanisms
by Fahad Alharthi, Hussam A. Althagafi, Ibrahim Jafri, Atif Abdulwahab A. Oyouni, Mohammed M. Althaqafi, Layla Yousif Abdullah Al-Hijab, Nawal E. Al-Hazmi, Somia M. Elagib and Deyala M. Naguib
Plants 2024, 13(15), 2148; https://doi.org/10.3390/plants13152148 - 2 Aug 2024
Cited by 2 | Viewed by 1926
Abstract
Few researches have explored the production of pharmaceuticals from aquatic plants. Therefore, this study explored, for the first time, the phytochemical composition and bioactivities of ten aquatic plants. Aquatic plant shoots from various Nile River canals were collected, dried, and ground for aqueous [...] Read more.
Few researches have explored the production of pharmaceuticals from aquatic plants. Therefore, this study explored, for the first time, the phytochemical composition and bioactivities of ten aquatic plants. Aquatic plant shoots from various Nile River canals were collected, dried, and ground for aqueous extract preparation. Phytochemical composition and antioxidant capacity were assessed using DPPH assays. Extracts were tested for antiparasitic, antibacterial, anti-biofilm, and anticancer activities through standard in vitro assays, measuring IC50 values, and evaluating mechanisms of action, including cell viability and high-content screening assays. The results showed that the aquatic plants were rich in pharmaceutical compounds. The antioxidant capacity of these extracts exceeded that of vitamin C. The extracts showed promising antiparasitic activity against pathogens like Opisthorchis viverrini and Plasmodium falciparum, with IC50 values between 0.7 and 2.5 µg/mL. They also demonstrated low MICs against various pathogenic bacteria, causing DNA damage, increased plasma membrane permeability, and 90% biofilm inhibition. In terms of anticancer activity, extracts were effective against a panel of cancer cell lines, with Ludwigia stolonifera exhibiting the highest efficacy. Its IC50 ranged from 0.5 µg/mL for pancreatic, esophageal, and colon cancer cells to 1.5 µg/mL for gastric cancer cells. Overall, IC50 values for all extracts were below 6 µg/mL, showing significant apoptotic activity, increased nuclear intensity, plasma membrane permeability, mitochondrial membrane permeability, and cytochrome c release, and outperforming doxorubicin. This study highlights the potential of aquatic plants as sources for new, safe, and effective drugs with strong antiparasitic, antibacterial, and anticancer properties. Full article
(This article belongs to the Special Issue Pharmacological Activity of Medicinal and Functional Plants)
Show Figures

Figure 1

24 pages, 9332 KiB  
Article
Improvement of Latent Heat Thermal Energy Storage Rate for Domestic Solar Water Heater Systems Using Anisotropic Layers of Metal Foam
by Obai Younis, Masoud Mozaffari, Awadallah Ahmed and Mehdi Ghalambaz
Buildings 2024, 14(8), 2322; https://doi.org/10.3390/buildings14082322 - 26 Jul 2024
Cited by 2 | Viewed by 1865
Abstract
Latent Heat Transfer Thermal Energy Storage (LHTES) units are crucial in managing the variability of solar energy in solar thermal storage systems. This study explores the effectiveness of strategically placing layers of anisotropic and uniform metal foam (MF) within an LHTES to optimize [...] Read more.
Latent Heat Transfer Thermal Energy Storage (LHTES) units are crucial in managing the variability of solar energy in solar thermal storage systems. This study explores the effectiveness of strategically placing layers of anisotropic and uniform metal foam (MF) within an LHTES to optimize the melting times of phase-change materials (PCMs) in three different setups. Using the enthalpy–porosity approach and finite element method simulations for fluid dynamics in MF, this research evaluates the impact of the metal foam’s anisotropy parameter (Kn) and orientation angle (ω) on thermal performance. The results indicate that the configuration placing the anisotropic MF layer to channel heat towards the lower right corner shortens the phase transition time by 2.72% compared to other setups. Conversely, the middle setup experiences extended melting periods, particularly when ω is at 90°—an increase in Kn from 0.1 to 0.2 cuts the melting time by 4.14%, although it remains the least efficient option. The findings highlight the critical influence of MF anisotropy and the pivotal role of ω = 45°. Angles greater than this significantly increase the liquefaction time, especially at higher Kn values, due to altered thermal conductivity directions. Furthermore, the tactical placement of the anisotropic MF layer significantly boosts thermal efficiency, as evidenced by a 13.12% reduction in the PCM liquefaction time, most notably in configurations with a lower angle orientation. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop