Successful Inactivation of High-Consequence Pathogens in PrimeStore Molecular Transport Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.1.1. Cells
2.1.2. Viruses
2.2. Virus Inactivation with PS-MTM
2.3. Evaluation of PS-MTM Removal by Dialysis
2.4. Sample Dialysis and Serial Passaging for Safety Testing
2.5. Plaque Assays
2.6. TCID50 Assays
2.7. Statistical Analysis
3. Results
3.1. Plaque Assay Confirms That PS-MTM Effectively Inactivates High-Consequence Pathogens After Incubation for 20, 30, and 60 Min
3.2. Dialysis Does Not Significantly Reduce Virus Titer
3.3. TCID50 Assay Confirms Complete Inactivation of High-Consequence Pathogens by PS-MTM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
BSL | biosafety level |
CCHFV | Crimean-Congo hemorrhagic fever virus |
CDC | Centers for Disease Control and Prevention |
CO2 | carbon dioxide |
CPE | cytopathic effect |
Ct | cycle threshold |
DMEM | Dulbecco’s Modified Eagle’s Medium |
EBOV | Ebola virus |
EEEV | Eastern equine encephalitis virus |
EMEM | Eagle’s Minimum Essential Media |
FBS | fetal bovine serum |
FDA | Food and Drug Administration |
FLUAV | influenza A virus |
HeV | Hendra virus |
IC50 | concentration required to inactivate 50% of viral infectivity |
IRF-Frederick | Integrated Research Facility at Fort Detrick |
JEV | Japanese encephalitis virus |
LASV | Lassa virus |
MARV | Marburg virus |
MIC | minimum inactivation concentration |
MPXV | monkeypox virus |
MRSA | methicillin-resistant Staphylococcus aureus |
NIAID | National Institute of Allergy and Infectious Diseases |
NiV | Nipah virus |
NiV-B | Nipah virus Bangladesh |
NiV-M | Nipah virus Malaysia |
NML | National Microbiology Laboratory |
PBS | phosphate-buffered saline |
PHAC | Public Health Agency of Canada |
qPCR | real-time polymerase chain reaction |
RESTV | Reston virus |
RVFV | Rift Valley fever virus |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
SINV | Sindbis virus |
TCID50 | tissue culture infectious dose |
U.S. | United States |
USAMRIID | U.S. Army Medical Research Institute of Infectious Diseases |
USDA | U.S. Department of Agriculture |
UTMB | University of Texas Medical Branch at Galveston |
WNV | West Nile virus |
WRCEVA | World Reference Collection of Emerging Viruses and Arboviruses |
Appendix A
Virus | Strain/Variant/Isolate | Cell Line | Reference GenBank Accession Number |
---|---|---|---|
CCHFV | IbAr10200 | SW-13 | PQ463984, PQ463983, PQ463982 |
EBOV | Makona-C05 | Vero E6 | KX000400 |
RESTV | Philippines89-AZ-1435 | Vero E6 | KY008770 |
EEEV | FL93-939 | Vero E6 | EF151502 |
HeV | unnamed | Vero E6 | AF017149 |
JEV | Nakayama | BHK-21 | EF571853 |
LASV | SN61 | Vero E6 | MZ169798, MZ169799 |
MARV | Musoke | Vero E6 | AY430365 |
NiV-M | IRF523 | Vero E6 | PQ463988 |
NiV-B | 810398 | Vero E6 | MK673564 |
RVFV | ZH501 | Vero E6 | PQ463985, PQ463986, PQ463986 |
WNV | 385-99 | Vero E6 | AY842931 |
Samples | Average Titer (Log10 PFU/mL) | Reduction from Initial Titer (Log10 PFU/mL) | Sum of Signed Ranks (p-Value) 1 |
---|---|---|---|
EBOV initial titration | 7.32 | N/A | N/A |
EBOV after dialysis 1 | 7.25 | 0.07 | −6.00 (p = 0.25) |
EBOV after dialysis 2 | 7.23 | 0.09 | −6.00 (p = 0.25) |
EBOV after dialysis 3 | 7.24 | 0.08 | −6.00 (p = 0.25) |
HeV initial titration | 6.95 | N/A | N/A |
HeV after dialysis 1 | 7.01 | −0.06 * | 6.00 (p = 0.25) |
HeV after dialysis 2 | 6.98 | −0.03 * | 3.00 (p = 0.50) |
HeV after dialysis 3 | 6.90 | 0.05 | −4.00 (p = 0.50) |
LASV initial titration | 6.92 | N/A | N/A |
LASV after dialysis 1 | 6.89 | 0.03 | −1.00 (p > 0.99) |
LASV after dialysis 2 | 6.82 | 0.10 | −6.00 (p = 0.25) |
LASV after dialysis 3 | 6.72 | 0.20 | −6.00 (p = 0.25) |
RVFV initial titration | 6.81 | N/A | N/A |
RVFV after dialysis 1 | 6.58 | 0.23 | −6.00 (p = 0.25) |
RVFV after dialysis 2 | 6.61 | 0.20 | −6.00 (p = 0.25) |
RVFV after dialysis 3 | 6.59 | 0.22 | −6.00 (p = 0.25) |
VEEV initial titration | 8.87 | N/A | N/A |
VEEV after dialysis 1 | 8.85 | 0.02 | −4.00 (p = 0.50) |
VEEV after dialysis 2 | 8.78 | 0.09 | −6.00 (p = 0.25) |
VEEV after dialysis 3 | 8.83 | 0.03 | −2.00 (p = 0.75) |
WNV initial titration | 7.96 | N/A | N/A |
WNV after dialysis 1 | 7.98 | −0.02 * | 1.00 (p > 0.99) |
WNV after dialysis 2 | 7.83 | 0.13 | −6.00 (p = 0.25) |
WNV after dialysis 3 | 7.82 | 0.14 | −6.00 (p = 0.25) |
References
- Ravnholdt, A.R.; Ratnesar-Shumate, S.A.; Santarpia, J.L. A review of accidental aerosol generation in laboratories and laboratory-associated infections. Appl. Biosaf. 2024. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; Public Health Service; Centers for Disease Control and Prevention; National Institutes of Health. Biosafety in Microbiological and Biomedical Laboratories (BMBL) 6th Edition. 2020. Available online: https://www.cdc.gov/labs/pdf/SF__19_308133-A_BMBL6_00-BOOK-WEB-final-3.pdf (accessed on 16 February 2025).
- Yeh, K.B.; Tabynov, K.; Parekh, F.K.; Mombo, I.; Parker, K.; Tabynov, K.; Bradrick, S.S.; Tseng, A.S.; Yang, J.-R.; Gardiner, L.; et al. Significance of high-containment biological laboratories performing work during the COVID-19 pandemic: Biosafety level-3 and -4 labs. Front. Bioeng. Biotechnol. 2021, 9, 720315. [Google Scholar] [CrossRef]
- Dsa, O.C.; Kadni, T.S.; N, S. From cold chain to ambient temperature: Transport of viral specimens—A review. Ann. Med. 2023, 55, 2257711. [Google Scholar] [CrossRef]
- Mukadi-Bamuleka, D.; Mambu-Mbika, F.; de Weggheleire, A.; Edidi-Atani, F.; Bulabula-Penge, J.; Mfumu, M.M.K.; Legand, A.; Nkuba-Ndaye, A.; N’kasar, Y.T.T.; Mbala-Kingebeni, P.; et al. Efficiency of field laboratories for Ebola virus disease outbreak during chronic insecurity, eastern Democratic Republic of the Congo, 2018–2020. Emerg. Infect. Dis. 2023, 29, e221025. [Google Scholar] [CrossRef]
- Longhorn Vaccines and Diagnostics. FDA De Novo Clearance: The Original FDA-Cleared Inactivation Media. Available online: https://www.lhnvd.com/product-development (accessed on 16 February 2025).
- Longhorn Vaccines and Diagnostics. Guidelines for the Safe and Appropriate Use of PrimeStore® MTM. Available online: https://www.lhnvd.com/safety-information (accessed on 16 February 2025).
- Daum, L.T.; Worthy, S.A.; Yim, K.C.; Nogueras, M.; Schuman, R.F.; Choi, Y.W.; Fischer, G.W. A clinical specimen collection and transport medium for molecular diagnostic and genomic applications. Epidemiol. Infect. 2011, 139, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- UK Health Security Agency. Monkeypox Virus Inactivation Testing Report: PrimeStore Molecular Transport Medium. 2022. Available online: https://assets.publishing.service.gov.uk/media/630289058fa8f5387723df9e/HCM-MPx-002-v3_PrimeStore_Molecular_Transport_Medium.pdf (accessed on 16 February 2025).
- Welch, S.R.; Davies, K.A.; Buczkowski, H.; Hettiarachchi, N.; Green, N.; Arnold, U.; Jones, M.; Hannah, M.J.; Evans, R.; Burton, C.; et al. Analysis of inactivation of SARS-CoV-2 by specimen transport media, nucleic acid extraction reagents, detergents, and fixatives. J. Clin. Microbiol. 2020, 58, e01713–e01720. [Google Scholar] [CrossRef] [PubMed]
- Daum, L.T.; Choi, Y.; Worthy, S.A.; Rodriguez, J.D.; Chambers, J.P.; Fischer, G.W. A molecular transport medium for collection, inactivation, transport, and detection of Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 2014, 18, 847–849. [Google Scholar] [CrossRef]
- Schlaudecker, E.P.; Heck, J.P.; MacIntyre, E.T.; Martinez, R.; Dodd, C.N.; McNeal, M.M.; Staat, M.A.; Heck, J.E.; Steinhoff, M.C. Comparison of a new transport medium with universal transport medium at a tropical field site. Diagn. Microbiol. Infect. Dis. 2014, 80, 107–110. [Google Scholar] [CrossRef]
- Maljkovic Berry, I.; Hang, J.; Fung, C.; Yang, Y.; Chibucos, M.; Pollio, A.; Gandhi, J.; Li, T.; Conte, M.A.; Lidl, G.M.; et al. Genomic surveillance of SARS-CoV-2 in US military compounds in Afghanistan reveals multiple introductions and outbreaks of Alpha and Delta variants. BMC Genom. 2022, 23, 513. [Google Scholar] [CrossRef]
- Daum, L.T.; Peters, R.P.; Fourie, P.B.; Jonkman, K.; Worthy, S.A.; Rodriguez, J.D.; Ismail, N.A.; Omar, S.V.; Fischer, G.W. Molecular detection of Mycobacterium tuberculosis from sputum transported in PrimeStore® from rural settings. Int. J. Tuberc. Lung Dis. 2015, 19, 552–557. [Google Scholar] [CrossRef]
- Welch, J.L.; Shrestha, R.; Hutchings, H.; Pal, N.; Levings, R.; Robbe-Austerman, S.; Palinski, R.; Shanmuganatham, K.K. Inactivation of highly transmissible livestock and avian viruses including influenza A and Newcastle disease virus for molecular diagnostics. Front. Vet. Sci. 2024, 11, 1304022. [Google Scholar] [CrossRef] [PubMed]
- Zeineldin, M.M.; Lehman, K.; Camp, P.; Farrell, D.; Thacker, T.C. Diagnostic evaluation of the IS1081-targeted real-time PCR for detection of Mycobacterium bovis DNA in bovine milk samples. Pathogens 2023, 12, 972. [Google Scholar] [CrossRef]
- Pikalo, J.; Deutschmann, P.; Fischer, M.; Roszyk, H.; Beer, M.; Blome, S. African swine fever laboratory diagnosis—Lessons learned from recent animal trials. Pathogens 2021, 10, 177. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases. NIAID Biodefense Pathogens. 2024. Available online: https://www.niaid.nih.gov/research/niaid-biodefense-pathogens (accessed on 16 February 2025).
- Kennedy, S.B.; Dogba, J.B.; Wasunna, C.L.; Sahr, P.; Eastman, C.B.; Bolay, F.K.; Mason, G.T.; Kieh, M.W.S. Pre-Ebola virus disease laboratory system and related challenges in Liberia. Afr. J. Lab. Med. 2016, 5, 508. [Google Scholar] [CrossRef] [PubMed]
- Shannon, F.Q., 2nd; Bawo, L.L.; Crump, J.A.; Sharples, K.; Egan, R.; Hill, P.C. Evaluation of Ebola virus disease surveillance system capability to promptly detect a new outbreak in Liberia. BMJ Glob. Health 2023, 8, e012369. [Google Scholar] [CrossRef]
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.F.; Soropogui, B.; Sow, M.S.; Keïta, S.; de Clerck, H.; et al. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 2014, 371, 1418–1425. [Google Scholar] [CrossRef]
- Harcourt, B.H.; Lowe, L.; Tamin, A.; Liu, X.; Bankamp, B.; Bowden, N.; Rollin, P.E.; Comer, J.A.; Ksiazek, T.G.; Hossain, M.J.; et al. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg. Infect. Dis. 2005, 11, 1594–1597. [Google Scholar] [CrossRef]
- Towner, J.S.; Rollin, P.E.; Bausch, D.G.; Sanchez, A.; Crary, S.M.; Vincent, M.; Lee, W.F.; Spiropoulou, C.F.; Ksiazek, T.G.; Lukwiya, M.; et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J. Virol. 2004, 78, 4330–4341. [Google Scholar] [CrossRef] [PubMed]
- Cross, R.W.; Boisen, M.L.; Millett, M.M.; Nelson, D.S.; Oottamasathien, D.; Hartnett, J.N.; Jones, A.B.; Goba, A.; Momoh, M.; Fullah, M.; et al. Analytical validation of the ReEBOV antigen rapid test for point-of-care diagnosis of Ebola virus infection. J. Infect. Dis. 2016, 214 (Suppl. 3), S210–S217. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Grolla, A.; Fukuma, A.; Feldmann, H.; Yasuda, J. Development and evaluation of a simple assay for Marburg virus detection using a reverse transcription-loop-mediated isothermal amplification method. J. Clin. Microbiol. 2010, 48, 2330–2336. [Google Scholar] [CrossRef]
- de St. Maurice, A.; Harmon, J.; Nyakarahuka, L.; Balinandi, S.; Tumusiime, A.; Kyondo, J.; Mulei, S.; Namutebi, A.; Knust, B.; Shoemaker, T.; et al. Rift Valley fever viral load correlates with the human inflammatory response and coagulation pathway abnormalities in humans with hemorrhagic manifestations. PLoS Negl. Trop. Dis. 2018, 12, e0006460. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Weisner, B.; Roth, A.; Grewing, T.; Asper, M.; Drosten, C.; Emmerich, P.; Petersen, J.; Wilczek, M.; Schmitz, H. Lassa fever encephalopathy: Lassa virus in cerebrospinal fluid but not in serum. J. Infect. Dis. 2001, 184, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Li, H.; Smith, G.; Goolia, M.; Marszal, P.; Pickering, B.S. Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods. Virol. J. 2023, 20, 128. [Google Scholar] [CrossRef]
- Gamble, A.; Yeo, Y.Y.; Butler, A.A.; Tang, H.; Snedden, C.E.; Mason, C.T.; Buchholz, D.W.; Bingham, J.; Aguilar, H.C.; Lloyd-Smith, J.O. Drivers and distribution of henipavirus-induced syncytia: What do we know? Viruses 2021, 13, 1755. [Google Scholar] [CrossRef]
- Pan American Health Organization; World Health Organization. General Procedures for Inactivation of Potentially Infectious Samples with Ebola Virus and Other Highly Pathogenic Viral Agents. 2014. Available online: https://www3.paho.org/hq/dmdocuments/2014/2014-cha-procedures-inactivation-ebola.pdf (accessed on 16 February 2025).
- Elveborg, S.; Monteil, V.M.; Mirazimi, A. Methods of inactivation of highly pathogenic viruses for molecular, serology or vaccine development purposes. Pathogens 2022, 11, 271. [Google Scholar] [CrossRef]
- Haddock, E.; Feldmann, F.; Feldmann, H. Effective chemical inactivation of Ebola virus. Emerg. Infect. Dis. 2016, 22, 1292–1294. [Google Scholar] [CrossRef]
- Hume, A.J.; Ames, J.; Rennick, L.J.; Duprex, W.P.; Marzi, A.; Tonkiss, J.; Mühlberger, E. Inactivation of RNA viruses by gamma irradiation: A study on mitigating factors. Viruses 2016, 8, 204. [Google Scholar] [CrossRef]
- Ngo, K.A.; Jones, S.A.; Church, T.M.; Fuschino, M.E.; George, K.S.; Lamson, D.M.; Maffei, J.; Kramer, L.D.; Ciota, A.T. Unreliable inactivation of viruses by commonly used lysis buffers. Appl. Biosaf. 2017, 22, 56–59. [Google Scholar] [CrossRef]
- Olejnik, J.; Hume, A.J.; Ross, S.J.; Scoon, W.A.; Seitz, S.; White, M.R.; Slutzky, B.; Yun, N.E.; Mühlberger, E. Art of the kill: Designing and testing viral inactivation procedures for highly pathogenic negative sense RNA viruses. Pathogens 2023, 12, 952. [Google Scholar] [CrossRef]
- Auerswald, H.; Yann, S.; Dul, S.; In, S.; Dussart, P.; Martin, N.J.; Karlsson, E.A.; Garcia-Rivera, J.A. Assessment of inactivation procedures for SARS-CoV-2. J. Gen. Virol. 2021, 102, 001539. [Google Scholar] [CrossRef] [PubMed]
- Smither, S.J.; Weller, S.A.; Phelps, A.; Eastaugh, L.; Ngugi, S.; O’Brien, L.M.; Steward, J.; Lonsdale, S.G.; Lever, M.S. Buffer AVL alone does not inactivate Ebola virus in a representative clinical sample type. J. Clin. Microbiol. 2015, 53, 3148–3154. [Google Scholar] [CrossRef] [PubMed]
- Blow, J.A.; Mores, C.N.; Dyer, J.; Dohm, D.J. Viral nucleic acid stabilization by RNA extraction reagent. J. Virol. Methods 2008, 150, 41–44. [Google Scholar] [CrossRef]
- Invitrogen. User Duide: TRIzol™ LS Reagent. 2016. Available online: https://tools.thermofisher.com/content/sfs/manuals/trizol_ls_reagent.pdf (accessed on 16 February 2025).
- Nguyen-Tran, H.; Reno, S.; Mwangi, E.; Mentel, M.; Hengartner, R.; Dominguez, S.R.; Messacar, K.; Jung, S.A. Qualitative detection of enterovirus D68 from PrimeStore® molecular transport medium: Implications for home- and self-collection. Diagn. Microbiol. Infect. Dis. 2023, 106, 115976. [Google Scholar] [CrossRef]
- Omar, S.V.; Peters, R.P.H.; Ismail, N.A.; Dreyer, A.W.; Said, H.M.; Gwala, T.; Ismail, N.; Fourie, P.B. Laboratory evaluation of a specimen transport medium for downstream molecular processing of sputum samples to detect Mycobacterium tuberculosis. J. Microbiol. Methods 2015, 117, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-Y.; Mohd Ali, A.R.; Hassan, S.S.; AbuBakar, S. Quantitative estimation of Nipah virus replication kinetics in vitro. Virol. J. 2006, 3, 47. [Google Scholar] [CrossRef]
- Prasad, A.N.; Woolsey, C.; Geisbert, J.B.; Agans, K.N.; Borisevich, V.; Deer, D.J.; Mire, C.E.; Cross, R.W.; Fenton, K.A.; Broder, C.C.; et al. Resistance of cynomolgus monkeys to Nipah and Hendra virus disease is associated with cell-mediated and humoral immunity. J. Infect. Dis. 2020, 221 (Suppl. 4), S436–S447. [Google Scholar] [CrossRef]
- Crameri, G.; Wang, L.-F.; Morrissy, C.; White, J.; Eaton, B.T. A rapid immune plaque assay for the detection of Hendra and Nipah viruses and anti-virus antibodies. J. Virol. Methods 2002, 99, 41–51. [Google Scholar] [CrossRef]
- Marsh, G.A.; Haining, J.; Hancock, T.J.; Robinson, R.; Foord, A.J.; Barr, J.A.; Riddell, S.; Heine, H.G.; White, J.R.; Crameri, G.; et al. Experimental infection of horses with Hendra virus/Australia/horse/2008/Redlands. Emerg. Infect. Dis. 2011, 17, 2232–2238. [Google Scholar] [CrossRef]
- Albe, J.R.; Ma, H.; Gilliland, T.H.; McMillen, C.M.; Gardner, C.L.; Boyles, D.A.; Cottle, E.L.; Dunn, M.D.; Lundy, J.D.; O’Malley, K.J.; et al. Physiological and immunological changes in the brain associated with lethal eastern equine encephalitis virus in macaques. PLoS Pathog. 2021, 17, e1009308. [Google Scholar] [CrossRef]
- Sikazwe, C.; Neave, M.J.; Michie, A.; Mileto, P.; Wang, J.; Cooper, N.; Levy, A.; Imrie, A.; Baird, R.W.; Currie, B.J.; et al. Molecular detection and characterisation of the first Japanese encephalitis virus belonging to genotype IV acquired in Australia. PLoS Negl. Trop. Dis. 2022, 16, e0010754. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Fu, S.; Ma, X.; Chen, X.; Wu, D.; Zhou, L.; Yin, Q.; Li, F.; He, Y.; Lei, W.; et al. An outbreak of Japanese encephalitis caused by genotype Ib Japanese encephalitis virus in China, 2018: A laboratory and field investigation. PLoS Negl. Trop. Dis. 2020, 14, e0008312. [Google Scholar] [CrossRef] [PubMed]
- Duh, D.; Saksida, A.; Petrovec, M.; Ahmeti, S.; Dedushaj, I.; Panning, M.; Drosten, C.; Avšič-Županc, T. Viral load as predictor of Crimean-Congo hemorrhagic fever outcome. Emerg. Infect. Dis. 2007, 13, 1769–1772. [Google Scholar] [CrossRef]
- Ergunay, K.; Kocak Tufan, Z.; Bulut, C.; Kinikli, S.; Demiroz, A.P.; Ozkul, A. Antibody responses and viral load in patients with Crimean-Congo hemorrhagic fever: A comprehensive analysis during the early stages of the infection. Diagn. Microbiol. Infect. Dis. 2014, 79, 31–36. [Google Scholar] [CrossRef]
- Bhat, T.; Cao, A.; Yin, J. Virus-like particles: Measures and biological functions. Viruses 2022, 14, 383. [Google Scholar] [CrossRef] [PubMed]
- Cutts, T.; Leung, A.; Banadyga, L.; Krishnan, J. Inactivation validation of Ebola, Marburg, and Lassa viruses in AVL and ethanol-treated viral cultures. Viruses 2024, 16, 1354. [Google Scholar] [CrossRef]
- Kumar, M.; Mazur, S.; Ork, B.L.; Postnikova, E.; Hensley, L.E.; Jahrling, P.B.; Johnson, R.; Holbrook, M.R. Inactivation and safety testing of Middle East respiratory syndrome coronavirus. J. Virol. Methods 2015, 223, 13–18. [Google Scholar] [CrossRef]
- Widerspick, L.; Vázquez, C.A.; Niemetz, L.; Heung, M.; Olal, C.; Bencsik, A.; Henkel, C.; Pfister, A.; Brunetti, J.E.; Kucinskaite-Kodze, I.; et al. Inactivation methods for experimental Nipah virus infection. Viruses 2022, 14, 1052. [Google Scholar] [CrossRef]
- Olschewski, S.; Thielebein, A.; Hoffmann, C.; Blake, O.; Müller, J.; Bockholt, S.; Pallasch, E.; Hinzmann, J.; Wurr, S.; Neddersen, N.; et al. Validation of inactivation methods for arenaviruses. Viruses 2021, 13, 968. [Google Scholar] [CrossRef]
Virus Family | Virus 1 | Viral Titer (PFU/mL) 2 | |||
---|---|---|---|---|---|
R1 | R2 | R3 | Average | ||
Arenaviridae | LASV | 9.33 × 106 | 9.00 × 106 | 1.23 × 107 | 1.06 × 107 |
Filoviridae | EBOV | 1.87 × 107 | 1.80 × 107 | 2.23 × 107 | 1.97 × 107 |
Flaviviridae | WNV | 7.67 × 106 | 1.10 × 107 | 1.03 × 107 | 9.67 × 106 |
Paramyxoviridae | HeV | 1.17 × 107 | 1.00 × 107 | 1.07 × 107 | 1.08 × 107 |
Phenuiviridae | RVFV | 1.67 × 106 | 1.33 × 106 | 1.70 × 106 | 1.57 × 106 |
Togaviridae | EEEV | 6.67 × 107 | 7.67 × 107 | 9.00 × 107 | 7.78 × 107 |
Virus Family | Virus 1 | Average Titer (PFU/mL) 2 | |||
---|---|---|---|---|---|
Inactivation Time | |||||
NA | 20 min | 30 min | 60 min | ||
NA | NA (Whole blood control) | 0 | NA | NA | NA |
NA | NA (PS-MTM control) | 0 | NA | NA | NA |
Arenaviridae | LASV | 7.56 × 105 | 0 | 0 | 0 |
Filoviridae | EBOV | 6.89 × 106 | 0 | 0 | 0 |
Flaviviridae | WNV | 9.22 × 106 | 0 | 0 | 0 |
Paramyxoviridae | HeV | 5.56 × 106 | 0 | 0 | 0 |
Phenuiviridae | RVFV | 8.67 × 104 | 0 | 0 | 0 |
Togaviridae | EEEV | 1.72 × 107 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spruill-Harrell, B.; Kocher, G.; Boda, M.; Akers, K.; Freeburger, D.; Murphy, N.; Kuhn, J.H.; Fischer, G.; Maljkovic Berry, I.; Chandrasekaran, P.; et al. Successful Inactivation of High-Consequence Pathogens in PrimeStore Molecular Transport Media. Viruses 2025, 17, 639. https://doi.org/10.3390/v17050639
Spruill-Harrell B, Kocher G, Boda M, Akers K, Freeburger D, Murphy N, Kuhn JH, Fischer G, Maljkovic Berry I, Chandrasekaran P, et al. Successful Inactivation of High-Consequence Pathogens in PrimeStore Molecular Transport Media. Viruses. 2025; 17(5):639. https://doi.org/10.3390/v17050639
Chicago/Turabian StyleSpruill-Harrell, Briana, Gregory Kocher, Maurice Boda, Kristen Akers, Denise Freeburger, Nicole Murphy, Jens H. Kuhn, Gerald Fischer, Irina Maljkovic Berry, Prabha Chandrasekaran, and et al. 2025. "Successful Inactivation of High-Consequence Pathogens in PrimeStore Molecular Transport Media" Viruses 17, no. 5: 639. https://doi.org/10.3390/v17050639
APA StyleSpruill-Harrell, B., Kocher, G., Boda, M., Akers, K., Freeburger, D., Murphy, N., Kuhn, J. H., Fischer, G., Maljkovic Berry, I., Chandrasekaran, P., & Torrison, J. (2025). Successful Inactivation of High-Consequence Pathogens in PrimeStore Molecular Transport Media. Viruses, 17(5), 639. https://doi.org/10.3390/v17050639