Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (350)

Search Parameters:
Keywords = NiAl precipitates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5622 KiB  
Article
Molecular Dynamics Simulations on the Deformation Behaviors and Mechanical Properties of the γ/γ′ Superalloy with Different Phase Volume Fractions
by Xinmao Qin, Wanjun Yan, Yilong Liang and Fei Li
Crystals 2025, 15(8), 706; https://doi.org/10.3390/cryst15080706 - 31 Jul 2025
Viewed by 161
Abstract
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, [...] Read more.
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, high-strain-rate service environments. Our investigation revealed that the tensile behavior of the superalloy depends critically on the Vγ. When the Vγ increased from 13.5 to 67%, the system’s tensile strength exhibited a non-monotonic response, peaking at Vγ = 40.3% before progressively decreasing. Conversely, the maximum uniform plastic strain decreased linearly and significantly when Vγ increased. These results establish an atomistically informed framework that elucidates the composition–microstructure–property relationships in γ(Ni)/γ(Ni3Al) superalloys, specifically addressing how Vγ governs variations in deformation mechanisms and mechanical performance. Furthermore, this work provides quantitative design paradigm for optimizing γ(Ni3Al) precipitate architecture and compositional tuning in the Ni-based γ(Ni)/γ(Ni3Al) superalloy. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

14 pages, 5112 KiB  
Article
Effect of Si Doping on Microstructure and Mechanical and Electrochemical Properties of (AlCrFeNi)100-xSix (x = 2, 4, 6) Dual-Phase Eutectic High-Entropy Alloys
by Subo Yu, Kaiwen Kang, Borui Zhang, Aoxiang Li and Gong Li
Metals 2025, 15(7), 762; https://doi.org/10.3390/met15070762 - 6 Jul 2025
Viewed by 300
Abstract
The effects of silicon (Si) doping on the microstructure, mechanical properties, and electrochemical corrosion behavior of dual-phase eutectic high-entropy alloys (AlCrFeNi)100-xSix (x = 2, 4, 6 at.%) were systematically investigated. The results reveal that with increasing Si content, all three [...] Read more.
The effects of silicon (Si) doping on the microstructure, mechanical properties, and electrochemical corrosion behavior of dual-phase eutectic high-entropy alloys (AlCrFeNi)100-xSix (x = 2, 4, 6 at.%) were systematically investigated. The results reveal that with increasing Si content, all three alloys maintain a sunflower-like eutectic microstructure composed of A2 and B2 phases, characterized by an expanding central region and a densification and refinement of the lamellar two-phase structure in the petal regions; the volume of phase B2 gradually increases, accompanied by the precipitation of nanoscale B2 particles. The test results of mechanical properties show that Si doping enhances the compressive strength and Vickers hardness but significantly reduces ductility, exhibiting a typical inverse strength–ductility relationship. Electrochemical corrosion tests demonstrate that higher Si content deteriorates corrosion resistance, with corrosion predominantly occurring in the B2 phase. Among the studied alloys, the Si2 variant exhibits the most balanced overall performance. This work provides valuable insights into the role of Si in tuning the microstructure and properties of eutectic high-entropy alloys and methodology for their compositional design and engineering applications. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

13 pages, 3012 KiB  
Article
Microstructural Stability and High-Temperature Mechanical Behavior of Al–Ni–Zr Alloy Strengthened by L12-Al3Zr Precipitates
by Jan Šmalc, Adam Zaky, Boštjan Markoli and Roman Šturm
Materials 2025, 18(13), 3068; https://doi.org/10.3390/ma18133068 - 27 Jun 2025
Viewed by 424
Abstract
Aluminum alloys based on the eutectic Al–Ni system are a promising class of lightweight materials for applications at elevated temperatures owing to the thermal stability of the eutectic Al3Ni phase. In this study, the eutectic Al–Ni alloy was modified by the [...] Read more.
Aluminum alloys based on the eutectic Al–Ni system are a promising class of lightweight materials for applications at elevated temperatures owing to the thermal stability of the eutectic Al3Ni phase. In this study, the eutectic Al–Ni alloy was modified by the addition of 0.6 wt.% Zr to enhance the αAl matrix by precipitation strengthening. The alloys were cast and subjected to T5 heat treatment followed by long-term isothermal aging at 350 °C. A comprehensive study was carried out to evaluate the evolution of microstructure, microhardness and mechanical performance over time. The formation of fine, coherent L12-Al3Zr precipitates contributed to significant strengthening, as reflected by a ~60% increase in microhardness and an approximately twofold improvement in room temperature (RT) yield strength. A TEM analysis of the L12-Al3Zr precipitates showed relatively good thermal stability after 30 days. Despite the improved mechanical properties at room temperature, the alloy did not retain this improvement when tested at 300 °C. Nevertheless, these results provide a comprehensive insight into the aging and thermal stability of Al–Ni–Zr alloys. Full article
Show Figures

Figure 1

11 pages, 2528 KiB  
Article
Synergistic Effects of Co on Nanoscale Dual-Precipitation in 2.3 GPa-Grade Steel
by Aijun Li, Jiaxin Liu, Yangxin Wang and Chundong Hu
Materials 2025, 18(13), 2979; https://doi.org/10.3390/ma18132979 - 23 Jun 2025
Viewed by 314
Abstract
A novel ultrahigh-strength steel with Co and strengthened through nanoscale precipitation was developed. We found that the Co element had a synergistic effect on the precipitation process. The simulation results indicate that adding Co to steel can suppress the tracer diffusion coefficients of [...] Read more.
A novel ultrahigh-strength steel with Co and strengthened through nanoscale precipitation was developed. We found that the Co element had a synergistic effect on the precipitation process. The simulation results indicate that adding Co to steel can suppress the tracer diffusion coefficients of all the elements in the steel, hindering the atomic self-diffusion rate and long-range diffusion effect. A decrease in the atomic diffusion rate of precipitations will affect the nucleation, distribution, and growth of precipitations. The Atom probe tomography (APT) results indicate that the Co element not only dispersed uniformly in the matrix itself but also induced the uniform distribution of the precipitation phases. During the nucleation process of the precipitation, the rejected Co atoms formed small regions of high Co concentrations around the precipitation, inhibiting the coarsening of the precipitation. Under the synergistic effect of Co, the high number density of nanoscale NiAl and M2C enhanced the strength of the steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 5770 KiB  
Article
Effect of Aging on Superelastic Response in [001]-Oriented Single Crystals of FeNiCoAlTiNb Shape-Memory Alloys
by Li-Wei Tseng and Wei-Cheng Chen
Materials 2025, 18(12), 2842; https://doi.org/10.3390/ma18122842 - 16 Jun 2025
Viewed by 399
Abstract
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission [...] Read more.
In this study, the effect of aging heat treatment on the superelastic properties and microstructure of [001]-oriented Fe41Ni28Co17Al11.5Ti1.25Nb1.25 (at.%) single crystals was investigated using the cyclic superelastic strain test and a transmission electron microscope (TEM). The TEM results reveal that the average precipitate size is around 3–5 nm in the 600 °C/24 h samples, 6–8 nm in the 600 °C/48 h samples, and 10–12 nm in the 600 °C/72 h samples. The results indicate that precipitate size increases as aging time increases from 24 to 72 h. EDS analysis results show decreased Fe and increased Ni when the analyzed line crosses the precipitate region. The diffraction pattern results show that the precipitate has an L12 crystal structure. The thermo-magnetization curves of single crystals under the three aging conditions (600 °C/24 h, 600 °C/48 h, and 600 °C/72 h) show that the values of the transformation temperatures increased from 24 to 72 h. Magnetization was saturated at 140 emu/g under the magnetic field of 7 Tesla. When increasing the magnetic field from 0.05 to 7 Tesla, the transformation temperatures rose. The results indicate that magnetic fields can activate martensitic transformation. From the results of the superelasticity test at room temperature, [001]-oriented FeNiCoAlTiNb single crystals aged at 600 °C for 24, 48, and 72 h presented recoverable strains of 3%, 5.1%, and 2.6%, respectively. Digital image correlation (DIC) results of the aged samples show that two martensite variants were activated during the superelasticity test. The two variants form corresponding variant pairs (CVPs) and improve the recoverable strain of superelasticity. Although maximum recoverable strain was obtained for the 600 °C/48 h samples, the samples show poor cyclic stability at room temperature after applying the 6% strain. According to the DIC results, the retained martensite, which is pinned by dislocations, was observed after the test. The irrecoverable strain was attributed to the residual martensite. For the 600 °C/72 h samples, the large size of the precipitates poses an obstacle to dislocation transformation and formation. The dislocations increase the stress hysteresis width and stabilize the martensite, causing poor recoverability. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

15 pages, 5972 KiB  
Article
Developing NiAl-Strengthened ULCB Steels by Controlling Nanoscale Precipitation and Reversed Austenite
by Jize Guo, Xiyang Chai, Shuo Gong, Zemin Wang and Tao Pan
Materials 2025, 18(12), 2822; https://doi.org/10.3390/ma18122822 - 16 Jun 2025
Viewed by 322
Abstract
In this study, a strategy was adopted to promote the formation of NiAl precipitates with the aim of enhancing strength by incorporating a 0.2 wt.% Al into a traditional ultra-low carbon bainitic (ULCB) steel alloy. By integrating thermo-mechanical control processing (TMCP) and a [...] Read more.
In this study, a strategy was adopted to promote the formation of NiAl precipitates with the aim of enhancing strength by incorporating a 0.2 wt.% Al into a traditional ultra-low carbon bainitic (ULCB) steel alloy. By integrating thermo-mechanical control processing (TMCP) and a tailored tempering process, a new-generation steel with an outstanding combination of properties has been successfully developed for shipbuilding and marine engineering equipment. It features a yield strength of 880 MPa, a yield ratio of 0.84, and an impact toughness of 175 J. The precipitation characteristics of nanoscale particles in this steel, including NiAl intermetallics and carbides, were systematically investigated. The results show that the alloy with low Al addition formed NiAl precipitates during tempering. The high-density distributions of NiAl, (Mo, V)C, and (Ti, V, Nb)C precipitates, which exhibit slow coarsening kinetics, played a dominant role in enhancing the strength of the tempered steel. In addition to precipitation, the microstructure before and after tempering was also analyzed. It was observed that a granular bainite morphology was favorable for decreasing the yield ratio. Additionally, the formation of reverse-transformed austenite during tempering was critical for retaining toughness despite substantial strength gains. Finally, theoretical modeling was employed to quantitatively assess the contributions of these microstructural modifications to yield strength enhancement of thermo-mechanical controlled processing (TMCP) and tempered steel. This study establishes a fundamental basis for subsequent industrial-scale development and practical engineering applications of novel products. Full article
Show Figures

Figure 1

12 pages, 4897 KiB  
Article
Optimized Control of Hot-Working Parameters in Hot-Forged (CoCrNi)94Al3Ti3 Medium-Entropy Alloy
by Ao Li, Jiebo Lu, Wenjie Xin, Tengfei Ma, Xiaohong Wang and Yunting Su
Coatings 2025, 15(6), 706; https://doi.org/10.3390/coatings15060706 - 11 Jun 2025
Viewed by 461
Abstract
It is essential to develop the optimal hot-working process of the (CoCrNi)94Al3Ti3 alloy, a recently developed precipitation-hardened medium-entropy alloy with promising mechanical properties, for its industrial application. In this study, the hot workability of the as-forged (CoCrNi)94 [...] Read more.
It is essential to develop the optimal hot-working process of the (CoCrNi)94Al3Ti3 alloy, a recently developed precipitation-hardened medium-entropy alloy with promising mechanical properties, for its industrial application. In this study, the hot workability of the as-forged (CoCrNi)94Al3Ti3 alloy was investigated over a temperature range of 1000 °C to 1150 °C and a strain rate ranging from 0.001 to 1 s−1 using a Gleeble-1500D thermal simulation machine of Dynamic Systems Inc., USA. As a result, the constitutive relationship was established, and the hot deformation activation energy was calculated as 433.2 kJ/mol, suggesting its well-defined plastic flow behavior under low-energy-input conditions. Hot-processing maps were constructed to identify the stable hot-working regions. Microstructure analysis revealed that the hot-forged (CoCrNi)94Al3Ti3 alloy exhibited continuous dynamic recrystallization (CDRX) behavior under optimal hot-working conditions. Considering the hot-processing maps and DRX characteristics, the optimal hot-working window of hot-forged (CoCrNi)94Al3Ti3 alloy was identified as 1100 °C with a strain rate of 0.1 s−1. This work offers valuable guidance for developing high-efficiency forming processes for (CoCrNi)94Al3Ti3 medium-entropy alloy. Full article
(This article belongs to the Special Issue Surface Treatment and Coating of Additively Manufactured Components)
Show Figures

Graphical abstract

12 pages, 12973 KiB  
Article
Effect of Different Heat Treatment Processes on the Microstructure and Properties of Cu-15Ni-3Al Alloys
by Jinchun Ren, Qiangsong Wang, Liyan Dong, Junru Gao and Xinlu Chai
Materials 2025, 18(12), 2678; https://doi.org/10.3390/ma18122678 - 6 Jun 2025
Viewed by 387
Abstract
This study systematically investigates the influence of different heat treatment processes on the microstructural evolution and mechanical properties of Cu-15Ni-3Al alloys, with particular emphasis on the synergistic strengthening mechanisms of spinodal decomposition and precipitation hardening. Two distinct aging routes—solution aging and direct aging—were [...] Read more.
This study systematically investigates the influence of different heat treatment processes on the microstructural evolution and mechanical properties of Cu-15Ni-3Al alloys, with particular emphasis on the synergistic strengthening mechanisms of spinodal decomposition and precipitation hardening. Two distinct aging routes—solution aging and direct aging—were designed to facilitate a comparative assessment of microstructural characteristics and their correlation with mechanical performance. Comprehensive characterization was conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and room-temperature tensile testing to elucidate the structure–property relationships. The results reveal that direct aging promotes the formation of fine, coherent L12-type Ni3Al precipitates and the evolution of Ni-enriched regions initially generated through spinodal decomposition into stable Ni3Al precipitates. These microstructural features act as effective barriers to dislocation motion, thereby significantly enhancing both strength and ductility. The findings provide valuable insights into optimizing heat treatment strategies to improve the performance of Cu-Ni-Al alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 13464 KiB  
Article
The Design and Microstructure Evolution Mechanism of New Cr1.3Ni2TiAl, CoCr1.5NiTi1.5Al0.2, and V0.3CoCr1.2NiTi1.1Al0.2 Eutectic High-Entropy Alloys
by Xin Zhang, Haitao Yan, Yao Xiao, Wenxin Feng and Yangchuan Cai
Metals 2025, 15(6), 613; https://doi.org/10.3390/met15060613 - 29 May 2025
Viewed by 338
Abstract
To expand the fundamental understanding of eutectic high-entropy alloys (EHEAs), three novel alloy systems—Cr1.3Ni2TiAl, CoCr1.5NiTi1.5Al0.2, and V0.3CoCr1.2NiTi1.1Al0.2—were rationally designed through synergistic phase diagram analysis and [...] Read more.
To expand the fundamental understanding of eutectic high-entropy alloys (EHEAs), three novel alloy systems—Cr1.3Ni2TiAl, CoCr1.5NiTi1.5Al0.2, and V0.3CoCr1.2NiTi1.1Al0.2—were rationally designed through synergistic phase diagram analysis and thermodynamic parameter calculations. Comprehensive microstructural characterization coupled with mechanical property evaluation revealed that these alloys possess FCC+BCC dual-phase architectures with atypical irregular eutectic morphologies. Notably, progressive microstructural evolution was observed, including amplified grain boundary density and the emergence of brittle nanoscale precipitates. Mechanical testing demonstrated superior compressive yield strengths in these alloys compared to conventional FCC+BCC EHEAs with ordered eutectic structures, albeit accompanied by reduced fracture strain. The Cr1.3Ni2TiAl alloy exhibited optimal ductility, with a maximum fracture strain of 15.6%, while V0.3CoCr1.2NiTi1.1Al0.2 achieved peak strength, with a compressive yield strength of 1389.5 MPa. Multiscale analysis suggests that the enhanced mechanical performance arises from the synergistic interplay between irregular eutectic configurations, expanded grain boundary area, and precipitation strengthening mechanisms. Full article
Show Figures

Figure 1

10 pages, 4148 KiB  
Article
The Recrystallized Microstructures and Mechanical Properties of a Hypo-Eutectic Al13Ni36Cr10Fe40Mo1 High-Entropy Alloy
by Hui Li, Han Wang, Xiaoyu Bai, Peng Yan, Linxiang Liu, Chuwen Wang, Yunji Qiu and Zhijun Wang
Materials 2025, 18(11), 2454; https://doi.org/10.3390/ma18112454 - 23 May 2025
Viewed by 446
Abstract
Recrystallization is a critical process for tailoring the microstructure to enhance the mechanical properties of alloys. In duplex-phase alloys, the recrystallization is different due to the influence of the second phase. Hypo-eutectic high-entropy alloys (HEAs) with two phases are promising structural materials. Understanding [...] Read more.
Recrystallization is a critical process for tailoring the microstructure to enhance the mechanical properties of alloys. In duplex-phase alloys, the recrystallization is different due to the influence of the second phase. Hypo-eutectic high-entropy alloys (HEAs) with two phases are promising structural materials. Understanding the laws of microstructure and mechanical properties during recrystallization is essential for fabrication and application. Here, we systematically investigate the influence of recrystallization time on the microstructure and mechanical properties of an as-cast hypo-eutectic high-entropy alloy (HEA), Al13Ni36Cr10Fe40Mo1. As the recrystallization time increases from 10 min to 8 h at 1100 °C, the cold-rolled alloy gradually completed the recrystallization process with a residual large B2 phase and equiaxed FCC grains decorated with B2 precipitation. The average grain size of the FCC phase increases slightly from 2.60 μm to 3.62 μm, while the fine B2 phase precipitates along the FCC phase’s grain boundaries. This optimized microstructure significantly improves the alloy’s tensile strength from 422 MPa to 877 MPa, while maintaining a substantial plasticity of 41%, achieving an excellent strength–ductility balance. These findings provide useful information for regulating the industrial thermomechanical treatment of dual-phase hypo-eutectic high-entropy alloys. Full article
Show Figures

Graphical abstract

16 pages, 5189 KiB  
Article
Analysis of Precipitation Control Process and Mechanical Properties of Ti-2Al-9.2Mo-2Fe Alloy
by Su-Hong Shin and Dong-Geun Lee
Materials 2025, 18(11), 2448; https://doi.org/10.3390/ma18112448 - 23 May 2025
Viewed by 345
Abstract
Ti-2Al-9.2Mo-2Fe (2A2F) alloy is a low-cost β-Ti alloy in which the expensive β-stabilizing elements (Ta, Nb, W, Ni) are replaced with relatively inexpensive Mo and Fe for use in low-cost applications in various industries. The 2A2F alloy exhibits excellent mechanical properties such as [...] Read more.
Ti-2Al-9.2Mo-2Fe (2A2F) alloy is a low-cost β-Ti alloy in which the expensive β-stabilizing elements (Ta, Nb, W, Ni) are replaced with relatively inexpensive Mo and Fe for use in low-cost applications in various industries. The 2A2F alloy exhibits excellent mechanical properties such as high specific strength and low elastic modulus compared to conventional steel alloys but is prone to brittleness owing to the formation of the ω phase when heat-treated at relatively low temperatures. Therefore, an appropriate aging treatment should be performed to control the precipitation of the isothermal ω phase and secondary α phase. This study aims to derive the appropriate aging-treatment conditions following a solution treatment at 790 °C for 1 h, which is below the β-transus temperature of 815 °C. The aging treatments are conducted at holding temperatures in the range of 450–600 °C and holding times between 1 and 18 h. At relatively low aging temperatures of 450 °C and 500 °C, the precipitation of the isothermal ω phase resulted in significantly high hardness and compressive strength. As the aging temperature and holding time increased, the ω phase gradually transformed into the secondary α phase, leading to a balanced combination of strength and ductility. However, at excessively high aging temperatures and prolonged durations, excessive precipitation and growth of secondary α phases occurred, which caused a reduction in hardness and compressive strength, accompanied by an increase in ductility. In this study, the effects of precipitation evolution on mechanical properties such as tensile strength and hardness under various heat treatment conditions were comparatively analyzed. Full article
Show Figures

Graphical abstract

11 pages, 7824 KiB  
Article
Effects of Heat Treatment Cooling Methods on Precipitated Phase and Tensile Properties of Fe-18Mn-10Al-1C-5Ni Lightweight Steel
by Yu Wang, Heng Cao, Yanchun Lou, Lei Cao, Yunbao Gao and Ling Zhao
Materials 2025, 18(10), 2364; https://doi.org/10.3390/ma18102364 - 19 May 2025
Cited by 1 | Viewed by 424
Abstract
This research focuses on Fe-18Mn-10Al-1C-5Ni lightweight steel and deeply explores the influences of three different cooling methods, namely, water quenching (WQ), air cooling (AQ), and furnace cooling (FQ), on the precipitation behavior of the B2 phases and κ-carbides in the lightweight steel. The [...] Read more.
This research focuses on Fe-18Mn-10Al-1C-5Ni lightweight steel and deeply explores the influences of three different cooling methods, namely, water quenching (WQ), air cooling (AQ), and furnace cooling (FQ), on the precipitation behavior of the B2 phases and κ-carbides in the lightweight steel. The intrinsic relationship among the precipitated phases, mechanical properties, and fracture behavior is revealed. Compared with the WQ sample, the size of the intragranular B2 phase in the AQ sample did not change significantly (an increment of 9 nm), but nano-sized κ-carbides appeared at the grain boundaries and inside the grains. The yield strength and tensile strength of the AQ sample significantly increased to 1232 MPa and 1347 MPa, respectively, while an elongation of 17.4% was still maintained, which benefitted from the synergistic effect of the grain boundary B2, intragranular B2, and nano-sized κ-carbides. When the cooling rate of the heat treatment was further reduced, the size of the intragranular B2 phase in the FQ sample increased slightly (332 nm), and the κ-carbides at the grain boundaries became obviously coarsened (170 nm), resulting in a severe reduction in the elongation (2.3%) because, during the tensile deformation process, the coarsened κ-carbides at the grain boundaries promoted the nucleation of voids and microcracks. The present work provides new insights into the cooling heat treatment process of lightweight steel. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 20780 KiB  
Article
Effect of Si on Mechanical Properties and Oxide Film Formation of AFA Alloy at Low Oxygen Pressure
by Qijun Jia, Xiaoqiang Jiang, Changjun Wu, Junxiu Chen, Xiangying Zhu, Ya Liu and Xuping Su
Coatings 2025, 15(5), 602; https://doi.org/10.3390/coatings15050602 - 18 May 2025
Viewed by 484
Abstract
The Cr2O3 film on the outer surface of traditional cracking furnace tubes is prone to spalling, which shortens the tube life. Fe-Ni-Cr-based austenitic stainless steel (AFA alloy) with added Al has attracted attention because it can form a more stable [...] Read more.
The Cr2O3 film on the outer surface of traditional cracking furnace tubes is prone to spalling, which shortens the tube life. Fe-Ni-Cr-based austenitic stainless steel (AFA alloy) with added Al has attracted attention because it can form a more stable Al2O3 film on the surface. However, the alloy’s mechanical performance and the stability and oxidation resistance of the oxide film need to be improved simultaneously. This investigation examined silicon concentration variations (0–1.5 wt.%) on AFA alloy’s ambient-temperature tensile performance and oxidation response under reduced oxygen partial pressures (10−18–10−16 bar). The findings demonstrate that the alloy was composed of the FCC, B2-NiAl, and M23C6 phases. With Si addition, the B2-NiAl phase volume fraction increased. Mechanical testing demonstrated progressive elevation in tensile strength and hardness coupled with reduced elongation, attributable to combined solid-solution hardening and B2-NiAl precipitation strengthening. At low oxygen pressure, a continuous multi-layer oxide film developed on the alloy’s surface: the outermost layer was composed of a continuous Cr2O3 layer, with a fraction of MnCr2O4 spinel phase enriched on the outer surface. The middle layer was SiO2, which evolved from a particulate to a continuous layer with increasing Si content. The innermost layer was composed of Al2O3. Accelerated manganese diffusion through Cr2O3 facilitated MnCr2O4 spinel layer formation. Full article
Show Figures

Graphical abstract

12 pages, 8797 KiB  
Article
Effect of Heat Treatments on the Microstructure and Properties of 18Ni300 Maraging Steel Produced by Selective Laser Melting
by Jun Hu, Lei Zhang, Xuanzheng Wang, Wenzhao Lin, Pingang Wei, Yiwei Cao, Juanqi Zhang, Kai Sun, Bing Yang and Wentao Li
Materials 2025, 18(10), 2284; https://doi.org/10.3390/ma18102284 - 14 May 2025
Viewed by 411
Abstract
The microstructure and tensile properties of 18Ni-300 maraging steel manufactured by selective laser melting (SLM) were investigated after different heat treatments and compared to the original samples. Heat treatment alters the microscopic morphology of the original sample, and the differences in the cross-sectional [...] Read more.
The microstructure and tensile properties of 18Ni-300 maraging steel manufactured by selective laser melting (SLM) were investigated after different heat treatments and compared to the original samples. Heat treatment alters the microscopic morphology of the original sample, and the differences in the cross-sectional and longitudinal sectional morphology of the original sample become indistinguishable after heat treatment. Cellular and long strip structures can be observed in the original and aged samples. After solution aging, the cellular and long strip structures completely disappeared, being transformed into parallel and almost equal-length plate martensite. Additionally, inverted austenite and Ni3(Ti, Al, Mo) precipitates were present. The microhardness increased from 310 HV to 710 HV, the nanohardness rose to 7.7 GPa, tensile strength reached 2068 MPa, and elongation to fracture improved to 4.5%. These optimal properties were achieved with solution treatment at 820 °C for 2 h and aging at 490 °C for 7 h. Full article
Show Figures

Figure 1

14 pages, 6397 KiB  
Article
Effect of Cr:Al Ratio on Corrosion Mechanism of Ni-Cr-Mo-Al Alloys in 3.5 wt.% NaCl Solution: Microstructure and Electrochemical and Passive Characteristics
by Chenggang Lian, Wei Xie, Huanjie Fang, Wenqian Wang, Jianhao Yu, Jicheng Li and Xiaodong He
Materials 2025, 18(10), 2177; https://doi.org/10.3390/ma18102177 - 8 May 2025
Viewed by 418
Abstract
In this study, the microstructure and electrochemical and passive characteristics of NiCr25.2−xMoAlx (x = 0, 1.25, 2.5, and 5 mol.%) alloys were investigated. The results show that Ni-Cr-Mo-Al alloys with varying Cr:Al ratios both had a single FCC structure without [...] Read more.
In this study, the microstructure and electrochemical and passive characteristics of NiCr25.2−xMoAlx (x = 0, 1.25, 2.5, and 5 mol.%) alloys were investigated. The results show that Ni-Cr-Mo-Al alloys with varying Cr:Al ratios both had a single FCC structure without any second structure precipitates, and decreases in dislocation density and grain size were observed as the Al content in NiCrMoAl alloys increased. It was found from the electrochemical results that the NiCr23.95MoAl1.25 alloys had the maximum radius for a semicircle and the lowest Icorr, indicating an enhanced anti-corrosion performance (Rct: 8.08 ± 0.368 × 105 Ω cm2, Icorr: 1.05 ± 0.003 × 10−7 A/cm2). In this study, it was found that the anti-corrosion performance of the alloys had an approximate connection to the composition and density of passive films. Denser and more stable microstructures in NiCr23.95MoAl1.25 alloys were further proven by potentiostatic polarization tests and Mott–Schottky experiments, showing a lower stable current density and acceptor density (NA: 9.79 ± 0.4 × 10−20 cm−3). In addition, the results of XPS show that the Al1.25 specimen had the highest Cr2O3 in the passive film’s content among the NiCrMoAl alloys. Cr2O3 was the main component, suggesting an enhanced protective influence of passive film. The present study can offer guidance for the application of nickel-based alloys with high anti-corrosion resistance in marine environments. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

Back to TopTop