Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Nano (Ti,Cr)C powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8738 KiB  
Article
Influence of Remaining Oxide on the Adhesion Strength of Supersonic Particle Deposition TiO2 Coatings on Annealed Stainless Steel
by Noor irinah Omar, Yusliza Yusuf, Syahrul Azwan bin Sundi, Ilyani Akmar Abu Bakar, Verry Andre Fabiani, Toibah Abdul Rahim and Motohiro Yamada
Coatings 2023, 13(6), 1086; https://doi.org/10.3390/coatings13061086 - 12 Jun 2023
Cited by 1 | Viewed by 2085
Abstract
The cold spray or Supersonic Particle Deposition technique has great potential for producing ceramic nanostructured coatings. This technique operates at a processing temperature that is low enough to preserve the initial feedstock materials’ microstructure. Nevertheless, depositing ceramic powders using a cold spray can [...] Read more.
The cold spray or Supersonic Particle Deposition technique has great potential for producing ceramic nanostructured coatings. This technique operates at a processing temperature that is low enough to preserve the initial feedstock materials’ microstructure. Nevertheless, depositing ceramic powders using a cold spray can be challenging because of the materials’ brittle nature. The interaction between substrate and particles is significantly influenced by substrate attributes, including hardness, material nature, degree of oxidation and temperature. In this study, the effect of the substrate’s remaining oxide composition on the adhesion strength of an agglomerated nano-TiO2 coating was investigated. The results showed that the coating adhesion strength increased for hard materials such as stainless steel and pure chromium as the annealed substrate temperature also increased from room temperature to 700 °C, indicating thicker oxide on the substrate surface. TiO2 particles mainly bond with SUS304 substrates through oxide bonding, which results from a chemical reaction involving TiO2-OH. Chromium oxide (Cr2O3) is thermodynamically preferred in SUS304 and provides the OH component required for the reaction. SUS304 shows a thermodynamic preference for chromium oxide (Cr2O3), and this enables Cr2O3 to provide the necessary OH component for the reaction. Full article
(This article belongs to the Special Issue Advanced Cold Spraying Technology)
Show Figures

Figure 1

8 pages, 2323 KiB  
Communication
Synthesis and Characterization of Mechanically Alloyed Nanostructured (Ti,Cr)C Carbide for Cutting Tools Application
by Mohsen Mhadhbi and Wojciech Polkowski
Crystals 2022, 12(9), 1280; https://doi.org/10.3390/cryst12091280 - 9 Sep 2022
Cited by 5 | Viewed by 1909
Abstract
(Ti,Cr)C is a novel additive for high-performance cermets. In this work, a (Ti0.8Cr0.2)C nanostructured solid solution was synthesized via Mechanical Alloying (MA) from the mixture of of Ti, Cr, and C powders. The MA process was carried out at [...] Read more.
(Ti,Cr)C is a novel additive for high-performance cermets. In this work, a (Ti0.8Cr0.2)C nanostructured solid solution was synthesized via Mechanical Alloying (MA) from the mixture of of Ti, Cr, and C powders. The MA process was carried out at room temperature under argon atmosphere with a duration limited to 20 h. Phase changes and microstructure evolution of the powders during the MA process were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The results of XRD analysis demonstrated the synthesis of (Ti,Cr)C solid solution with a crystallite size of about 10 nm that were micro-strained to about 1.34%. The crystallite size displays a decreasing trend with increasing milling time. The results of direct observations of structural features by TEM method in 20 h MAed samples shows a good agreement with the results from the XRD analyses. Full article
(This article belongs to the Special Issue Crystal Plasticity (Volume II))
Show Figures

Figure 1

16 pages, 61359 KiB  
Article
Impact of Magnetic-Pulse and Chemical-Thermal Treatment on Alloyed Steels’ Surface Layer
by Kateryna Kostyk, Ivan Kuric, Milan Saga, Viktoriia Kostyk, Vitalii Ivanov, Viktor Kovalov and Ivan Pavlenko
Appl. Sci. 2022, 12(1), 469; https://doi.org/10.3390/app12010469 - 4 Jan 2022
Cited by 4 | Viewed by 2321
Abstract
The relevant problem is searching for up-to-date methods to improve tools and machine parts’ performance due to the hardening of surface layers. This article shows that, after the magnetic-pulse treatment of bearing steel Cr15, its surface microhardness was increased by 40–50% compared to [...] Read more.
The relevant problem is searching for up-to-date methods to improve tools and machine parts’ performance due to the hardening of surface layers. This article shows that, after the magnetic-pulse treatment of bearing steel Cr15, its surface microhardness was increased by 40–50% compared to baseline. In this case, the depth of the hardened layer was 0.08–0.1 mm. The magnetic-pulse processing of hard alloys reduces the coefficient of microhardness variation from 0.13 to 0.06. A decrease in the coefficient of variation of wear resistance from 0.48 to 0.27 indicates the increased stability of physical and mechanical properties. The nitriding of alloy steels was accelerated 10-fold that of traditional gas upon receipt of the hardened layer depth of 0.3–0.5 mm. As a result, the surface hardness was increased to 12.7 GPa. Boriding in the nano-dispersed powder was accelerated 2–3-fold compared to existing technologies while ensuring surface hardness up to 21–23 GPa with a boride layer thickness of up to 0.073 mm. Experimental data showed that the cutting tool equipped with inserts from WC92Co8 and WC79TiC15 has a resistance relative to the untreated WC92Co8 higher by 183% and WC85TiC6Co9—than 200%. Depending on alloy steel, nitriding allowed us to raise wear resistance by 120–177%, boriding—by 180–340%, and magneto-pulse treatment—by more than 183–200%. Full article
Show Figures

Figure 1

16 pages, 7315 KiB  
Article
High-Resolution Microstructure Characterization of Additively Manufactured X5CrNiCuNb17-4 Maraging Steel during Ex and In Situ Thermal Treatment
by Mihaela Albu, Bernd Panzirsch, Hartmuth Schröttner, Stefan Mitsche, Klaus Reichmann, Maria Cecilia Poletti and Gerald Kothleitner
Materials 2021, 14(24), 7784; https://doi.org/10.3390/ma14247784 - 16 Dec 2021
Cited by 4 | Viewed by 2672
Abstract
Powder and selective laser melting (SLM) additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and [...] Read more.
Powder and selective laser melting (SLM) additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr) oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating in the scanning transmission electron microscope up to 950 °C. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles, and the precipitation of Ni and Cr particles upon in situ heating, have been systematically documented as well. Full article
(This article belongs to the Special Issue Advanced Techniques for Materials Characterization)
Show Figures

Figure 1

13 pages, 6844 KiB  
Article
Microstructural Characterization of TiC-Reinforced Metal Matrix Composites Fabricated by Laser Cladding Using FeCrCoNiAlTiC High Entropy Alloy Powder
by Sangwoo Nam, Hyung Won Lee, In-Ho Jung and Young-Min Kim
Appl. Sci. 2021, 11(14), 6580; https://doi.org/10.3390/app11146580 - 17 Jul 2021
Cited by 13 | Viewed by 3131
Abstract
TiC-reinforced metal matrix composites were fabricated by laser cladding and FeCrCoNiAlTiC high entropy alloy powder. The heat of the laser formed a TiC phase, which was consistent with the thermodynamic calculation, and produced a coating layer without interfacial defects. TiC reinforcing particles exhibited [...] Read more.
TiC-reinforced metal matrix composites were fabricated by laser cladding and FeCrCoNiAlTiC high entropy alloy powder. The heat of the laser formed a TiC phase, which was consistent with the thermodynamic calculation, and produced a coating layer without interfacial defects. TiC reinforcing particles exhibited various morphologies, such as spherical, blocky, and dendritic particles, depending on the heat input and coating depth. A dendritic morphology is observed in the lower part of the coating layer near the AISI 304 substrate, where heat is rapidly transferred. Low heat input leads to an inhomogeneous microstructure and coating depth due to the poor fluidity of molten pool. On the other hand, high heat input dissolved reinforcing particles by dilution with the substrate. The coating layer under the effective heat input of 50 J/mm2 had relatively homogeneous blocky particles of several micrometers in size. The micro-hardness value of the coating layer is over 900 HV, and the nano-hardness of the reinforcing particles and the matrix were 17 GPa and 10 GPa, respectively. Full article
Show Figures

Figure 1

12 pages, 6284 KiB  
Article
Effect of Nano-Y2O3 Addition on Microstructure and Tensile Properties of High-Nb TiAl Alloy Prepared by Spark Plasma Sintering
by Yingchao Guo, Yongfeng Liang, Junpin Lin and Fei Yang
Metals 2021, 11(7), 1048; https://doi.org/10.3390/met11071048 - 30 Jun 2021
Cited by 10 | Viewed by 2513
Abstract
Nano-Y2O3 reinforced Ti-47.7Al-7.1Nb-(V, Cr) alloy was fabricated by a powder metallurgy route using spark plasma sintering (SPS), and the influence of nano-Y2O3 contents on the microstructure and mechanical properties were investigated systematically. The results revealed that the [...] Read more.
Nano-Y2O3 reinforced Ti-47.7Al-7.1Nb-(V, Cr) alloy was fabricated by a powder metallurgy route using spark plasma sintering (SPS), and the influence of nano-Y2O3 contents on the microstructure and mechanical properties were investigated systematically. The results revealed that the ultimate tensile strength and elongation of the alloy were 570 ± 28 MPa and 1.7 ± 0.6% at 800 °C, 460 ± 23 MPa and 6.1 ± 0.4% at 900 °C with no nano-Y2O3, 662 ± 24 MPa and 5.5 ± 0.5% at 800 °C, and 466 ± 25 MPa and 16.5 ± 0.8% at 900 °C with 0.05 at% nano-Y2O3 addition, respectively. Due to the fine-grain strengthening and the second-phase strengthening, both tensile strength and elongation of the high-Nb TiAl alloy were enhanced with the addition of nano-Y2O3. Full article
Show Figures

Figure 1

26 pages, 3694 KiB  
Review
Electrical Discharge Machining Non-Conductive Ceramics: Combination of Materials
by Marina A. Volosova, Anna A. Okunkova, Sergey V. Fedorov, Khaled Hamdy and Mariya A. Mikhailova
Technologies 2020, 8(2), 32; https://doi.org/10.3390/technologies8020032 - 28 May 2020
Cited by 36 | Viewed by 8067
Abstract
One of the promising processing methods for non-conductive structural and functional ceramics based on ZrO2, Al2O3, and Si3N4 systems is electrical discharge machining with the assistance of an auxiliary electrode that can be presented [...] Read more.
One of the promising processing methods for non-conductive structural and functional ceramics based on ZrO2, Al2O3, and Si3N4 systems is electrical discharge machining with the assistance of an auxiliary electrode that can be presented in the form of conductive films with a thickness up to 4–10 µm or nanoparticles - granules, tubes, platelets, multidimensional particles added in the working zone as a free poured powder the proper concentration of which can be provided by ultrasound emission or by dielectric flows or as conductive additives in the structure of nanocomposites. However, the described experimental approaches did not reach the production market and industry. It is related mostly to the chaotic development of the knowledge and non-systematized data in the field when researchers often cannot ground their choice of the material for auxiliary electrodes, assisting powders, or nano additives or they cannot explain the nature of processes that were observed in the working tank during experiments when their results are not correlated to the measured specific electrical conductivity of the electrodes, particles, ceramic workpieces or nanocomposites but depends on something else. The proposed review includes data on the main electrophysical and chemical properties of the components in the presence of heat when the temperature in the interelectrode gap reaches 10,000 °C, and the systematization of data on ceramic pressing methods, including spark plasma sintering, the chemical reactions that occur in the interelectrode gap during sublimation of primary (brass and copper) and auxiliary electrodes made of transition metals Ti, Cr, Co, and carbon, auxiliary electrodes made of metals with low melting point Zn, Ag, Au, Al, assisting powder of oxide ceramics TiO2, CeO2, SnO2, ITO, conductive additives Cu, W, TiC, WC, and components of Al2O3 and Zr2O workpieces in interaction with the dielectric fluid - water and oil/kerosene medium. Full article
(This article belongs to the Special Issue Reviews and Advances in Materials Processing)
Show Figures

Graphical abstract

13 pages, 6473 KiB  
Article
Effect of Small Variations in Zr Content on the Microstructure and Properties of Ferritic ODS Steels Consolidated by SPS
by Andrea García-Junceda, Eric Macía, Dariusz Garbiec, Marta Serrano, José M. Torralba and Mónica Campos
Metals 2020, 10(3), 348; https://doi.org/10.3390/met10030348 - 6 Mar 2020
Cited by 19 | Viewed by 3381
Abstract
Two different zirconium contents (0.45 and 0.60 wt.%) have been incorporated into a Fe-14Cr-5Al-3W-0.4Ti-0.25Y2O3 oxide dispersion-strengthened (ODS) steel in order to evaluate their effect on the final microstructure and mechanical properties. The powders with the targeted compositions were obtained by [...] Read more.
Two different zirconium contents (0.45 and 0.60 wt.%) have been incorporated into a Fe-14Cr-5Al-3W-0.4Ti-0.25Y2O3 oxide dispersion-strengthened (ODS) steel in order to evaluate their effect on the final microstructure and mechanical properties. The powders with the targeted compositions were obtained by mechanical alloying (MA), and subsequently processed by spark plasma sintering (SPS) at two different heating rates: 100 and 400 °C·min−1. Non-textured bimodal microstructures composed of micrometric and ultrafine grains were obtained. The increase in Zr content led to a higher percentage of Zr nano-oxides and larger regions of ultrafine grains. These ultrafine grains also seem to be promoted by higher heating rates. The effective pinning of the dislocations by the Zr dispersoids, and the refining of the microstructure, have significantly increased the strength exhibited by the ODS steels during the small punch tests, even at high temperatures (500 °C). Full article
(This article belongs to the Special Issue Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites)
Show Figures

Figure 1

13 pages, 6372 KiB  
Article
Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling
by M. Sherif El-Eskandarany and Ehab Shaban
Materials 2015, 8(10), 6880-6892; https://doi.org/10.3390/ma8105350 - 10 Oct 2015
Cited by 16 | Viewed by 6000
Abstract
Ultrafine MgH2 nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless [...] Read more.
Ultrafine MgH2 nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH2 was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media), and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH2 powders. The as-fabricated nanocomposite MgH2/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol), and the short time required for achieving a complete absorption (6.6 min) and desorption (8.4 min) of 5.51 wt. % H2 at a moderate temperature of 275 °C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van’t Hoff approach was used to calculate the enthalpy (DH) and entropy (DS) of hydrogenation for MgH2, which was found to be -72.74 kJ/mol and 112.79 J/mol H2/K, respectively. Moreover, van’t Hoff method was employed to calculate the DH and DS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H2/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h. Full article
Show Figures

Figure 1

Back to TopTop