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Abstract: Nano-Y2O3 reinforced Ti-47.7Al-7.1Nb-(V, Cr) alloy was fabricated by a powder metal-
lurgy route using spark plasma sintering (SPS), and the influence of nano-Y2O3 contents on the
microstructure and mechanical properties were investigated systematically. The results revealed
that the ultimate tensile strength and elongation of the alloy were 570 ± 28 MPa and 1.7 ± 0.6% at
800 ◦C, 460 ± 23 MPa and 6.1 ± 0.4% at 900 ◦C with no nano-Y2O3, 662 ± 24 MPa and 5.5 ± 0.5% at
800 ◦C, and 466 ± 25 MPa and 16.5 ± 0.8% at 900 ◦C with 0.05 at% nano-Y2O3 addition, respectively.
Due to the fine-grain strengthening and the second-phase strengthening, both tensile strength and
elongation of the high-Nb TiAl alloy were enhanced with the addition of nano-Y2O3.

Keywords: high-Nb TiAl; nano-Y2O3; spark plasma sintering (SPS)

1. Introduction

With the low density, good elevated-temperature strength, high resistance to oxidation,
and excellent creep properties, TiAl alloys are one of the most important aerospace materials
widely used in turbine blades, powerplant turbines, turbochargers rotors, and so on [1–4].
Nevertheless, compared with conventional TiAl alloy, high-Nb-containing TiAl alloys
demonstrate high strength levels and good oxidation resistance between 800 ◦C and 900 ◦C,
extending the application temperature of TiAl alloys [5,6].

However, metal matrix composites (MMCs) have been investigated worldwide in
recent years because the MMCs can show greatly enhanced ambient and high-temperature
strength and stiffness compared with the matrix alloys [7–9]. TiAl metal matrix com-
posites are mainly composed by the addition of ceramic particles, such as Y2O3 [10–13],
Ti2AlC [14–19], TiB2 [20–24], Al2O3 [25], WC [26], and B4C [27,28], and etc. in the TiAl
metal matrix. As one kind of rare earth oxide, the thermodynamic characteristics of Y2O3
are the most stable [29].

Ding et al. [30] investigated the effect of the Y2O3 particles on the fracture toughness
of the directionally solidified Ti-45Al-2Cr-2Nb, and the results showed that the fracture
toughness reduced with the increase of Y2O3 particles, and the cracking along the bonding
interface and the ceramic particles. Tian et al [12] fabricated the Y2O3 particles reinforced
Ti-48Al-2Cr-2Nb alloy by induction skull melting (ISM), and it demonstrated that within a
certain range, adding nano-Y2O3 could refine the microstructure and improve strength and
elongation of TiAl alloy. Guo et al. [11] found that the content γ phase increased with the
addition of nano-Y2O3, and the solidification pathway of TiAl alloy into high-Al side. The
ultimate tensile strength (UTS) and elongation were 561 MPa and 1.49% for T4822-Y2O3 and
611 MPa and 0.79% for the T486-Y2O3 alloy. Xiao et al. [10] reported 0.15 at% nano-Y2O3
addition could increase ultimate tensile strength (UTS) and elongation of the TNV alloy.
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The TNV-Y2O3 alloy displayed lower steady-state creep rates and longer creep life, and the
stress exponent was 3.09 lower than the 4.03 of the TNV alloy. Gu et al. [31] prepared the
β-solidifying TiAl alloy with YAl2 and Y2O3 precipitates by spark plasma sintering, and the
sintered specimen at 1150 ◦C had an ultimate tensile strength of 1113.1 MPa, yield strength
of 881 MPa, and elongation of 1.41%. Due to the Y2O3 and YAl2 precipitates, the grains
and lamellar spacing were refined, dragged the grain boundary migration, and hindered
the dislocation movement, leading to the improvement of the mechanical properties.

Therefore, adding Y2O3 powders is a feasible way to adjust the microstructure and
properties, and there are rarely studies on the addition of nano-Y2O3 through the powder
metallurgy method. This research concentrated on the high-temperature tensile proper-
ties and fractures behavior of high-Nb TiAl alloy with Y2O3 addition. The influence on
microstructure and elevated-temperature tensile properties with different contents of Y2O3
addition was investigated.

2. Materials and Methods

The pre-alloyed powders of high-Nb TiAl alloy with chemical compositions of Ti-
47.7Al-7.1Nb-1.1Cr-2.3V (at%) were prepared by plasma-rotating electrode process. As
shown in Figure 1a, most of the pre-alloyed powder is spherical and a small part is satellite
powder. The interior morphology exhibits a dendrite appearance and the particle sizes
of pre-alloyed powders range from 11.68 µm to 40.24 µm, as shown in Figure 1b,c. The
Y2O3 powders were supplied by Shanghai Naiou Nanotechnology Co. Ltd with an average
particle size of 80 nm. The pro-alloyed powders and nano-Y2O3 powders were mixed in an
argon atmosphere by ball milling with the weight ratio of balls to powders of 5:1, and a
speed of 250 r/min for 6 h. After the mixed powders were sintered using the spark plasma
sintering furnace (SPS-20 T-10 V, Shanghai Chen Hua Technology Co. Ltd., Shanghai,
China), they were held for 3 min at 1350 ◦C under uniaxial stress of 45 MPa.
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The SEM samples were first ground with SiC papers to 1500 grit, then electron-
polished in a solution of 60 vol% methanol, 35 vol% butanol, and 5 vol% perchloric acid.
The fracture specimens were prepared by mechanical polishing with grounding up to
5000 mesh. The microstructure was characterized by scanning electron microscopy (SEM,
Carl Zeiss AG, Jena, Germany), and the lamellar colony size and its volume fraction were
measured by image-pro plus. A uniaxial tensile test was performed using the CMT4105
(Changchun Institute of Testing Machines, Changchun, China ) machine at 800 ◦C and
900 ◦C with a constant displacement rate of 5 × 10−4 s−1. The tensile specimens had a
gauge length of 10 mm, width of 2.5 mm, and thickness of 1.2 mm, and the surfaces of the
tensile specimen were ground to 1500-grit SiC papers before testing.

3. Results and Discussion
3.1. Microstructure

The XRD pattern of Ti-47.7Al-7.1Nb-1.1Cr-2.3V (at%) pre-alloyed powders and four
alloys with different content of nano-Y2O3 are shown in Figure 2. It can be seen that
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the spectrum of pre-alloyed powders contained α2-Ti3Al, γ-TiAl, and B2 peaks, but was
dominated by the peaks of the α2 phase. This was due to the high cooling rate of droplets
about 104–106 K s−1 during the atomization, leading to the decrease of transformation
α→γ replaced by α→α2 ordering transformation [32]. After sintering, the high-Nb TiAl
alloys with different content of nano-Y2O3 addition were mainly including γ-TiAl and
α2-Ti3Al phases but no obvious peaks of Y2O3 due to the small addition.
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Figure 3 shows the SEM-BSE microstructures of the experimental alloys with different
content of nano-Y2O3 addition. It was found that the microstructure of Ti-47.7Al-7.1Nb-
1.1Cr-2.3V alloy consisted of γ+α2 lamellar and a few γ, α2, and B2 phases around the
boundaries of the lamellar colonies or in the γ+α2 lamellar without addition nano-Y2O3
as shown in Figure 3a,b. With 0.05 at% of Y2O3 addition, the sample showed a duplex
microstructure including half approximately of the lamellar colony and more equiaxed
γ phase exhibited in Figure 3c. Due to the nano-Y2O3 particles being distributed on the
surface of pre-alloyed powders after ball milling, the Y2O3 particles displayed an obvious
network structure in the TiAl matrix. It can be seen from Figure 3d that most of the
still Y2O3 nanoparticles and a few of the micro-scale precipitates were in the TiAl matrix
with the 0.05 at% nano-Y2O3 addition. The Y2O3 particles were dispersed in the γ phase,
lamellar colony, and colony boundary. Obviously, with the content of Y2O3 increasing
from 0.05 to 0.20 at%, the microstructure of the sintered sample changed from duplex to
near lamellar as shown in Figure 3c,e,g. However, more micro-scale Y2O3 particles were
observed, as shown in Figure. After 3 h, the content of nano-Y2O3 increased to 0.20 at%,
due to the additional Y2O3 particles distributed on the surface of the pre-alloyed powders
after ball milling during the sintering process and additional particle agglomeration and
grow up.
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Figure 4 displays the lamellar colony size and its volume fraction with different
content of nano-Y2O3 addition using the Image-pro plus measurement. It can be seen that
the mean lamellar colony size was 110 ± 35 µm and its volume fraction was about 95 ± 2%
without Y2O3 addition. With the content increase from 0.05% to 0.20%, the volume fractions
of lamellar colony raised from 50 ± 10% to 93 ± 5%. However, the average lamellar colony
sizes with 0.05 at%, 0.1 at%, and 0.2 at% addition were 32± 12 µm, 35 ± 10 µm, 35 ± 15 µm,
and not significantly different.
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Figure 4. Lamellar colony size and its volume fraction with different content of Y2O3 addition.

The schematic diagrams of microstructure evolution before and after sintering is
exhibited in Figure 5 without and with the addition of Y2O3. According to the Ti-Al
quasi-binary phase diagram containing 8Nb (at%) in Ref. [33], the sintering temperature
at 1350 ◦C was in the α+γ phase region. Furthermore, the pre-alloyed powder mainly
consisted of α2 phase and a few γ and B2 phases, and the lamellar microstructure was
probably transformed by α→α + γ→L(α2/γ) after the sintering holding 3 min at 1350 ◦C
as shown in Figure 5a–c [33,34]. With the addition of nano-Y2O3, most particles were
relatively uniformly distributed on the surface of the pre-alloyed powder after ball milling.
Due to the ball milling speed not being too high, most of the pre-alloyed powders were
still spherical before sintering. Figure 5d–f exhibits the microstructure evolution of the
pre-alloyed powder mixing nano-Y2O3 particles before and after sintering. The Y2O3
particles seemed to limit the grain growth and played a prominent role in retaining a
fine microstructure.
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3.2. Tensile Properties and Fractography

Tensile properties of the alloys at 800 ◦C and 900 ◦C with different content of nano-
Y2O3 addition are illustrated in Figure 6. It is can be seen from the results that the ultimate
tensile strength (UST) increased with the Y2O3 addition and decreased with the improve-
ment of the test temperature. At 800 ◦C, the ultimate tensile strength (UST) and elongation
of Ti-47.7Al-7.1Nb-1.1Cr-2.3V (at%) alloy were 569 ± 25 MPa and 1.55 ± 0.3 % without
adding Y2O3. Compared with the high-Nb TiAl alloy matrix, adding 0.05 at% nano-Y2O3,
the UST increased about 82 MPa and the elongation improved about 4.05%. However, the
UST had reduced with the increment of Y2O3 from 0.05 at% to 0.2 at%, and elongation
was slightly different. Increasing the test temperature to 900 ◦C, the UST of the high-Nb
TiAl alloy was 455 ± 15 MPa and did not change significantly with the addition of Y2O3
particles, but the elongation rose from 6.1± 0.5 % to 16.5± 0.6% with the 0.05 at% addition.
Moreover, the alloys with 0.1 at% and 0.2 at% addition did not have a significant influence
on the high-temperature tensile properties as shown in Figure 6. Nano-Y2O3 addition
improved both the ultimate tensile strength (UST) and elongation at elevated temperatures,
and it mainly consists of two kinds of strengthening mechanisms. On the one hand, the
lamellar colony size significantly reduced with the addition of Y2O3 particles. According
to the Hall-Petch relationship, the refinement of the grain has a critical influence on the
increase of mechanical property, and the interface of the fine lamellar can hinder the move-
ment of the substructure [11,31,35]. On the other hand, most of the Y2O3 second phase
is still nano size, and in a few parts of the particle agglomeration with 0.05 at% addition,
the particles can block the movement of dislocation and promote the nucleation of twins
both in the lamellar colonies and in the γ phase [31,35]. Due to the presence of Y2O3
particles, it forms dislocation loops and tangles when the dislocation moves through the
particles by bending around, and the lattice dislocation energy increases with the bending
of dislocation, leading to the improved strength [11].
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Figure 7 exhibits the fracture side face after the tensile test at 800 ◦C with different
content of Y2O3 addition. It was observed that the secondary cracks appeared in the
inter-lamellar or lamellar boundaries, mainly concentrated near the fracture after tensile
testing. During the tensile test, the micro-crack frequently nucleated at the interface of γ/α2
lamellae due to the poor bonding strength between α2 and γ lamellae [11]. Figure 7a,b
exhibits the secondary crack propagates along the lamellar and changing of the direction in
the boundaries of the lamellar without nano-Y2O3 addition. Owing to the addition of Y2O3
particles, the lamellar colony sizes were decreased and the fine lamellar microstructure
restricted the growth of cracks as shown in Figure 7c–h. The combination of the nano-Y2O3
and the matrix worked very well, and there were no cracks or holes between the interfaces
after tensile testing at 800 ◦C.
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The microstructure of the fracture side face after the tensile test at 900 ◦C is illustrated
in Figure 8. The secondary cracks also extended along the direction of the lamellar or
perpendicular to the lamellar without the addition of Y2O3. Compared with the tensile test
at 800 ◦C, there were significant second cracks and voids in the interface of the lamellar
boundaries or the grain boundaries. The reason for this result was mainly due to the mas-
sive γ phase between the lamellar colonies in the duplex microstructure and near-lamellar
microstructure. However, there were no obvious microcracks between the interfaces of
Y2O3 particles and the matrix, which proves the good bonding strength of the Y2O3 and
matrix. After the tensile test at 900 ◦C, it was observed that the lamellae curved in the
alloys with different contents of nano-Y2O3 addition.



Metals 2021, 11, 1048 8 of 12Metals 2021, 11, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 8. Fracture side face after tensile test at 900 °C: (a,b) 0 at%; (c,d) 0.05 at%; (e,f) 0.10 at%; 
(g,h) 0.20 at%. 

Figures 9 and 10 exhibit the tensile fracture morphology at 800 °C and 900 °C with 
different content of Y2O3 addition. The fracture morphology of the alloy without adding 
Y2O3 was similar with no obvious dimples at both 800 °C and 900 °C, with the secondary 
crack, tearing ridges, and cleavage face as shown in Figures 9a,b and 10a,b, and the frac-
ture mechanisms still exhibited cleavage fractures. With the addition of nano-Y2O3, the 
main reason for the failure of alloys at 800 °C and 900 °C was still cleavage cracks, and no 
obvious dimples were found in the fracture morphology. Therefore, the increase of the 
elongation at 900 °C was mainly caused by the second cracks and voids in the interface of 
the lamellar boundaries and the grain boundaries. Additionally, due to the fine grain 
strengthening and the second phase reinforcement, the mechanical property was im-
proved. 

Figure 8. Fracture side face after tensile test at 900 ◦C: (a,b) 0 at%; (c,d) 0.05 at%; (e,f) 0.10 at%;
(g,h) 0.20 at%.

Figures 9 and 10 exhibit the tensile fracture morphology at 800 ◦C and 900 ◦C with
different content of Y2O3 addition. The fracture morphology of the alloy without adding
Y2O3 was similar with no obvious dimples at both 800 ◦C and 900 ◦C, with the secondary
crack, tearing ridges, and cleavage face as shown in Figure 9a,b and Figure 10a,b, and the
fracture mechanisms still exhibited cleavage fractures. With the addition of nano-Y2O3,
the main reason for the failure of alloys at 800 ◦C and 900 ◦C was still cleavage cracks, and
no obvious dimples were found in the fracture morphology. Therefore, the increase of the
elongation at 900 ◦C was mainly caused by the second cracks and voids in the interface
of the lamellar boundaries and the grain boundaries. Additionally, due to the fine grain
strengthening and the second phase reinforcement, the mechanical property was improved.
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4. Conclusions

The present work mainly concentrated on the influence of adding different content of
nano-Y2O3 on the high temperature tensile properties. The conclusions are summarized
as follows.

(1) With the 0.05 at% addition of Y2O3, the sample showed duplex microstructure
including approximately half of the lamellar colony and a more equiaxed γ phase. Most of
the particles were still nano-size, and the average lamellar colonies size decreased from
110 ± 35 µm to 32 ± 12 µm.

(2) The ultimate tensile strength (UST) and elongation of the alloy were 569 ± 25 MPa
and 1.55 ± 0.3% without adding Y2O3. Compared with the high-Nb TiAl alloy matrix,
the UST increased about 82 MPa and the elongation improved about 4.05% when adding
0.05 at% nano-Y2O3.
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(3) The enhancement of the high-temperature tensile property contributed to fine
grain strengthening and the second-phase reinforcement. The interface of the fine lamellar
can hinder the movement of the substructure and the second phase of Y2O3 can block the
movement of dislocation.
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