Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (899)

Search Parameters:
Keywords = NRF transcription factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2005 KiB  
Article
Glyoxalase 1 Inducer, trans-Resveratrol and Hesperetin–Dietary Supplement with Multi-Modal Health Benefits
by Mingzhan Xue, Naila Rabbani and Paul J. Thornalley
Antioxidants 2025, 14(8), 956; https://doi.org/10.3390/antiox14080956 (registering DOI) - 4 Aug 2025
Viewed by 14
Abstract
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose [...] Read more.
A dietary supplement, trans-resveratrol and hesperetin (tRES+HESP)—also known as GlucoRegulate—induces increased expression of glyoxalase 1 (Glo1) by activation of transcription factor Nrf2, countering accumulation of the reactive dicarbonyl glycating agent, methylglyoxal. tRES+HESP corrected insulin resistance and decreased fasting and postprandial plasma glucose and low-grade inflammation in overweight and obese subjects in a clinical trial. The aim of this study was to explore, for the first time, health-beneficial gene expression other than Glo1 induced by tRES+HESP in human endothelial cells and fibroblasts in primary culture and HepG2 hepatoma cell line and activity of cis-resveratrol (cRES) as a Glo1 inducer. We measured antioxidant response element-linked gene expression in these cells in response to 5 µM tRES+HESP by the NanoString method. tRES+HESP increases gene expression linked to the prevention of dicarbonyl stress, lipid peroxidation, oxidative stress, proteotoxicity and hyperglycemia-linked glycolytic overload. Downstream benefits were improved regulation of glucose and lipid metabolism and decreased inflammation, extracellular matrix remodeling and senescence markers. The median effective concentration of tRES was ninefold lower than cRES in the Glo1 inducer luciferase reporter assay. The GlucoRegulate supplement provides a new treatment option for the prevention of type 2 diabetes and metabolic dysfunction–associated steatotic liver disease and supports healthy aging. Full article
Show Figures

Figure 1

29 pages, 4588 KiB  
Article
The HCV-Dependent Inhibition of Nrf1/ARE-Mediated Gene Expression Favours Viral Morphogenesis
by Olga Szostek, Patrycja Schorsch, Daniela Bender, Mirco Glitscher and Eberhard Hildt
Viruses 2025, 17(8), 1052; https://doi.org/10.3390/v17081052 - 28 Jul 2025
Viewed by 325
Abstract
The life cycle of the hepatitis C virus (HCV) is closely linked to lipid metabolism. Recently, the stress defence transcription factor, nuclear factor erythroid 2 related factor-1 (Nrf1), has been described as a cholesterol sensor that protects the liver from excess cholesterol. Nrf1, [...] Read more.
The life cycle of the hepatitis C virus (HCV) is closely linked to lipid metabolism. Recently, the stress defence transcription factor, nuclear factor erythroid 2 related factor-1 (Nrf1), has been described as a cholesterol sensor that protects the liver from excess cholesterol. Nrf1, like its homologue Nrf2, further responds to oxidative stress by binding with small Maf proteins (sMaf) to the promotor antioxidant response element (ARE). Given these facts, investigating the crosstalk between Nrf1 and HCV was a logical next step. In HCV-replicating cells, we observed reduced levels of Nrf1. Furthermore, activation of Nrf1-dependent target genes is impaired due to sMaf sequestration in replicase complexes. This results in a shortage of sMaf proteins in the nucleus, trapping Nrf1 at the replicase complexes and further limiting its function. Weakened Nrf1 activity contributes to impaired cholesterol removal, which occurs alongside an elevated intracellular cholesterol level and inhibited LXRα promoter activation. Furthermore, inhibition of Nrf1 activity correlated with a kinome profile characteristic of steatosis and enhanced inflammation—factors contributing to HCV pathogenesis. Our results indicate that activation of Nrf1-dependent target genes is impaired in HCV-positive cells. This, in turn, favours viral morphogenesis, as evidenced by enhanced replication and increased production of viral progeny. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

23 pages, 2056 KiB  
Article
Nanoceria Coated with Maltodextrin or Chitosan: Effects on Key Genes of Oxidative Metabolism, Proliferation, and Autophagy in Human Embryonic Lung Fibroblasts
by Elena V. Proskurnina, Madina M. Sozarukova, Elizaveta S. Ershova, Ekaterina A. Savinova, Larisa V. Kameneva, Natalia N. Veiko, Vladimir P. Saprykin, Khamzat K. Vyshegurov, Vladimir K. Ivanov and Svetlana V. Kostyuk
Molecules 2025, 30(15), 3078; https://doi.org/10.3390/molecules30153078 - 23 Jul 2025
Viewed by 296
Abstract
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we [...] Read more.
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we used human embryonic lung fibroblasts to study the effects of maltodextrin and chitosan coatings on cellular oxidative metabolism of nanoceria by examining cell viability, mitochondrial potential, accumulation of nanoparticles in cells, intracellular ROS, expression of NOX4 (NADPH oxidase 4), NRF2 (nuclear factor erythroid 2-related factor 2), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and STAT3 (signal transducer and activator of transcription 3) proteins as well as the expression of biomarkers of DNA damage/repair, cell proliferation, and autophagy. Both types of polysaccharide-coated nanoceria were non-toxic up to millimolar concentrations. For maltodextrin-coated nano-CeO2, in contrast to bare nanoparticles, there was no oxidative DNA damage/repair with moderate activation of NOX4 expression. Like bare nanoceria, maltodextrin-coated nanoparticles demonstrate the proliferative impact and do not activate autophagy. However, maltodextrin-coated nanoparticles have an activating impact on mitochondrial potential and the NF-κB pathway. Chitosan-coated nanoceria causes short-term intracellular oxidative stress, activation of the expression of NOX4, STAT3, and NRF2, oxidative DNA damage, and double-strand breaks accompanied by activation of DNA repair systems. In contrast to maltodextrin-coated nanoparticles, chitosan-coated nanoceria inhibits the NF-κB pathway and activates autophagy. These findings would be useful in the development of advanced nanoceria-based pharmaceuticals and contribute to the understanding of the biochemical properties of nanoceria as a modulator of ROS-dependent signaling pathways. Full article
Show Figures

Figure 1

14 pages, 520 KiB  
Review
Activation of the Nrf2 Signaling Pathway as a Therapeutic Strategy Against Periodontal Disease: A Narrative Review
by Sarmistha Saha, Nadezhda Sachivkina, Ekaterina Lenchenko, Olga Pilshchikova and Alexandr Muraev
Dent. J. 2025, 13(7), 314; https://doi.org/10.3390/dj13070314 - 11 Jul 2025
Viewed by 292
Abstract
Periodontitis (PD), is a chronic inflammatory disease of the periodontal system, which includes gingiva, periodontal ligament, alveolar bone, and tooth cement. It is becoming increasingly prevalent globally, and its implications for oral health are profound. The Nrf2 signaling pathway is crucial in managing [...] Read more.
Periodontitis (PD), is a chronic inflammatory disease of the periodontal system, which includes gingiva, periodontal ligament, alveolar bone, and tooth cement. It is becoming increasingly prevalent globally, and its implications for oral health are profound. The Nrf2 signaling pathway is crucial in managing the relationship between inflammation and oxidative stress, making it vital for understanding this disease. Nrf2 interacts with key redox-sensitive inflammatory pathways, playing a vital role in the development of periodontitis. Acknowledging these dynamics underscores the importance of proactively addressing the complex aspects of periodontal disease. This review emphasizes its intricate interactions with redox-sensitive transcription factors vital for sustaining the self-perpetuating inflammatory processes underlying the disease. Additionally, it explores promising therapeutic strategies aimed at Nrf2 activation and encourages more effective management of PD. Full article
Show Figures

Figure 1

18 pages, 3608 KiB  
Article
Biochemical Insights into the Effects of a Small Molecule Drug Candidate on Imatinib-Induced Cardiac Inflammation
by Renáta Szabó, Denise Börzsei, András Nagy, Viktória Kiss, Zoltán Virág, Gyöngyi Kis, Nikoletta Almási, Szilvia Török, Médea Veszelka, Mária Bagyánszki, Nikolett Bódi, Bence Pál Barta, Patrícia Neuperger, Gabor J. Szebeni and Csaba Varga
Int. J. Mol. Sci. 2025, 26(14), 6661; https://doi.org/10.3390/ijms26146661 - 11 Jul 2025
Viewed by 437
Abstract
BGP-15, a poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor exerts cardioprotective effects; however, the underlying mechanisms remain unclear. Therefore, our study aimed to investigate the effects of BGP-15 on the imatinib (Imtb)-induced cardiac inflammation at the biochemical level. Male rats were divided to control, Imtb-treated (60 [...] Read more.
BGP-15, a poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor exerts cardioprotective effects; however, the underlying mechanisms remain unclear. Therefore, our study aimed to investigate the effects of BGP-15 on the imatinib (Imtb)-induced cardiac inflammation at the biochemical level. Male rats were divided to control, Imtb-treated (60 mg/kg/day for 14 days), and Imtb + BGP-15-treated animals. In this group Imtb was co-administered with BGP-15 at the dose of 10 mg/kg/day. At the end of the experiment, nuclear factor-kappa B/p65 (NF-κB/p65), nuclear transcription factor erythroid-2 related factor (Nrf2), heme oxygenase-1 (HO-1), high mobility group box 1 (HMGB1), and myeloperoxidase (MPO) were measured by Western blot. Chemokine and interleukins (ILs) were determined by Legendplex. Additionally, cardiac specific changes were visualized by immunohistochemistry. We demonstrated that Imtb increased NF-κB/p65, IL-6, IL-1β, IL-18, MCP-1, HMGB1, as well as the expression and activity of MPO. Conversely, the expressions of antioxidant Nrf2 and HO-1 were decreased. Administration of BGP-15 effectively mitigated these inflammatory alterations by significantly reducing pro-inflammatory cytokines and MPO activity, while simultaneously restoring and enhancing the levels of Nrf2 and HO-1, thereby promoting antioxidant defenses. The immunohistochemical staining further supported these biochemical changes. Our study provides new and comprehensive biochemical insight for managing Imtb-induced inflammatory responses via BGP-15-induced PARP1 inhibition. Full article
Show Figures

Figure 1

12 pages, 747 KiB  
Article
Nuclear Factor Erythroid 2-Related Factor 2 and SARS-CoV-2 Infection Risk in COVID-19-Vaccinated Hospital Nurses
by Stefano Rizza, Luca Coppeta, Gianluigi Ferrazza, Alessandro Nucera, Maria Postorino, Andrea Quatrana, Cristiana Ferrari, Rossella Menghini, Susanna Longo, Andrea Magrini and Massimo Federici
Vaccines 2025, 13(7), 739; https://doi.org/10.3390/vaccines13070739 - 9 Jul 2025
Viewed by 360
Abstract
Background/Objectives: The COVID-19 pandemic has caused sickness and death among many health care workers. However, the apparent resistance of health care workers to SARS-CoV-2 infection despite their high-risk work environment remains unclear. To investigate if inflammation and circadian disruption contribute to resistance [...] Read more.
Background/Objectives: The COVID-19 pandemic has caused sickness and death among many health care workers. However, the apparent resistance of health care workers to SARS-CoV-2 infection despite their high-risk work environment remains unclear. To investigate if inflammation and circadian disruption contribute to resistance or diminished susceptibility to the SARS-CoV-2 virus, we retrospectively evaluated a cohort of volunteer hospital nurses (VHNs). Methods: A total of 246 apparently healthy VHNs (mean age 37.4 ± 5.9 years) who had received the BNT162b2 mRNA vaccine were asked to report their sleep quality, according to the Pittsburgh Sleep Quality Index, and number of SARS-CoV-2 infections during the observational study period (from the end of December 2020 to April 2025). The expression of inflammation-associated mediators and circadian transcription factors in peripheral blood mononuclear cells, as well as sleep quality, were examined. Results: Our findings revealed no anthropometric, biochemical, or inflammation-associated parameters but demonstrated significantly greater levels of NFE2L2, also known as nuclear factor erythroid-derived 2-like 2 (NFR2), gene expression in peripheral blood mononuclear cells among VHNs who had never been infected with SARS-CoV-2 (n = 97) than in VHNs with only one (n = 119) or with two or more (n = 35) prior SARS-CoV-2 infections (p < 0.01). This result was confirmed through one-to-one propensity score matching (p < 0.01). Moreover, NRF2 gene expression was not associated with the number of COVID-19 vaccinations (p = 0.598). Finally, NRF2 gene expression was higher among participants who reported better sleep quality (p < 0.01). Conclusions: Our findings suggest possible interactions among NRF2 gene expression, protection against SARS-CoV-2 infection, and the modulation of COVID-19 vaccination efficacy. Full article
(This article belongs to the Special Issue SARS-CoV-2 Pathogenesis, Vaccines and Therapeutics)
Show Figures

Figure 1

39 pages, 8177 KiB  
Article
Unveiling Epigenetic Regulatory Elements Associated with Breast Cancer Development
by Marta Jardanowska-Kotuniak, Michał Dramiński, Michal Wlasnowolski, Marcin Łapiński, Kaustav Sengupta, Abhishek Agarwal, Adam Filip, Nimisha Ghosh, Vera Pancaldi, Marcin Grynberg, Indrajit Saha, Dariusz Plewczynski and Michał J. Dąbrowski
Int. J. Mol. Sci. 2025, 26(14), 6558; https://doi.org/10.3390/ijms26146558 - 8 Jul 2025
Viewed by 644
Abstract
Breast cancer affects over 2 million women annually and results in 650,000 deaths. This study aimed to identify epigenetic mechanisms impacting breast cancer-related gene expression, discover potential biomarkers, and present a novel approach integrating feature selection, Natural Language Processing, and 3D chromatin structure [...] Read more.
Breast cancer affects over 2 million women annually and results in 650,000 deaths. This study aimed to identify epigenetic mechanisms impacting breast cancer-related gene expression, discover potential biomarkers, and present a novel approach integrating feature selection, Natural Language Processing, and 3D chromatin structure analysis. We used The Cancer Genome Atlas database with over 800 samples and multi-omics datasets (mRNA, miRNA, DNA methylation) to select 2701 features statistically significant in cancer versus control samples, from an initial 417,486, using the Monte Carlo Feature Selection and Interdependency Discovery algorithm. Classification of cancer vs. control samples on the selected features returned very high accuracy, depending on feature-type and classifier. The cancer samples generally showed lower expression of differentially expressed genes (DEGs) and increased β-values of differentially methylated sites (DMSs). We identified mRNAs whose expression is explained by miRNA expression and β-values of DMSs. We recognized DMSs affecting NRF1 and MXI1 transcription factors binding, causing a disturbance in NKAPL and PITX1 expression, respectively. Our 3D models showed more loosely packed chromatin in cancer. This study highlights numerous possible regulatory dependencies, and the presented bioinformatic approach provides a robust framework for data dimensionality reduction, enabling the identification of key features for further experimental validation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

23 pages, 4407 KiB  
Article
Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts
by Nilofar Nilofar, Gokhan Zengin, Mehmet Veysi Cetiz, Evren Yildiztugay, Zoltán Cziáky, József Jeko, Claudio Ferrante, Tina Kostka, Tuba Esatbeyoglu and Stefano Dall’Acqua
Molecules 2025, 30(13), 2855; https://doi.org/10.3390/molecules30132855 - 4 Jul 2025
Viewed by 511
Abstract
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different [...] Read more.
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different in vitro assays were employed to support the results for antioxidant potential, such as DPPH, ABTS, FRAP, CUPRAC, metal chelation, and PBD, along with the measurement of total phenolic and flavonoid contents. Enzyme inhibition was investigated for cholinesterase (AChE and BChE), α-amylase, α-glucosidase, and tyrosinase enzymes. Additionally, the relative expression of NRF2, HMOX1, and YGS was evaluated by qPCR. LC-MS/MS analysis indicated the presence of some significant compounds, including apigenin, muscaroside, hyacinthacine A, B, and C, and luteolin. According to the results, the highest TPC and TFC were obtained with both extracts of the leaves, followed by the water extract (flower) and methanolic extract of the bulb. In contrast, the methanolic extract from the bulb exhibited the highest antioxidant potential using DPPH, ABTS, CUPRAC, and FRAP, followed by the extracts of leaves. In contrast, the leaf extracts had the highest values for the PBD assay and maximum chelation ability compared to other tested extracts. According to the enzyme inhibition studies, the methanolic extract from the bulb appeared to be the most potent inhibitor for all the tested enzymes, with the highest values obtained for AChE (1.96 ± 0.05), BChE (2.19 ± 0.33), α-amylase (0.56 ± 0.02), α-glucosidase (2.32 ± 0.01), and tyrosinase (57.19 ± 0.87). Interestingly, the water extract from the bulb did not inhibit most of the tested enzymes. The relative expression of NRF2 based on qPCR analysis was considerably greater in the flower methanol extract compared to the other extracts (p < 0.05). The relative expression of HMOX1 was stable in all the extracts, whereas YGS expression remained stable in all the treatments and had no statistical differences. The current results indicate that the components of M. armeniacum (leaves, flowers, and bulb) may be a useful source of natural bioactive compounds that are effective against oxidative stress-related conditions, including hyperglycemia, skin disorders, and neurodegenerative diseases. Complementary in silico approaches, including molecular docking, dynamics simulations, and transcription factor (TF) network analysis for NFE2L2, supported the experimental findings and suggested possible multi-target interactions for the selected compounds. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

22 pages, 3568 KiB  
Article
Galangin Regulates Oxidative Stress Levels in Porcine Embryos Through Interaction with the Neh1 Domain of Nrf2
by Zhi-Chao Chi, Shu-Ming Shi, Li-Ying Liu, Lin-Yi Qu, Jing-Hang Li, Guan-Lin Jia, Yu-Yan He, Lin-Xuan Li, Yong-Xun Jin, Ming-Jun Zhang and Xian-Feng Yu
Antioxidants 2025, 14(7), 822; https://doi.org/10.3390/antiox14070822 - 4 Jul 2025
Viewed by 501
Abstract
Oxidative stress poses a challenge to in vitro embryo culture. As a flavonoid, galangin (GAL) has been shown to have antioxidant effects, but the effect and antioxidant capacity of GAL in the in vitro development of porcine parthenogenetic embryos are still unknown. In [...] Read more.
Oxidative stress poses a challenge to in vitro embryo culture. As a flavonoid, galangin (GAL) has been shown to have antioxidant effects, but the effect and antioxidant capacity of GAL in the in vitro development of porcine parthenogenetic embryos are still unknown. In this study, we demonstrated that 1 µM GAL significantly increased the blastocyst rate, decreased the accumulation of intracellular reactive oxygen species (ROS), increased the glutathione (GSH) level, and enhanced mitochondrial function in early porcine embryos. Nuclear factor erythroid-2-related factor 2 (Nrf2) was identified as the target gene of GAL via network pharmacology, and the transcript levels of related antioxidant enzymes (HO-1, NQO1, SOD2, and CAT) were found to be increased. Since Nrf2 has seven domains, we constructed Nrf2 mutants lacking different domains in vitro. We found that GAL specifically binds to the Neh1 domain of Nrf2. Subsequent embryonic experiments demonstrated that the antioxidant effect of GAL was abolished after Nrf2 deletion. These results suggest that GAL can directly bind to Nrf2 to regulate the level of oxidative stress and improve mitochondrial function in embryos. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Graphical abstract

34 pages, 765 KiB  
Review
Transcription Factors and Methods for the Pharmacological Correction of Their Activity
by Svetlana V. Guryanova, Tatiana V. Maksimova and Madina M. Azova
Int. J. Mol. Sci. 2025, 26(13), 6394; https://doi.org/10.3390/ijms26136394 - 2 Jul 2025
Viewed by 771
Abstract
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered [...] Read more.
Transcription factors (TFs) are proteins that control gene expression by binding to specific DNA sequences and are essential for cell development, differentiation, and homeostasis. Dysregulation of TFs is implicated in numerous diseases, including cancer, autoimmune disorders, and neurodegeneration. While TFs were traditionally considered “undruggable” due to their lack of well-defined binding pockets, recent advances have made it possible to modulate their activity using diverse pharmacological strategies. Major TF families include NF-κB, p53, STATs, HIF-1α, AP-1, Nrf2, and nuclear hormone receptors, which take part in the regulation of inflammation, tumor suppression, cytokine signaling, hypoxia and stress response, oxidative stress, and hormonal response, respectively. TFs can perform multiple functions, participating in the regulation of opposing processes depending on the context. NF-κB, for instance, plays dual roles in immunity and cancer, and is targeted by proteasome and IKKβ inhibitors. p53, often mutated in cancer, is reactivated using MDM2 antagonist Nutlin-3, refunctionalizing compound APR-246, or stapled peptides. HIF-1α, which regulates hypoxic responses and angiogenesis, is inhibited by agents like acriflavine or stabilized in anemia therapies by HIF-PHD inhibitor roxadustat. STATs, especially STAT3 and STAT5, are oncogenic and targeted via JAK inhibitors or novel PROTAC degraders, for instance SD-36. AP-1, implicated in cancer and arthritis, can be inhibited by T-5224 or kinase inhibitors JNK and p38 MAPK. Nrf2, a key antioxidant regulator, can be activated by agents like DMF or inhibited in chemoresistant tumors. Pharmacological strategies include direct inhibitors, activators, PROTACs, molecular glues, and epigenetic modulators. Challenges remain, including the structural inaccessibility of TFs, functional redundancy, off-target effects, and delivery barriers. Despite these challenges, transcription factor modulation is emerging as a viable and promising therapeutic approach, with ongoing research focusing on specificity, safety, and efficient delivery methods to realize its full clinical potential. Full article
(This article belongs to the Topic Research in Pharmacological Therapies, 2nd Edition)
Show Figures

Figure 1

38 pages, 5469 KiB  
Review
Alzheimer’s Disease Pathogenic Mechanisms: Linking Redox Homeostasis and Mitochondria-Associated Metabolic Pathways Through Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)
by Agueda Rostagno and Jorge Ghiso
Antioxidants 2025, 14(7), 812; https://doi.org/10.3390/antiox14070812 - 1 Jul 2025
Viewed by 751
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia, with a prevalence expected to escalate with the aging of the world population as life expectancy increases. In spite of significant progress made in the investigation of the etiology and pathogenesis of the disease, [...] Read more.
Alzheimer’s disease (AD) is the leading cause of dementia, with a prevalence expected to escalate with the aging of the world population as life expectancy increases. In spite of significant progress made in the investigation of the etiology and pathogenesis of the disease, many mechanistic aspects that could support the implementation of novel therapeutic avenues remain unresolved. Research during the last decade has revealed a crucial role for mitochondria-mediated pathways dysregulation as significant contributors to the disease, highlighting the relevance of changes in brain metabolism and bioenergetics as well as the induction of oxidative stress conditions for neurodegeneration. This review summarizes mitochondrial functional changes associated with AD with emphasis in the dysregulation of redox homeostasis and the role of nuclear factor erythroid 2-related factor 2 (Nrf2), not only as a central regulator of the antioxidant response but also as a more recently described modulator of cellular metabolic pathways. Potential therapeutic strategies targeting oxidative stress and mitochondrial dysfunction are also discussed, with particular emphasis on the use of small molecules Nrf2 activators. Exploiting the multifactorial properties of the transcription factor in either novel or combination-based pharmacological approaches targeting multiple genes and pathways may contribute to providing more definitive and precise therapeutic perspectives. Full article
(This article belongs to the Special Issue Role of Nrf2 in Neurodegenerative Diseases)
Show Figures

Figure 1

28 pages, 707 KiB  
Review
Bardoxolone Methyl: A Comprehensive Review of Its Role as a Nrf2 Activator in Anticancer Therapeutic Applications
by Valentina Schiavoni, Tiziana Di Crescenzo, Valentina Membrino, Sonila Alia, Sonia Fantone, Eleonora Salvolini and Arianna Vignini
Pharmaceuticals 2025, 18(7), 966; https://doi.org/10.3390/ph18070966 - 27 Jun 2025
Viewed by 648
Abstract
Bardoxolone methyl, also known as CDDO-Me or RTA 402, is a synthetic oleanane triterpenoid that has garnered significant attention as a potent pharmacological activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nrf2 is a master regulator of cellular redox homeostasis, [...] Read more.
Bardoxolone methyl, also known as CDDO-Me or RTA 402, is a synthetic oleanane triterpenoid that has garnered significant attention as a potent pharmacological activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nrf2 is a master regulator of cellular redox homeostasis, controlling the expression of genes involved in antioxidant defense, detoxification, and mitochondrial function. By inducing Nrf2 and promoting the transcription of downstream antioxidant response element (ARE)-driven genes, bardoxolone methyl enhances cellular resilience to oxidative stress and inflammation. This mechanism is central not only to its cytoprotective effects but also to its emerging role in oncology. A number of studies investigated the effects of bardoxolone methyl in several malignancies including breast cancer, lung cancer, pancreatic ductal adenocarcinoma, prostate cancer, colorectal cancer, oral and esophageal squamous cell carcinoma, ovarian cancer and glioblastoma. Studies in the literature indicate that bardoxolone methyl exhibits anticancer activity through several mechanisms, including the suppression of cell proliferation, induction of cell cycle arrest and apoptosis, inhibition of epithelial–mesenchymal transition (EMT), and impairment of cancer cell stemness. Additionally, bardoxolone methyl modulates mitochondrial function, reduces glycolytic and oxidative phosphorylation capacities, and induces reactive oxygen species (ROS)-mediated stress responses. In this review, we summarize the available literature regarding the studies which investigated the effects of bardoxolone methyl as anticancer agent. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 3732 KiB  
Opinion
Repurposing Dimethyl Fumarate Targeting Nrf2 to Slow Down the Growth of Areas of Geographic Atrophy
by Serge Camelo
Int. J. Mol. Sci. 2025, 26(13), 6112; https://doi.org/10.3390/ijms26136112 - 25 Jun 2025
Viewed by 685
Abstract
Recently, marketing authorizations were granted by the Federal Drug Administration (FDA) for pegcetacoplan and avacincaptad pegol, which inhibit C3 and C5 complement components, respectively. These two drugs were demonstrated to slow down the growth of atrophic areas in the retina. These authorizations represent [...] Read more.
Recently, marketing authorizations were granted by the Federal Drug Administration (FDA) for pegcetacoplan and avacincaptad pegol, which inhibit C3 and C5 complement components, respectively. These two drugs were demonstrated to slow down the growth of atrophic areas in the retina. These authorizations represent a huge breakthrough for patients suffering from geographic atrophy (GA), the late stage of the dry form of Age-related Macular Degeneration (AMD). Until then, no treatment was available to treat this blinding disease. However, these two new compounds inhibiting the complement system are still not available for patients outside of the United States, and they are not devoid of drawbacks, including a poor effect on vision improvement, an increased risk of occurrence of the neovascular form of AMD and the burden of patients receiving recurrent intravitreal injections. Thus, the important medical need posed by GA remains incompletely answered, and new therapeutic options with alternative modes of action are still required. Oxidative stress and inflammation are two major potential targets to limit the progression of atrophic retinal lesions. Dimethyl fumarate, dimethyl itaconate and other activators of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) display antioxidants and immunomodulatory properties that have shown evidence of efficacy in in vitro and in vivo models of dry AMD. Tecfidera®, whose active principle is dimethyl fumarate, is already commercialized for the treatment of autoimmune diseases such as multiple sclerosis and psoriasis. The aim of this review is to present the rationale and the design of the clinical trial we initiated to test the effectiveness and safety of repurposing Tecfidera®, which could represent a new therapeutic alternative in patients with the dry form of AMD. Full article
Show Figures

Figure 1

28 pages, 20644 KiB  
Article
Mechanisms of Cisplatin-Induced Acute Kidney Injury: The Role of NRF2 in Mitochondrial Dysfunction and Metabolic Reprogramming
by Jihan Liu, Yiming Wang, Panshuang Qiao, Yi Ying, Simei Lin, Feng Lu, Cai Gao, Min Li, Baoxue Yang and Hong Zhou
Antioxidants 2025, 14(7), 775; https://doi.org/10.3390/antiox14070775 - 24 Jun 2025
Viewed by 731
Abstract
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally [...] Read more.
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally injected with 20 mg/kg cisplatin to establish an AKI model. Serum creatinine, urea nitrogen, and tubular injury biomarkers (NGAL, KIM-1) progressively increased, indicating kidney dysfunction. Mitochondrial ATP levels significantly decreased, along with reduced mitochondrial fission and fusion, suggesting mitochondrial dysfunction. Increased oxidases and reduced antioxidants indicated redox imbalance, and metabolic reprogramming was observed, with lipid deposition, impaired fatty acid oxidation (FAO), and enhanced glycolysis in proximal tubular epithelial cells (PTECs). Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcriptional regulator of redox homeostasis and mitochondrial function. We found NRF2 levels increased early in AKI, followed by a decrease in vivo and in vitro, suggesting activation in the stress response. Nfe2l2 knockout mice showed aggravated kidney injury, characterized by worsened kidney function and histopathological damage. Mechanistically, Nfe2l2 knockout resulted in redox imbalance, reduced ATP synthesis, mitochondrial dysfunction and metabolic dysregulation. Furthermore, we activated NRF2 using dimethyl fumarate (DMF), observing a reduction in kidney damage and lipid deposition in mice. In conclusion, activating NRF2-dependent antioxidant pathways plays a crucial role in protecting against cisplatin-induced AKI. NRF2 may serve as a potential target for developing therapeutic strategies to prevent cisplatin nephrotoxicity. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

50 pages, 4091 KiB  
Review
Targeting Prostate Cancer Metabolism Through Transcriptional and Epigenetic Modulation: A Multi-Target Approach to Therapeutic Innovation
by Pedro Juan Espitia-Pérez, Lyda Marcela Espitia-Perez and Mario Negrette-Guzmán
Int. J. Mol. Sci. 2025, 26(13), 6013; https://doi.org/10.3390/ijms26136013 - 23 Jun 2025
Viewed by 905
Abstract
Prostate cancer (PCa) therapy faces challenges due to tumor heterogeneity, plasticity, and progression. Metabolic reprogramming, a dynamic process, has emerged as a key focus in PCa treatment. However, conventional therapies targeting cancer-specific metabolic pathways or employing chemosensitizers are often limited by compensatory mechanisms [...] Read more.
Prostate cancer (PCa) therapy faces challenges due to tumor heterogeneity, plasticity, and progression. Metabolic reprogramming, a dynamic process, has emerged as a key focus in PCa treatment. However, conventional therapies targeting cancer-specific metabolic pathways or employing chemosensitizers are often limited by compensatory mechanisms and metabolic complexity. This review highlights the roles of transcription factors, including AR, p53, c-Myc, HIF-1, Nrf2, and PPARγ, in regulating PCa metabolism by influencing signaling pathways, enzymes, and gene expression. Multi-target compounds, particularly natural products, show potential for disrupting multiple metabolic enzymes, opening up new research possibilities. Notable examples include β-elemene, juglone, tannic acid, and withaferin A, which target critical metabolic processes through enzyme inhibition, transcription factor modulation, epigenetic changes, and protein interaction disruption. Naturally derived metabolites can elicit transversal responses in diverse metabolic pathways, particularly in p53 and MYC transcription factors. Additionally, compounds such as pentacyclic terpenoids (ursolic acid with ursane skeleton), sulforaphane, and isothiocyanate-related moieties may induce metabolic and epigenetic changes through S-adenosyl methionine (SAM) and acetyl-CoA modulation, potentially affecting new areas of research through metabolic processes. We propose a cooperative crosstalk between metabolic reprogramming and transcription factors/epigenetic modulation in PCa. This approach holds potential for expanding PCa therapeutics and opening new avenues for research. Full article
Show Figures

Figure 1

Back to TopTop