Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = NALT1A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2924 KB  
Article
Mucosal Vaccination Against SARS-CoV-2 Using Human Probiotic Bacillus subtilis Spores as an Adjuvant Induces Potent Systemic and Mucosal Immunity
by Raul Ramos Pupo, Laura M. Reyes Diaz, Gisela M. Suarez Formigo, Yusnaby Borrego Gonzalez, Miriam Lastre Gonzalez, Danay Saavedra Hernandez, Tania Crombet Ramos, Belinda Sanchez Ramirez, Roberto Grau, Niels Hellings, Piet Stinissen, Oliver Perez and Jeroen F. J. Bogie
Vaccines 2025, 13(7), 772; https://doi.org/10.3390/vaccines13070772 - 21 Jul 2025
Cited by 1 | Viewed by 1346
Abstract
Background/Objectives: The ongoing evolution of SARS-CoV-2 has highlighted the limitations of parenteral vaccines in preventing viral transmission, largely due to their failure to elicit robust mucosal immunity. Methods: Here, we evaluated an intranasal (IN) vaccine formulation consisting of recombinant receptor-binding domain [...] Read more.
Background/Objectives: The ongoing evolution of SARS-CoV-2 has highlighted the limitations of parenteral vaccines in preventing viral transmission, largely due to their failure to elicit robust mucosal immunity. Methods: Here, we evaluated an intranasal (IN) vaccine formulation consisting of recombinant receptor-binding domain (RBD) adsorbed onto human probiotic Bacillus subtilis DG101 spores. Results: In BALB/c mice, IN spore-RBD immunization induced strong systemic and mucosal humoral responses, including elevated specific IgG, IgM, and IgA levels in serum, bronchoalveolar lavage fluid (BALF), nasal-associated lymphoid tissue (NALT), and saliva. It further promoted mucosal B cell and T cell memory, along with a Th1/Tc1-skewed T cell response, characterized by increased IFN-γ-expressing CD4+ and CD8+ T cells in the lungs. Conclusions: All in all, these findings highlight the potential of intranasal vaccines adjuvanted with probiotic B. subtilis spores in inducing sterilizing immunity and limiting SARS-CoV-2 transmission. Full article
(This article belongs to the Special Issue Human Immune Responses to Infection and Vaccination)
Show Figures

Figure 1

16 pages, 9584 KB  
Article
Intranasal Trans-Sialidase Vaccine Mitigates Acute and Chronic Pathology in a Preclinical Oral Chagas Disease Model
by Maria Florencia Pacini, Camila Bulfoni Balbi, Brenda Dinatale, Cecilia Farré, Paula Cacik, Florencia Belén Gonzalez, Iván Marcipar and Ana Rosa Pérez
Vaccines 2024, 12(10), 1171; https://doi.org/10.3390/vaccines12101171 - 15 Oct 2024
Cited by 5 | Viewed by 2771
Abstract
Chagas disease, caused by Trypanosoma cruzi, leads to severe complications in 30% of infected individuals, including acute myocarditis and chronic fibrosing cardiomyopathy. Despite the significant burden of this disease, there is currently no licensed vaccine available to prevent it. This study aimed [...] Read more.
Chagas disease, caused by Trypanosoma cruzi, leads to severe complications in 30% of infected individuals, including acute myocarditis and chronic fibrosing cardiomyopathy. Despite the significant burden of this disease, there is currently no licensed vaccine available to prevent it. This study aimed to evaluate the mucosal and systemic immunogenicity as well as the prophylactic efficacy of a mucosal vaccine candidate and its impact on both acute and chronic cardiomyopathy. The results showed that the nasal administration of trans-sialidase (TS) plus c-di-AMP (TS+A) vaccine elicited a NALT expression of IFN-γ, IL-17a and IL-4 mRNA as well as a nasal-specific production of IgA. An in vivo challenge with TS also triggered increased proliferation of lymphocytes from the NALT, sentinel cervical lymph node, and spleen. TS+A immunization increased the plasma levels of Th1/Th2/Th17 cytokines and elicited an evident cellular response by which to judge enhanced delayed-type hypersensitivity responses following a TS footpad challenge. After oral infection, TS+A-vaccinated mice showed significantly reduced parasitemia and parasite load in the heart, muscles and intestines, while markers of hepatic and muscle damage as well as clinical manifestations of acute infection were strongly diminished. TS+A also attenuated acute myocarditis and the expression of inflammatory markers in the heart. The protection conferred by TS+A extended into the chronic phase, where it resulted in a clear reduction in chronic myocarditis, fibrosis and functional electrocardiographic abnormalities, associated with a decreased expression of the pro-fibrotic TGF-β. These results revealed that it is possible to develop a mucosal vaccine against T. cruzi based on TS and c-di-AMP that is capable of reducing the development of Chagas cardiomyopathy, the hallmark of Chagas disease. Full article
(This article belongs to the Special Issue Innovating Vaccine Research in Mucosal Vaccines)
Show Figures

Figure 1

21 pages, 6732 KB  
Article
Adaptive Evolution Signatures in Prochlorococcus: Open Reading Frame (ORF)eome Resources and Insights from Comparative Genomics
by Sarah Daakour, David R. Nelson, Weiqi Fu, Ashish Jaiswal, Bushra Dohai, Amnah Salem Alzahmi, Joseph Koussa, Xiaoluo Huang, Yue Shen, Jean-Claude Twizere and Kourosh Salehi-Ashtiani
Microorganisms 2024, 12(8), 1720; https://doi.org/10.3390/microorganisms12081720 - 20 Aug 2024
Viewed by 2675
Abstract
Prochlorococcus, a cyanobacteria genus of the smallest and most abundant oceanic phototrophs, encompasses ecotype strains adapted to high-light (HL) and low-light (LL) niches. To elucidate the adaptive evolution of this genus, we analyzed 40 Prochlorococcus marinus ORFeomes, including two cornerstone strains, MED4 [...] Read more.
Prochlorococcus, a cyanobacteria genus of the smallest and most abundant oceanic phototrophs, encompasses ecotype strains adapted to high-light (HL) and low-light (LL) niches. To elucidate the adaptive evolution of this genus, we analyzed 40 Prochlorococcus marinus ORFeomes, including two cornerstone strains, MED4 and NATL1A. Employing deep learning with robust statistical methods, we detected new protein family distributions in the strains and identified key genes differentiating the HL and LL strains. The HL strains harbor genes (ABC-2 transporters) related to stress resistance, such as DNA repair and RNA processing, while the LL strains exhibit unique chlorophyll adaptations (ion transport proteins, HEAT repeats). Additionally, we report the finding of variable, depth-dependent endogenous viral elements in the 40 strains. To generate biological resources to experimentally study the HL and LL adaptations, we constructed the ORFeomes of two representative strains, MED4 and NATL1A synthetically, covering 99% of the annotated protein-coding sequences of the two species, totaling 3976 cloned, sequence-verified open reading frames (ORFs). These comparative genomic analyses, paired with MED4 and NATL1A ORFeomes, will facilitate future genotype-to-phenotype mappings and the systems biology exploration of Prochlorococcus ecology. Full article
(This article belongs to the Special Issue Microbiome Research for Animal, Plant and Environmental Health)
Show Figures

Figure 1

14 pages, 2791 KB  
Article
Investigation of Sexes and Fertility Potential of Female Russian Sturgeon (Acipenser gueldenstaedtii) and Male American Paddlefish (Polyodon spathula) Hybrids
by Katalin Bogár, Jelena Stanivuk, Aliz Géczi, Georgina Lea Fazekas, Balázs Kovács, Bence Lázár, Mariann Molnár, László Ardó, Uroš Ljubobratović, Gyula Kovács, Dániel Péter, Eszter Várkonyi and Jenő Káldy
Life 2024, 14(7), 818; https://doi.org/10.3390/life14070818 - 27 Jun 2024
Cited by 1 | Viewed by 1881
Abstract
In the present study, 10 allotriploid (3nALT) and 10 allopentaploid (5nALP) six-month-old hybrid fish and two 3nALT and four 5nALP 40-month-old hybrid fish, which resulted by crossing female Russian sturgeon Acipenser gueldenstaedtii (Brandt and Ratzeberg, 1833) and male American paddlefish Polyodon spathula (Walbaum, [...] Read more.
In the present study, 10 allotriploid (3nALT) and 10 allopentaploid (5nALP) six-month-old hybrid fish and two 3nALT and four 5nALP 40-month-old hybrid fish, which resulted by crossing female Russian sturgeon Acipenser gueldenstaedtii (Brandt and Ratzeberg, 1833) and male American paddlefish Polyodon spathula (Walbaum, 1792), were investigated. It was revealed that six-month-old 3nALT and 5nALP hybrids initially had “undifferentiated” gonads, while in the 40-month-old hybrids, only testes were observed in one case of 3nALT and one case of 5nALP hybrids. The testis of 3nALT hybrids was partially developed with spermatogonia, while the testis of one 5nALP hybrid was in the second developmental stage with low spermatogonia density. We could not determine gonad differentiation in any of the cases when the hybrid individuals had the W sex chromosome. We concluded that the gonad differentiation of these interfamilial hybrids follows a similar pattern to interspecific hybrids of different ploidy parent species of the family Acipenseridae, which is consistent with the classical Haldane’s rule. However, it cannot be excluded that the testis of this/these hybrid(s) may produce fertile sperm after sexual maturity, depending on additional genetic, hormonal and environmental factors, and further research is required for its evaluation. Full article
(This article belongs to the Special Issue Innovative Aquaculture and Fish Reproduction)
Show Figures

Figure 1

25 pages, 3247 KB  
Review
Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging
by Tariq Aziz, Abad Ali Nadeem, Abid Sarwar, Ishrat Perveen, Nageen Hussain, Ayaz Ali Khan, Zubaida Daudzai, Haiying Cui and Lin Lin
Biomedicines 2023, 11(2), 354; https://doi.org/10.3390/biomedicines11020354 - 26 Jan 2023
Cited by 24 | Viewed by 4150
Abstract
Aging is a multifunctional physiological manifestation. The nasal cavity is considered a major site for easy and cost-effective drug and vaccine administration, due to high permeability, low enzymatic activity, and the presence of a high number of immunocompetent cells. This review article primarily [...] Read more.
Aging is a multifunctional physiological manifestation. The nasal cavity is considered a major site for easy and cost-effective drug and vaccine administration, due to high permeability, low enzymatic activity, and the presence of a high number of immunocompetent cells. This review article primarily focuses on aging genetics, physical parameters, and the use of nanoparticles as delivery systems of drugs and vaccines via the nasal cavity. Studies have identified various genes involved in centenarian and average-aged people. VEGF is a key mediator involved in angiogenesis. Different therapeutic approaches induce vascular function and angiogenesis. FOLR1 gene codes for folate receptor alpha protein that helps in regulating the transport of vitamin B folate, 5-methyltetrahydrofolate and folate analogs inside the cell. This gene also aids in slowing the aging process down by cellular regeneration and promotes healthy aging by reducing aging symptoms. It has been found through the literature that GATA 6, Yamanaka factors, and FOLR1 work in synchronization to induce healthy and delayed aging. The role and applications of genes including CBS, CISD, SIRT 1, and SIRT 6 play a significant role in aging. Full article
Show Figures

Graphical abstract

10 pages, 1576 KB  
Brief Report
Naïve CD4+ T Cell Activation in the Nasal-Associated Lymphoid Tissue following Intranasal Immunization with a Flagellin-Based Subunit Vaccine
by John T. Bates
Int. J. Mol. Sci. 2022, 23(24), 15572; https://doi.org/10.3390/ijms232415572 - 8 Dec 2022
Cited by 3 | Viewed by 2456
Abstract
The nasal-associated lymphoid tissues (NALT) are generally accepted as an immune induction site, but the activation of naïve T-cells in that compartment has not been well-characterized. I wanted to determine if early events in naïve CD4+ T cell activation and the extent [...] Read more.
The nasal-associated lymphoid tissues (NALT) are generally accepted as an immune induction site, but the activation of naïve T-cells in that compartment has not been well-characterized. I wanted to determine if early events in naïve CD4+ T cell activation and the extent of antigen specific cell division are similar in NALT to that observed in other secondary lymphoid compartments. I performed antigen tracking experiments and analyzed the activation of naïve antigen-specific CD4+ T cells in the nasal-associated lymphoid tissues (NALT). I directly observed transepithelial transport of fluorescently labeled antigen from the lumen of the airway to the interior of the NALT two hours following immunization. One day following intranasal (i.n.) immunization with antigen and adjuvant, antigen-specific CD4+ T cells in the NALT associated as clusters, while antigen-specific CD4+ T cells in control mice immunized with adjuvant only remained dispersed. The antigen-specific CD4+ populations in the NALT and cranial deep cervical lymph nodes of immunized mice expanded significantly by day three following immunization. These findings are consistent with initial activation of naïve CD4+ T cells in the NALT and offer insight into adjuvant mechanism of flagellin in the upper respiratory compartment. Full article
(This article belongs to the Special Issue Flagella)
Show Figures

Figure 1

14 pages, 2145 KB  
Article
Vaccination Route Determines the Kinetics and Magnitude of Nasal Innate Immune Responses in Rainbow Trout (Oncorhynchus mykiss)
by Fen Dong, Luca Tacchi, Zhen Xu, Scott E. LaPatra and Irene Salinas
Biology 2020, 9(10), 319; https://doi.org/10.3390/biology9100319 - 1 Oct 2020
Cited by 13 | Viewed by 4105
Abstract
Many pathogens infect animal hosts via the nasal route. Thus, understanding how vaccination stimulates early nasal immune responses is critical for animal and human health. Vaccination is the most effective method to prevent disease outbreaks in farmed fish. Nasal vaccination induces strong innate [...] Read more.
Many pathogens infect animal hosts via the nasal route. Thus, understanding how vaccination stimulates early nasal immune responses is critical for animal and human health. Vaccination is the most effective method to prevent disease outbreaks in farmed fish. Nasal vaccination induces strong innate and adaptive immune responses in rainbow trout and was shown to be highly effective against infectious hematopoietic necrosis (IHN). However, direct comparisons between intranasal, injection and immersion vaccination routes have not been conducted in any fish species. Moreover, whether injection or immersion routes induce nasal innate immune responses is unknown. The goal of this study is to compare the effects of three different vaccine delivery routes, including intranasal (IN), intramuscular (i.m.) injection and immersion (imm) routes on the trout nasal innate immune response. Expression analyses of 13 immune-related genes in trout nasopharynx-associated lymphoid tissue (NALT), detected significant changes in immune expression in all genes analyzed in response to the three vaccination routes. However, nasal vaccination induced the strongest and fastest changes in innate immune gene expression compared to the other two routes. Challenge experiments 7 days post-vaccination (dpv) show the highest survival rates in the IN- and imm-vaccinated groups. However, survival rates in the imm group were significantly lower than the IN- and i.m.-vaccinated groups 28 dpv. Our results confirm that nasal vaccination of rainbow trout with live attenuated IHNV is highly effective and that the protection conferred by immersion vaccination is transient. These results also demonstrate for the first time that immersion vaccines stimulate NALT immune responses in salmonids. Full article
Show Figures

Figure 1

14 pages, 4146 KB  
Article
Design of Thermoplastic 3D-Printed Scaffolds for Bone Tissue Engineering: Influence of Parameters of “Hidden” Importance in the Physical Properties of Scaffolds
by Nieves Cubo-Mateo and Luis M. Rodríguez-Lorenzo
Polymers 2020, 12(7), 1546; https://doi.org/10.3390/polym12071546 - 13 Jul 2020
Cited by 25 | Viewed by 5665
Abstract
Additive manufacturing (AM) techniques are becoming the approaches of choice for the construction of scaffolds in tissue engineering. However, the development of 3D printing in this field brings unique challenges, which must be accounted for in the design of experiments. The common printing [...] Read more.
Additive manufacturing (AM) techniques are becoming the approaches of choice for the construction of scaffolds in tissue engineering. However, the development of 3D printing in this field brings unique challenges, which must be accounted for in the design of experiments. The common printing process parameters must be considered as important factors in the design and quality of final 3D-printed products. In this work, we study the influence of some parameters in the design and fabrication of PCL scaffolds, such as the number and orientation of layers, but also others of “hidden” importance, such as the cooling down rate while printing, or the position of the starting point in each layer. These factors can have an important impact oin the final porosity and mechanical performance of the scaffolds. A pure polycaprolactone filament was used. Three different configurations were selected for the design of the internal structure of the scaffolds: a solid one with alternate layers (solid) (0°, 90°), a porous one with 30% infill and alternate layers (ALT) (0°, 90°) and a non-alternated configuration consisting in printing three piled layers before changing the orientation (n-ALT) (0°, 0°, 0°, 90°, 90°, 90°). The nozzle temperature was set to 172 °C for printing and the build plate to 40 °C. Strand diameters of 361 ± 26 µm for room temperature cooling down and of 290 ± 30 µm for forced cooling down, were obtained. A compression elastic modulus of 2.12 ± 0.31 MPa for n-ALT and 8.58 ± 0.14 MPa for ALT scaffolds were obtained. The cooling down rate has been observed as an important parameter for the final characteristics of the scaffold. Full article
(This article belongs to the Special Issue Polymers for Bone Tissue Engineering)
Show Figures

Graphical abstract

28 pages, 2576 KB  
Review
Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa
by Stella Gänger and Katharina Schindowski
Pharmaceutics 2018, 10(3), 116; https://doi.org/10.3390/pharmaceutics10030116 - 3 Aug 2018
Cited by 374 | Viewed by 25511
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier are major obstacles in central nervous system (CNS) drug delivery, since they block most molecules from entering the brain. Alternative drug delivery routes like intraparenchymal or intrathecal are invasive methods with a remaining risk of [...] Read more.
The blood-brain barrier and the blood-cerebrospinal fluid barrier are major obstacles in central nervous system (CNS) drug delivery, since they block most molecules from entering the brain. Alternative drug delivery routes like intraparenchymal or intrathecal are invasive methods with a remaining risk of infections. In contrast, nose-to-brain delivery is a minimally invasive drug administration pathway, which bypasses the blood-brain barrier as the drug is directed from the nasal cavity to the brain. In particular, the skull base located at the roof of the nasal cavity is in close vicinity to the CNS. This area is covered with olfactory mucosa. To design and tailor suitable formulations for nose-to-brain drug delivery, the architecture, structure and physico-chemical characteristics of the mucosa are important criteria. Hence, here we review the state-of-the-art knowledge about the characteristics of the nasal and, in particular, the olfactory mucosa needed for a rational design of intranasal formulations and dosage forms. Also, the information is suitable for the development of systemic or local intranasal drug delivery as well as for intranasal vaccinations. Full article
(This article belongs to the Special Issue Nose to Brain Delivery)
Show Figures

Figure 1

23 pages, 14164 KB  
Article
Allogenic Fc Domain-Facilitated Uptake of IgG in Nasal Lamina Propria: Friend or Foe for Intranasal CNS Delivery?
by Simone Ladel, Johannes Flamm, Arghavan Soleimani Zadeh, Dorothea Filzwieser, Julia-Christina Walter, Patrick Schlossbauer, Ralf Kinscherf, Katharina Lischka, Harald Luksch and Katharina Schindowski
Pharmaceutics 2018, 10(3), 107; https://doi.org/10.3390/pharmaceutics10030107 - 26 Jul 2018
Cited by 29 | Viewed by 6145
Abstract
Background: The use of therapeutic antibodies for the treatment of neurological diseases is of increasing interest. Nose-to-brain drug delivery is one strategy to bypass the blood brain barrier. The neonatal Fc receptor (FcRn) plays an important role in transepithelial transcytosis of immunoglobulin G [...] Read more.
Background: The use of therapeutic antibodies for the treatment of neurological diseases is of increasing interest. Nose-to-brain drug delivery is one strategy to bypass the blood brain barrier. The neonatal Fc receptor (FcRn) plays an important role in transepithelial transcytosis of immunoglobulin G (IgG). Recently, the presence of the FcRn was observed in nasal respiratory mucosa. The aim of the present study was to determine the presence of functional FcRn in olfactory mucosa and to evaluate its role in drug delivery. Methods: Immunoreactivity and messenger RNA (mRNA) expression of FcRn was determined in ex vivo porcine olfactory mucosa. Uptake of IgG was performed in a side-by-side cell and analysed by immunofluorescence. Results: FcRn was found in epithelial and basal cells of the olfactory epithelium as well as in glands, cavernous bodies and blood vessels. Allogenic porcine IgGs were found time-dependently in the lamina propria and along axonal bundles, while only small amounts of xenogenic human IgGs were detected. Interestingly, lymphoid follicles were spared from allogenic IgGs. Conclusion: Fc-mediated transport of IgG across the nasal epithelial barrier may have significant potential for intranasal delivery, but the relevance of immune interaction in lymphoid follicles must be clarified to avoid immunogenicity. Full article
(This article belongs to the Special Issue Nose to Brain Delivery)
Show Figures

Graphical abstract

14 pages, 1557 KB  
Article
cGAMP Promotes Germinal Center Formation and Production of IgA in Nasal-Associated Lymphoid Tissue
by Hiromi Takaki, Ken Takashima, Hiroyuki Oshiumi, Akira Ainai, Tadaki Suzuki, Hideki Hasegawa, Misako Matsumoto and Tsukasa Seya
Med. Sci. 2017, 5(4), 35; https://doi.org/10.3390/medsci5040035 - 18 Dec 2017
Cited by 16 | Viewed by 5546
Abstract
Induction of immunoglobulin (Ig) A in the mucosa of the upper respiratory tract and the nasal cavity protects against influenza virus infection. Cyclic dinucleotides (CDNs) are used as mucosal adjuvants to enhance the immunogenicity of intranasal influenza hemagglutinin (HA) vaccines. The adjuvant activity [...] Read more.
Induction of immunoglobulin (Ig) A in the mucosa of the upper respiratory tract and the nasal cavity protects against influenza virus infection. Cyclic dinucleotides (CDNs) are used as mucosal adjuvants to enhance the immunogenicity of intranasal influenza hemagglutinin (HA) vaccines. The adjuvant activity of 2′3′ cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) on Ig production was investigated in nasal-associated lymphoid tissue (NALT), serum of wild-type C57BL/6J, and stimulator of interferon genes (STING)-deficient mice, which do not recognize cGAMP. Mice were vaccinated intranasally with a HA vaccine with or without the cGAMP adjuvant. IgA and IgG production, T-cell responses, germinal center formation, and cytokine expression in NALT were assayed. cGAMP enhanced IgA and IgG production, and promoted T-cell responses. Intranasal administration of cGAMP activated both NALT and systemic immune cells, induced a favorable cytokine environment for IgA induction, and promoted germinal center formation. The cGAMP effect was STING-dependent. Taken together, cGAMP as an HA vaccine adjuvant promoted a STING-dependent NALT environment suitable for the enhancement of IgA production. Full article
(This article belongs to the Section Immunology and Infectious Diseases)
Show Figures

Figure 1

15 pages, 181 KB  
Review
The Mucosal Immune System of Teleost Fish
by Irene Salinas
Biology 2015, 4(3), 525-539; https://doi.org/10.3390/biology4030525 - 12 Aug 2015
Cited by 418 | Viewed by 20470
Abstract
Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues [...] Read more.
Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture. Full article
(This article belongs to the Special Issue Current Understanding of Fish Immune Systems)
Show Figures

Figure 1

38 pages, 1638 KB  
Review
Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives
by Yingying Xu, Pak-Wai Yuen and Jenny Ka-Wing Lam
Pharmaceutics 2014, 6(3), 378-415; https://doi.org/10.3390/pharmaceutics6030378 - 10 Jul 2014
Cited by 69 | Viewed by 19141
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid [...] Read more.
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents. Full article
(This article belongs to the Special Issue Respiratory and Nasal Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop