Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = NADH fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5646 KB  
Article
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
by Lorenzo Agostino Cadinu, Keyue Sun, Chunbao Jiao, Rebecca Panconesi, Sangeeta Satish, Fatma Selin Yildirim, Omer Faruk Karakaya, Chase J. Wehrle, Geofia Shaina Crasta, Fernanda Walsh Fernandes, Nasim Eshraghi, Koki Takase, Hiroshi Horie, Pier Carlo Ricci, Davide Bagnoli, Mauricio Flores Carvalho, Andrea Schlegel and Massimo Barbaro
Sensors 2025, 25(13), 4031; https://doi.org/10.3390/s25134031 - 28 Jun 2025
Cited by 1 | Viewed by 921
Abstract
Ex situ machine perfusion has emerged as a pivotal technique for organ preservation and pre-transplant viability assessment, where the real-time monitoring of mitochondrial biomarkers—flavin mononucleotide (FMN) and nicotinamide adenine dinucleotide (NADH)—could significantly mitigate ischemia-reperfusion injury risks. This study develops a non-invasive optical method [...] Read more.
Ex situ machine perfusion has emerged as a pivotal technique for organ preservation and pre-transplant viability assessment, where the real-time monitoring of mitochondrial biomarkers—flavin mononucleotide (FMN) and nicotinamide adenine dinucleotide (NADH)—could significantly mitigate ischemia-reperfusion injury risks. This study develops a non-invasive optical method combining fluorescence and UV-visible spectrophotometry to quantify FMN and NADH in hypothermic oxygenated perfusion media. Calibration curves revealed linear responses for both biomarkers in absorption and fluorescence (FMN: λex = 445 nm, λem = 530–540 nm; NADH: λex = 340 nm, λem = 465 nm) at concentrations < 100 μg mL−1. However, NADH exhibited nonlinear fluorescence above 100 μg mL−1, requiring shifted excitation to 365 nm for reliable detection. Spectroscopic analysis further demonstrated how perfusion solution composition alters FMN/NADH fluorescence properties, with consistent reproducibility across media. The method’s robustness was validated through comparative studies in clinically relevant solutions, proposing a strategy for precise biomarker quantification without invasive sampling. These findings establish a foundation for real-time, optical biosensor development to enhance organ perfusion monitoring. By bridging spectroscopic principles with clinical needs, this work advances translational sensor technologies for transplant medicine, offering a template for future device integration. Full article
Show Figures

Figure 1

17 pages, 1905 KB  
Article
Monitoring the Spoilage of Fresh Sterlet (Acipenser ruthenus) During Storage at 4 °C by Mid-Infrared and Fluorescence Spectroscopies Coupled with Chemometric Tools
by Daria Vilkova, Moriken Sangaré, Ahmed Snoussi and Romdhane Karoui
Foods 2025, 14(12), 2051; https://doi.org/10.3390/foods14122051 - 11 Jun 2025
Viewed by 631
Abstract
Sterlet is a perishable product; therefore, its freshness monitoring and shelf-life evaluation are important. In this study, a series of analytical techniques named physicochemical, microbiological, sensory, colorimetric, and mid-infrared and fluorescence spectroscopies were applied on Sterlet (Acipenser ruthenus) samples during 18 [...] Read more.
Sterlet is a perishable product; therefore, its freshness monitoring and shelf-life evaluation are important. In this study, a series of analytical techniques named physicochemical, microbiological, sensory, colorimetric, and mid-infrared and fluorescence spectroscopies were applied on Sterlet (Acipenser ruthenus) samples during 18 days of storage at 4 °C. The water content increased from 72.8 g/100 g on day 1 to 77.81 g/100 on day 14. Regarding the peroxide value (PV), the initial value was 4.17 meq/kg of Sterlet on day 1, reaching a maximum on day 4 (4.9 meq/kg of Sterlet), and then it decreased gradually, attaining a value of 0.7 meq/kg of Sterlet on day 18. Generally, the thiobarbituric acid reactive substance (TBARS), total viable count (TVC) and psychrotrophic count (PTC) increased during the storage time and increased from 0.03 to 0.13 MDA eq./kg of Sterlet sample, 2.27 to 9.09 log10 CFU/g, and 2.18 to 9.15 log10 CFU/g, respectively, on day 1 and 18, respectively. The microbiological and sensory analyses indicated that Sterlet samples were acceptable for human consumption up to 7 days of storage at 4 °C. This result was confirmed by fluorescence measurements, since the principal component analysis (PCA) applied to the NADH and MIR spectra allowed for a clear differentiation between Sterlet samples aged 7 days or less from the others. This trend was confirmed by the factorial discriminant analysis (FDA) applied to the NADH and MIR spectra, since a correct classification with leave-one cross-validation of 94.44% was observed. In addition, the heatmap of the Pearson correlation coefficients showed high correlations between overall acceptability and microbiology parameters and the structural properties of Sterlet samples during storage, indicating that the modifications observed at the macroscopic level were related to those notedat the molecular scale. Full article
(This article belongs to the Special Issue Technologies in Agricultural Product Quality Control and Traceability)
Show Figures

Figure 1

12 pages, 2722 KB  
Article
Prediction of Microvascular Adaptation to Hypoxia Based on Myogenic Microcirculation Oscillations
by Andrzej Marcinek, Joanna Katarzynska, Artur Stanek and Jerzy Gebicki
Sensors 2025, 25(9), 2751; https://doi.org/10.3390/s25092751 - 26 Apr 2025
Viewed by 5090
Abstract
Microcirculatory oscillations known as flowmotion are a recognized feature of blood flow that reflect the functional state of the vascular system. Many diseases are associated with impaired flowmotion, especially diseases that are accompanied by hypoxia. Low-frequency myogenic oscillations (0.052–0.15 Hz) are an important [...] Read more.
Microcirculatory oscillations known as flowmotion are a recognized feature of blood flow that reflect the functional state of the vascular system. Many diseases are associated with impaired flowmotion, especially diseases that are accompanied by hypoxia. Low-frequency myogenic oscillations (0.052–0.15 Hz) are an important regulator of microvascular adaptation to hypoxia. Here, we study the myogenic component of flowmotion using the FMSF–PORH (Flow Mediated Skin Fluorescence–Post Occlusive Reactive Hyperemia) technique. Myogenic oscillations were strongly activated under hypoxic conditions caused by occlusion of the brachial artery or intermittent hypoxic treatment. A strong correlation was noted between the hypoxia sensitivity parameter HS (the intensity of myogenic oscillations activated by hypoxia) and the normoxic myogenic flowmotion parameter VM (the intensity of myogenic oscillations under normoxic conditions). If HS is considered as a direct measure of the microcirculation response to hypoxia, then VM can be considered a measure of the microcirculation’s readiness to provide this response. The predictive value of the VM parameter is presented. The assessment of myogenic activity under normoxia conditions could thus provide a simple and rapid diagnostic tool for health care practitioners. Full article
Show Figures

Figure 1

16 pages, 1080 KB  
Review
What Can Fluorescence Tell Us About Wine?
by Izabela Sadowska-Bartosz and Grzegorz Bartosz
Int. J. Mol. Sci. 2025, 26(7), 3384; https://doi.org/10.3390/ijms26073384 - 4 Apr 2025
Cited by 1 | Viewed by 1044
Abstract
Rapid and cost-effective measurements of the autofluorescence of wine can provide valuable information on the brand, origin, age, and composition of wine and may be helpful for the authentication of wine and detection of forgery. The list of fluorescent components of wines includes [...] Read more.
Rapid and cost-effective measurements of the autofluorescence of wine can provide valuable information on the brand, origin, age, and composition of wine and may be helpful for the authentication of wine and detection of forgery. The list of fluorescent components of wines includes flavonoids, phenolic acids, stilbenes, some vitamins, aromatic amino acids, NADH, and Maillard reaction products. Distinguishing between various fluorophores is not simple, and chemometrics are usually employed to analyze the fluorescence spectra of wines. Front-face fluorescence is especially useful in the analysis of wine, obviating the need for sample dilution. Front-face measurements are possible using most plate readers, so they are commonly available. Additionally, the use of fluorescent probes allows for the detection and quantification of specific wine components, such as resveratrol, oxygen, total iron, copper, hydrogen sulfite, and haze-forming proteins. Fluorescence measurements can thus be useful for at least a preliminary rapid evaluation of wine properties. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 4537 KB  
Article
Construction of a Cofactor Self-Sufficient Enzyme Cascade System Coupled with Microenvironmental Engineering for Efficient Biosynthesis of Tetrahydrofolate and Its Derivative of L-5-Methyltetrahydrofolate
by Ziting Yan, Lisha Qin, Ruirui Qin, Xin Wang and Kequan Chen
Catalysts 2025, 15(3), 235; https://doi.org/10.3390/catal15030235 - 28 Feb 2025
Viewed by 1250
Abstract
Tetrahydrofolate (THF), the biologically active form of folate, serves as a crucial carrier of one-carbon units essential for synthesizing cellular components such as amino acids and purine nucleotides in vivo. It also acts as an important precursor for the production of pharmaceuticals, including [...] Read more.
Tetrahydrofolate (THF), the biologically active form of folate, serves as a crucial carrier of one-carbon units essential for synthesizing cellular components such as amino acids and purine nucleotides in vivo. It also acts as an important precursor for the production of pharmaceuticals, including folinate and L-5-methyltetrahydrofolate (L-5-MTHF). In this study, we developed an efficient enzyme cascade system for the production tetrahydrofolate from folate, incorporating NADPH recycling, and explored its application in the synthesis of L-5-MTHF, a derivative of tetrahydrofolate. To achieve this, we first screened dihydrofolate reductases (DHFRs) from various organisms, identifying SmDHFR from Serratia marcescens as the enzyme with the highest catalytic activity. We then conducted a comparative analysis of formate dehydrogenases (FDHs) from different sources, successfully establishing an NADPH recycling system. To further enhance biocatalytic efficiency, we optimized key reaction parameters, including temperature, pH, enzyme ratio, and substrate concentration. To address the challenge of pH mismatch in dual-enzyme reactions, we employed an enzymatic microenvironment regulation strategy. This involved covalently conjugating SmDHFR with a superfolder green fluorescent protein mutant carrying 30 surface negative charges (−30sfGFP), using the SpyCatcher/SpyTag system. This modification resulted in a 2.16-fold increase in tetrahydrofolate production, achieving a final yield of 4223.4 µM. Finally, we extended the application of this tetrahydrofolate synthesis system to establish an enzyme cascade for L-5-MTHF production with NADH recycling. By incorporating methylenetetrahydrofolate reductase (MTHFR), we successfully produced 389.8 μM of L-5-MTHF from folate and formaldehyde. This work provides a novel and efficient pathway for the biosynthesis of L-5-MTHF and highlights the potential of enzyme cascade systems in the production of tetrahydrofolate-derived compounds. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

18 pages, 8498 KB  
Article
Characterizing Metabolic Shifts in Septic Murine Kidney Tissue Using 2P-FLIM for Early Sepsis Detection
by Stella Greiner, Mahyasadat Ebrahimi, Marko Rodewald, Annett Urbanek, Tobias Meyer-Zedler, Michael Schmitt, Ute Neugebauer and Jürgen Popp
Bioengineering 2025, 12(2), 170; https://doi.org/10.3390/bioengineering12020170 - 10 Feb 2025
Viewed by 1243
Abstract
In this study, thin mouse kidney sections from healthy mice and those infected leading to acute and chronic sepsis were examined with two-photon excited fluorescence lifetime imaging (2P-FLIM) using the endogenous fluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). The [...] Read more.
In this study, thin mouse kidney sections from healthy mice and those infected leading to acute and chronic sepsis were examined with two-photon excited fluorescence lifetime imaging (2P-FLIM) using the endogenous fluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). The results presented show that this approach is a powerful tool for investigating cell metabolism in thin tissue sections. An adapted measurement routine was established for these samples by performing a spectral scan, identifying a combination of two excitation wavelengths and two detection ranges suitable for detailed scan images of NADH and FAD. Selected positions in thin slices of the renal cortex of nine mice (three healthy, three with chronic sepsis, and three with acute sepsis) were studied using 2P-FLIM. In addition, overview images were obtained using two-photon excited fluorescence (2PEF) intensity. This study shows that healthy kidney slices differ considerably from those with acute sepsis with regard to their fluorescence lifetime signatures. The latter shows a difference in metabolism between the inner and outer cortex, indicating that outer cortical tubular cells switch their metabolism from oxidative phosphorylation to glycolysis in kidneys from mice with acute sepsis and back in later stages, as seen for mice with chronic infections. These findings suggest that 2P-FLIM could serve as a powerful tool for early-stage sepsis diagnosis and monitoring metabolic recovery during treatment. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Graphical abstract

24 pages, 5556 KB  
Article
Differential Mitochondrial Redox Responses to the Inhibition of NAD+ Salvage Pathway of Triple Negative Breast Cancer Cells
by Jack Kollmar, Junmei Xu, Diego Gonzalves, Joseph A. Baur, Lin Z. Li, Julia Tchou and He N. Xu
Cancers 2025, 17(1), 7; https://doi.org/10.3390/cancers17010007 - 24 Dec 2024
Viewed by 1806
Abstract
Background/Objectives: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD+. Over expression of Nampt, the rate-limiting enzyme of the NAD+ biosynthesis salvage pathway, is common in breast cancer [...] Read more.
Background/Objectives: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD+. Over expression of Nampt, the rate-limiting enzyme of the NAD+ biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy. However, TNBC cells have heterogeneous responses to Nampt inhibition, which contributes to the diverse outcomes. There is a lack of imaging biomarkers to differentiate among TNBC cells under metabolic stress and identify which are responsive. We aimed to characterize and differentiate among a panel of TNBC cell lines under NAD-deficient stress and identify which subtypes are more dependent on the NAD salvage pathway. Methods: Optical redox imaging (ORI), a label-free live cell imaging microscopy technique was utilized to acquire intrinsic fluorescence intensities of NADH and FAD-containing flavoproteins (Fp) thus the mitochondrial redox ratio Fp/(NADH + Fp) in a panel of TNBC cell lines. Various fluorescence probes were then added to the cultures to image the mitochondrial ROS, mitochondrial membrane potential, mitochondrial mass, and cell number. Results: Various TNBC subtypes are sensitive to Nampt inhibition in a dose- and time-dependent manner, they have differential mitochondrial redox responses; furthermore, the mitochondrial redox indices linearly correlated with mitochondrial ROS induced by various doses of a Nampt inhibitor. Moreover, the changes in the redox indices correlated with growth inhibition. Additionally, the redox state was found fully recovered after removing the Nampt inhibitor. Conclusions: This study supports the utility of ORI in rapid metabolic phenotyping of TNBC cells under NAD-deficient stress to identify responsive cells and biomarkers of treatment response, facilitating combination therapy strategies. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

12 pages, 2854 KB  
Article
Multi-Modal Investigation of Metabolism in Murine Breast Cancer Cell Lines Using Fluorescence Lifetime Microscopy and Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopy
by Sarah Erickson-Bhatt, Benjamin L. Cox, Erin Macdonald, Jenu V. Chacko, Paul Begovatz, Patricia J. Keely, Suzanne M. Ponik, Kevin W. Eliceiri and Sean B. Fain
Metabolites 2024, 14(10), 550; https://doi.org/10.3390/metabo14100550 - 15 Oct 2024
Viewed by 1853
Abstract
Background/Objectives: Despite the role of metabolism in breast cancer metastasis, we still cannot predict which breast tumors will progress to distal metastatic lesions or remain dormant. This work uses metabolic imaging to study breast cancer cell lines (4T1, 4T07, and 67NR) with [...] Read more.
Background/Objectives: Despite the role of metabolism in breast cancer metastasis, we still cannot predict which breast tumors will progress to distal metastatic lesions or remain dormant. This work uses metabolic imaging to study breast cancer cell lines (4T1, 4T07, and 67NR) with differing metastatic potential in a 3D collagen gel bioreactor system. Methods: Within the bioreactor, hyperpolarized magnetic resonance spectroscopy (HP-MRS) is used to image lactate/pyruvate ratios, while fluorescence lifetime imaging microscopy (FLIM) of endogenous metabolites measures metabolism at the cellular scale. Results: HP-MRS results showed no lactate peak for 67NR and a comparatively large lactate/pyruvate ratio for both 4T1 and 4T07 cell lines, suggestive of greater pyruvate utilization with greater metastatic potential. Similar patterns were observed using FLIM with significant increases in FAD intensity, redox ratio, and NAD(P)H lifetime. The lactate/pyruvate ratio was strongly correlated to NAD(P)H lifetime, consistent with the role of NADH as an electron donor for the glycolytic pathway, suggestive of an overall upregulation of metabolism (both glycolytic and oxidative), for the 4T07 and 4T1 cell lines compared to the non-metastatic 67NR cell line. Conclusions: These findings support a complementary role for HP-MRS and FLIM enabled by a novel collagen gel bioreactor system to investigate metastatic potential and cancer metabolism. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

27 pages, 9468 KB  
Article
Phenotypic, Metabolic, and Functional Characterization of Experimental Models of Foamy Macrophages: Toward Therapeutic Research in Atherosclerosis
by Amina Sarah Henni Mansour, Mathilde Ragues, Julien Brevier, Coraline Borowczyk, Janaïna Grevelinger, Jeanny Laroche-Traineau, Johan Garaude, Sébastien Marais, Marie-Josée Jacobin-Valat, Edouard Gerbaud, Gisèle Clofent-Sanchez and Florence Ottones
Int. J. Mol. Sci. 2024, 25(18), 10146; https://doi.org/10.3390/ijms251810146 - 21 Sep 2024
Cited by 2 | Viewed by 1780
Abstract
Different types of macrophages (Mφ) are involved in atherogenesis, including inflammatory Mφ and foamy Mφ (FM). Our previous study demonstrated that two-photon excited fluorescence (TPEF) imaging of NADH and FAD autofluorescence (AF) could distinguish experimental models that mimic the different atherosclerotic Mφ types. [...] Read more.
Different types of macrophages (Mφ) are involved in atherogenesis, including inflammatory Mφ and foamy Mφ (FM). Our previous study demonstrated that two-photon excited fluorescence (TPEF) imaging of NADH and FAD autofluorescence (AF) could distinguish experimental models that mimic the different atherosclerotic Mφ types. The present study assessed whether optical differences correlated with phenotypic and functional differences, potentially guiding diagnostic and therapeutic strategies. Phenotypic differences were investigated using three-dimensional principal component analysis and multi-color flow cytometry. Functional analyses focused on cytokine production, metabolic profiles, and cellular oxidative stress, in LDL dose-dependent assays, to understand the origin of AF in the FAD spectrum and assess FM ability to transition toward an immunoregulatory phenotype and function. Phenotypic studies revealed that FM models generated with acetylated LDL (Mac) were closer to immunoregulatory Mφ, while those generated with oxidized LDL (Mox) more closely resembled inflammatory Mφ. The metabolic analysis confirmed that inflammatory Mφ primarily used glycolysis, while immunoregulatory Mφ mainly depended on mitochondrial respiration. FM models employed both pathways; however, FM models generated with high doses of modified LDL showed reduced mitochondrial respiration, particularly Mox FM. Thus, the high AF in the FAD spectrum in Mox was not linked to increased mitochondrial respiration, but correlated with the dose of oxidized LDL, leading to increased production of reactive oxygen species (ROS) and lysosomal ceroid accumulation. High FAD-like AF, ROS, and ceroid accumulation were reduced by incubation with α-tocopherol. The cytokine profiles supported the phenotypic analysis, indicating that Mox FM exhibited greater inflammatory activity than Mac FM, although both could be redirected toward immunoregulatory functions, albeit to different degrees. In conclusion, in the context of immunoregulatory therapies for atherosclerosis, it is crucial to consider FM, given their prevalence in plaques and our results, as potential targets, regardless of their inflammatory status, alongside non-foamy inflammatory Mφ. Full article
Show Figures

Figure 1

16 pages, 10782 KB  
Article
Fluorescence-Enhanced Assessments for Human Breast Cancer Cell Characterizations
by Mahsa Ghezelbash, Batool Sajad and Shadi Hojatizadeh
Photonics 2024, 11(8), 746; https://doi.org/10.3390/photonics11080746 - 9 Aug 2024
Viewed by 1644
Abstract
Even with 100% certainty of a complete cure for breast cancer (BC), there is still a long way to go toward more efficient treatment because it requires sensitive and timely detection and accurate pre/post-clinical characterizations. Despite the availability of advanced diagnostic tools, many [...] Read more.
Even with 100% certainty of a complete cure for breast cancer (BC), there is still a long way to go toward more efficient treatment because it requires sensitive and timely detection and accurate pre/post-clinical characterizations. Despite the availability of advanced diagnostic tools, many cancer patients lack access to efficient diagnostics that are both highly reliable and affordable. The fluorescence-based optical technique aims to make another significant leap forward in improving patient safety. It offers a convenient operation that reduces healthcare costs compared to visual examination tools (VETs). The primary and metastatic stages of BC consider different cancerous cell lines (MDAs), meaning the highest number of cells in this research (up to 300,000) represents the metastatic stages of BC, and 50,000 represents the primary level of BC. Developments have been studied based on fluorescence-enhanced photodynamic characterizations. The ability to characterize the fluorescence caused by MDA with 50,000 cells compared to the dominant radiation of MDA with 300,000 cells is emphatic proof of the high potential of fluorescence technique in timely BC detections, specifically before it spreads to the axillary lymph nodes. The specific cell numbers of 50,000 and 300,000 were chosen arbitrarily based on the cultivation of common biological limitations. Comparing the outcomes between 50,000 and 300,000 cells allows for evaluating the fluorescence technique’s diagnostic capability across various stages of breast cancer. This assessment provides valuable insights into the effectiveness of the fluorescence-based characterizing approach in detecting cancerous cells at different stages of the disease. Here, we have assessed fluorescence’s spectral shift and intensity difference as a diagnostic approach to distinguish between cancerous and normal breast cells. This study also presents a two-way structure of the 5-aminolevulinic acid (5-ALA) prodrug and Fluorescein Sodium (FS) effect in BC cell characterization from the perspective of photodynamical procedures and the detection side. 5-ALA induces an accumulation of protoporphyrin IX (PpIX) photosensitizer through a biosynthetic pathway, leading to red radiation of fluorescence measurements depending on different factors, such as temperature, incubation time, added glucose of the culturing medium, as well as photosynthesis processes. The presence and progression of breast cancer can be indicated by elevated levels of Reactive Oxygen Species (ROS), associated with the production of PpIX in cells following the administration of 5-ALA. In addition, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) fluorophores are recognized as the main factors for fluorescence emissions at around 420–580 nm emission intervals. Considering the MDA’s high metastatic potential, the impact of 5-ALA on MDA’s cellular morphology and viability has been investigated. The molecular fluorophores are the primary probes to MDA’s cellular photodynamic considerations, allowing this widespread pre/post-clinical approach. The fluorescence signal reduction due to decreased cell viability and increased MDA’s cellular death rate after 24 h of the 5-ALA-induced staining corresponds to the changes in lipid metabolism enzymes of MDAs cultured at different doses, which could be known as a cell death inducer function. Furthermore, statistical concerns have been studied using PCA multivariate component analysis to differentiate MDA cell lines administrated by 5-ALA. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

17 pages, 5228 KB  
Article
A Host–Guest Platform for Highly Efficient, Quantitative, and Rapid Detection of Nitroreductase
by Wen Si, Yang Jiao, Xianchao Jia, Meng Gao, Yihao Zhang, Ye Gao, Lei Zhang and Chunying Duan
Chemosensors 2024, 12(8), 145; https://doi.org/10.3390/chemosensors12080145 - 30 Jul 2024
Cited by 1 | Viewed by 1632
Abstract
Nitroreductase (NTR) is an enzyme expressed at an abnormally high level in solid tumors, which is associated with the hypoxia level in tumors. The establishment of a high-performance and convenient fluorescent platform for the fast monitoring of NTR is of pivotal importance. Herein, [...] Read more.
Nitroreductase (NTR) is an enzyme expressed at an abnormally high level in solid tumors, which is associated with the hypoxia level in tumors. The establishment of a high-performance and convenient fluorescent platform for the fast monitoring of NTR is of pivotal importance. Herein, a novel host–guest complex was created by encapsulating a fluorescent substrate GP-NTR within a metal–organic capsule Zn-MPB that included a NADH mimic for the detection of hypoxia via responding to nitroreductase (NTR) with fast responsiveness and good fluorescence imaging. Notably, the double-substrate process was streamlined to a single–substrate process by the host–guest supramolecular method in the catalytic process of NTR, which enabled the reaction to be independent of the cofactor NADH supply and shortened the distance between the substrate and the active site of NTR. The increasing fluorescence intensity of Zn-MPB⊃GP-NTR exhibits a linear relationship with NTR concentration and shows a fast response toward NTR in solution in tens of seconds. Zn-MPB⊃GP-NTR also displays high sensitivity to NTR with a low detection limit of 6.4 ng/mL. Cells and in vivo studies have confirmed that Zn-MPB⊃GP-NTR could be successfully applied for the fast imaging of NTR in NTR-overexpressed tumor cells and tumor-bearing animals. The host–guest platform not only provides a new avenue for the design and optimization of a fluorescence detection platform for the rapid and quantitative detection of NTR activity, but also offers an imaging tool for the early diagnosis of hypoxia-related tumors. Full article
(This article belongs to the Special Issue Chemical and Biosensors Based on Metal-Organic Frames (MOFs))
Show Figures

Figure 1

9 pages, 2842 KB  
Article
A Rapid and Reliable Spectrofluorimetric Method to Measure the Urinary Lactulose/Mannitol Ratio for Dysbiosis Assessment
by Lorenzo Marino Cerrato, Elisabetta Schiano, Fortuna Iannuzzo, Gian Carlo Tenore, Vincenzo Summa, Maria Daglia, Ettore Novellino and Mariano Stornaiuolo
Biomedicines 2024, 12(7), 1557; https://doi.org/10.3390/biomedicines12071557 - 13 Jul 2024
Cited by 1 | Viewed by 2058
Abstract
Gut microbiota plays a crucial role in human health homeostasis, and the result of its alteration, known as dysbiosis, leads to several pathologies (e.g., inflammatory bowel disease, metabolic syndrome, and Crohn’s disease). Traditional methods used to assess dysbiosis include the dual sugar absorption [...] Read more.
Gut microbiota plays a crucial role in human health homeostasis, and the result of its alteration, known as dysbiosis, leads to several pathologies (e.g., inflammatory bowel disease, metabolic syndrome, and Crohn’s disease). Traditional methods used to assess dysbiosis include the dual sugar absorption test and the urinary lactulose/mannitol ratio (LMR) measurement using mass spectrometry. Despite its precision, this approach is costly and requires specialized equipment. Hence, we developed a rapid and reliable spectrofluorimetric method for measuring LMR in urine, offering a more accessible alternative. This spectrofluorimetric assay quantifies the fluorescence of nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) produced during the enzymatic oxidation of mannitol and lactulose, respectively. The assay requires 100 µL of urine samples and detects LMR values lower (eubiosis) and higher (dysbiosis) than 0.05, ultimately being amenable to high-throughput screening and automatization, making it practical for clinical and research settings. A validation of the method demonstrated its high precision, accuracy, and robustness. Additionally, this study confirmed analyte stability under various storage conditions, ensuring reliable results even with delayed analysis. Overall, this spectrofluorimetric technique reduces costs, time, and the environmental impact associated with traditional mass spectrometry methods, making it a viable option for widespread use in the assessment of dysbiosis. Full article
Show Figures

Figure 1

22 pages, 5312 KB  
Article
Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples
by He N. Xu, Diego Gonzalves, Jonathan H. Hoffman, Joseph A. Baur, Lin Z. Li and Erik A. Jensen
Antioxidants 2024, 13(5), 546; https://doi.org/10.3390/antiox13050546 - 29 Apr 2024
Cited by 2 | Viewed by 2512 | Correction
Abstract
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to [...] Read more.
Emerging data indicate that lung macrophages (LM) may provide a novel biomarker to classify disease endotypes in bronchopulmonary dysplasia (BPD), a form of infant chronic lung disease, and that augmentation of the LM phenotype may be a potential therapeutic target. To contribute to this area of research, we first used Optical Redox Imaging (ORI) to characterize the responses to H2O2-induced oxidative stress and caffeine treatment in an in vitro model of mouse alveolar macrophages (AM). H2O2 caused a dose-dependent decrease in NADH and an increase in FAD-containing flavoproteins (Fp) and the redox ratio Fp/(NADH + Fp). Caffeine treatment did not affect Fp but significantly decreased NADH with doses of ≥50 µM, and 1000 µM caffeine treatment significantly increased the redox ratio and decreased the baseline level of mitochondrial ROS (reactive oxygen species). However, regardless of whether AM were pretreated with caffeine or not, the mitochondrial ROS levels increased to similar levels after H2O2 challenge. We then investigated the feasibility of utilizing ORI to examine macrophage redox status in tracheal aspirate (TA) samples obtained from premature infants receiving invasive ventilation. We observed significant heterogeneity in NADH, Fp, Fp/(NADH + Fp), and mitochondrial ROS of the TA macrophages. We found a possible positive correlation between gestational age and NADH and a negative correlation between mean airway pressure and NADH that provides hypotheses for future testing. Our study demonstrates that ORI is a feasible technique to characterize macrophage redox state in infant TA samples and supports further use of this method to investigate lung macrophage-mediated disease endotypes in BPD. Full article
(This article belongs to the Special Issue Oxidative Stress and Newborns)
Show Figures

Figure 1

15 pages, 3673 KB  
Article
Quantitative Optical Redox Imaging of Melanoma Xenografts with Different Metastatic Potentials
by April Peng, He N. Xu, Lily Moon, Paul Zhang and Lin Z. Li
Cancers 2024, 16(9), 1669; https://doi.org/10.3390/cancers16091669 - 25 Apr 2024
Cited by 1 | Viewed by 1839
Abstract
To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio [...] Read more.
To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio (ORR = Fp/(Fp + NADH)) and its heterogeneity to the high invasive/metastatic potential, without having reported quantitative results for NADH and Fp. Here, we implemented a calibration procedure to facilitate imaging the nominal concentrations of tissue NADH and Fp in the mouse xenografts of two human melanoma lines, an indolent less metastatic A375P and a more metastatic C8161. Images of the redox indices (NADH, Fp, ORR) revealed the existence of more oxidized areas (OAs) and more reduced areas (RAs) within individual tumors. ORR was found to be higher and NADH lower in C8161 compared to that of A375P xenografts, both globally for the whole tumors and locally in OAs. The ORR in the OA can differentiate xenografts with a higher statistical significance than the global averaged ORR. H&E staining of the tumors indicated that the redox differences we identified were more likely due to intrinsically different cell metabolism, rather than variations in cell density. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Figure 1

15 pages, 3453 KB  
Article
Effect of Photodynamic Therapy with the Photosensitizer Methylene Blue on Cerebral Endotheliocytes In Vitro
by Vladimir I. Makarov, Alexey S. Skobeltsin, Anton S. Averchuk, Arseniy K. Berdnikov, Milana V. Chinenkova, Alla B. Salmina and Victor B. Loschenov
Photonics 2024, 11(4), 316; https://doi.org/10.3390/photonics11040316 - 28 Mar 2024
Cited by 3 | Viewed by 5971
Abstract
Background: Microvessels in tumor tissue play a crucial role in meeting the metabolic needs of transformed cells, controlling the entry of xenobiotics into tumor tissue, and regulating local inflammation that promotes metastasis. Methylene blue has photosensitizing properties and can also affect dysfunctional mitochondria. [...] Read more.
Background: Microvessels in tumor tissue play a crucial role in meeting the metabolic needs of transformed cells, controlling the entry of xenobiotics into tumor tissue, and regulating local inflammation that promotes metastasis. Methylene blue has photosensitizing properties and can also affect dysfunctional mitochondria. Methods: The study was performed on the primary culture of CECs. The cells underwent photodynamic treatment through 660 nm laser irradiation at a power density of 300 mW/cm2. The MTT, TMRE, and TUNEL assays were used to assess the survival, redox metabolism, mitochondrial activity, and apoptosis of CECs. Additionally, the metabolic activity of cells was evaluated using FLIM by measuring the fluorescence lifetime of NADH and FAD. Results: When CECs were incubated with MB, there was an increase in mitochondrial activity that was dependent on the concentration of MB. Additionally, mitochondrial activity increased when the CECs were exposed to 660 nm laser irradiation at an energy dose of up to 5 J/cm2. Following PDT, a slight shift towards oxidative phosphorylation was observed. Conclusions: In vitro application of MB accumulation or laser irradiation causes a shift in the redox status of CECs towards increased reducing activity, without causing any cell damage. However, the combined action of PS and laser radiation has the opposite effect on the redox status of cells, resulting in an increase in the oxidized form of FAD. Full article
(This article belongs to the Special Issue Phototheranostics: Science and Applications)
Show Figures

Figure 1

Back to TopTop